基本信息
顾国强  男  硕导  中国科学院深圳先进技术研究院
电子邮件: gq.gu@siat.ac.cn
通信地址: 深圳市南山区学苑大道1068号F705
邮政编码: 510085

招生信息

   
招生专业
080300-光学工程
083100-生物医学工程
085400-电子信息
招生方向
超分辨成像技术、光学微腔技术、拉曼光谱技术及它们在生物医学中的应用

教育背景

2009-09--2015-09   厦门大学   博士学位

工作经历

   
工作简历
2023-01~现在, 中国科学院深圳先进技术研究院, 副研究员
2020-07~2023-12,中国科学院深圳先进技术研究院, 助理研究员
2018-11~2020-07,南方科技大学, 研究助理教授
2016-10~2018-11,深圳大学, 博士后
2015-12~2016-09,新加坡国立大学, 博士后
2014-03~2014-12,新加坡国立大学, 访问学者
社会兼职
2023-06-11-今,中国生物医学工程学会, 高级会员
2023-01-05-今,中国光学学会, 终身会员

专利与奖励

   
奖励信息
(1) 中国科学院深圳先进技术研究院2021年度“优秀员工”, 研究所(学校), 2021
(2) 中国科学院深圳先进技术研究院医工所2021年所长创新奖-“科研贡献奖”, 其他, 2021
专利成果
[1] 顾国强, 瞿驰野, 余建, 张翊, 杨慧. 一种超分辨成像系统及成像方法. CN202311694702.X, 2023-12-07.
[2] 顾国强, 瞿驰野, 余建, 张翊, 杨慧. 一种超分辨显微物镜、制作方法及超分辨显微装置. CN202311702920.3, 2023-12-07.
[3] 顾国强, 马璐, 张翊, 杨慧, 巫建东. 一种半球形长焦透镜的制备方法及半球形长焦透镜. CN116430489A, 2023-07-14.
[4] 马璐, 顾国强, 张翊, 杨慧. 一种复合透镜光学超分辨率成像系统. CN115268048A, 2022-11-01.
[5] 马璐, 顾国强, 张翊, 杨慧. 一种复合透镜光学超分辨率成像系统. CN218099763U, 2022-12-20.
[6] 顾国强, 杨慧. 一种复合结构微瓶透镜的制备方法及复合结构微瓶透镜. CN114815008A, 2022-07-29.
[7] 顾国强, 杨慧. 一种基于微瓶透镜的超分辨成像系统及成像方法. CN114815208A, 2022-07-29.
[8] 杨慧, 陈希, 顾国强. 生物液微球、制备方法及微球透镜的光学成像方法. CN114265131B, 2023-07-14.
[9] 潘权, 李正浩, 胡美璜, 姜培, 祁楠, 于洪宇, 邵理阳, 顾国强, 宋章启. PAM-4调制格式的前馈均衡器. CN: CN110300076A, 2019-10-01.
[10] 邵理阳, 冯建松, 顾国强, 肖冬瑞, 余飞宏, 陈晓龙, 宋章启. 一种基于双边孔光纤的液体密度计及其制备方法. CN: CN110160912A, 2019-08-23.
[11] 邵理阳, 冯建松, 顾国强, 肖冬瑞, 余飞宏, 陈晓龙, 宋章启. 一种液体密度计和液体密度测量系统. CN: CN110160913A, 2019-08-23.
[12] 邵理阳, 冯建松, 顾国强, 肖冬瑞, 余飞宏, 陈晓龙, 宋章启. 一种基于双边孔光纤的液体密度计和液体密度传感器系统. CN: CN210293974U, 2020-04-10.
[13] 邵理阳, 冯建松, 顾国强, 肖冬瑞, 余飞宏, 陈晓龙, 宋章启. 一种液体密度计和液体密度测量系统. CN: CN210293975U, 2020-04-10.
[14] 邵理阳, 肖冬瑞, 顾国强, 宋章启, 陈晓龙, 潘权, 张伟, 刘言军. 基于微波光子技术的液体密度传感器系统. CN209727686U, 2019-12-03.
[15] 邵理阳, 肖冬瑞, 顾国强, 宋章启, 陈晓龙, 潘权, 张伟, 刘言军. 基于微波光子技术的液体密度传感器系统. CN109708995A, 2019-05-03.
[16] 顾国强, 邵理阳, 陈晓龙, 宋章启, 潘权, 刘言军, 邓巍巍, 林伟浩, 沈星良. 一种紫外胶光纤锥的制备方法. CN109613650A, 2019-04-12.
[17] 蔡志平, 顾国强, 许惠英, 车凯军. 一种瓶子型光学微谐振腔的制备方法. CN103311788B, 2015-10-14.
[18] 蔡志平, 顾国强, 许惠英, 陈鹭剑, 车凯军. 一种半球型光学微谐振腔的制备方法. CN103345021A, 2013-10-09.
[19] 蔡志平, 顾国强, 许惠英, 闫宇, 王金章. 一种光纤微球制备装置. CN102922131B, 2014-12-10.

出版信息

   
发表论文
[1] 顾国强, 余建, 瞿驰野, 张天尧, 马璐, 张鹏程, 张翊, 杨慧. 光子纳米喷流的性能及应用. 集成技术[J]. 2024, 13(2): 89-110, [2] Mengxi Gu, Xuan Zhou, Jienan Shen, Ruibin Xie, Yuhan Xie, Junxue Gao, Binzhe Zhao, Jie Li, Yingjie Duan, Zhixun Wang, Yougen Hu, Guoqiang Gu, Lei Wang, Lei Wei, Chunlei Yang, Ming Chen. High-sensitivity, ultrawide linear range, antibacterial textile pressure sensor based on chitosan/MXene hierarchical architecture. iScience[J]. 2024, [3] Chenying He, Yuanao Zhang, Ting Wen, Shenghai Pei, Zhixun Wang, Juan Xia, Guangcheng Xi, Wenjie Li, Jiahong Wang, Guoqiang Gu, Guohua Zhong, Lei Wei, Chunlei Yang, Ming Chen. Heteropolyacids: An ultrasensitive ionic volume-enhanced Raman scattering platform. Analytical Chemistry[J]. 2023, 95(28): 10752-10761, https://pubs.acs.org/doi/10.1021/acs.analchem.3c01793.
[4] Pengcheng Zhang, Tingting Zhan, Guoqiang Gu, Changle Li, Xiaoqin Huo, Mengting Lyu, Yuye Wang, Lin Zeng, Yi Zhang, Hui Yang. Measuring the size of single plasmonic nanoparticle via micrlens assisted scattering imaging. 2023 Light Conference, IEEEnull. 2023, [5] Zeng, Lin, Hu, Shi, Chen, Xi, Zhang, Pengcheng, Gu, Guoqiang, Wang, Yuye, Zhang, Hongpeng, Zhang, Yi, Yang, Hui. Extraction of small extracellular vesicles by label-free and biocompatible on-chip magnetic separation. LAB ON A CHIP[J]. 2022, 22(13): 2476-2488, http://dx.doi.org/10.1039/d2lc00217e.
[6] Pengcheng Zhang, Bing Yan, Guoqiang Gu, Zitong Yu, Xi Chen, Zengbo Wang, Hui Yang. Localized photonic nanojet based sensing platform for highly efficient signal amplification and quantitative biosensing. SENSORS AND ACTUATORS: B. CHEMICAL. 2022, 357: http://dx.doi.org/10.1016/j.snb.2022.131401.
[7] Guoqiang Gu, Lu Ma, Pengcheng Zhang, Yuye Wang, Lin Zeng, Hui Yang. Subwavelength nano-imaging with a microbottle lens. Asia Communications and Photonics Conference (ACP)null. 2022, https://ieeexplore.ieee.org/abstract/document/10088533.
[8] Pengcheng Zhang, Guoqiang Gu, Zitong Yu, Xi Chen, Xiaoqin Huo, Lin Zeng, Yuye Wang, Yi Zhang, Hui Yang. Detection of molecules based on enhanced backscattering effect in microsphere lens. 2022 IEEE 17th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)null. 2022, https://ieeexplore.ieee.org/abstract/document/9791144.
[9] Lu Ma, Guoqiang Gu, Yi Zhang, Hui Yang. Simulation study of photonic nanojet generated by a combination of a dielectric microsphere and a hemisphere lens. Asia Communications and Photonics Conference (ACP)null. 2022, https://ieeexplore.ieee.org/abstract/document/10088954.
[10] 杨慧, 张翊, 顾国强, 张鹏程, 曾霖, 王煜烨. 结合微纳光学结构的微流控芯片实验室. 生命科学仪器[J]. 2021, 19(4): 4-13, http://lib.cqvip.com/Qikan/Article/Detail?id=00002FCOL33G7JP0MNDO5JP1MNR.
[11] Pengcheng Zhang, Bing Yan, Guoqiang Gu, Zitong Yu, Xi Chen, Zengbo Wang, Hui Yang. Fluorescence enhancement utilizing dielectric microbeads with semi-open microwells. 021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)null. 2021, https://ieeexplore.ieee.org/abstract/document/9451517.
[12] Guoqiang Gu, Pengcheng Zhang, Hui Yang. Photonic nanojet produced by a microfluidic channel for biofluid monitoring. 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS)null. 2021, https://ieeexplore.ieee.org/abstract/document/9451384.
[13] Guoqiang Gu, Pengcheng Zhang, Sihui Chen, Yi Zhang, Hui Yang. Inflection point: a perspective on photonic nanojets. PHOTONICS RESEARCH[J]. 2021, 9(7): 1157-1171, http://dx.doi.org/10.1364/PRJ.419106.
[14] Ling Chen, YuanKui Leng, Bin Liu, Juan Liu, ShengPeng Wan, Tao Wu, Jinhui Yuan, Liyang Shao, Guoqiang Gu, Yong Qing Fu, Hengyi Xu, Yonghua Xiong, XingDao He, Qiang Wu. Ultrahigh-sensitivity label-free optical fiber biosensor based on a tapered singlemode- no core-singlemode coupler for Staphylococcus aureus detection. SENSORS AND ACTUATORS: B. CHEMICAL[J]. 2020, 320: [15] Bandyopadhyay, Sankhyabrata, Shao, Liyang, Smietana, Mateusz, Wang, Chao, Hu, Jie, Wang, Guoqing, He, Wei, Gu, Guoqiang, Yang, Yatao. Employing Higher Order Cladding Modes of Fiber Bragg Grating for Analysis of Refractive Index Change in Volume and at the Surface. IEEE PHOTONICS JOURNAL[J]. 2020, 12(1): https://doaj.org/article/39a4aced067e418483a923484669f899.
[16] Shen, Xingliang, Gu, Guoqiang, Shao, Liyang, Peng, Zeng, Hu, Jie, Bandyopadhyay, Sankhyabrata, Liu, Yuhui, Jiang, Jiahao, Chen, Ming. Twin Photonic Hooks Generated by Twin-Ellipse Microcylinder. IEEE PHOTONICS JOURNAL[J]. 2020, 12(3): https://doaj.org/article/b9d1f051b21b460795eb849058fa3949.
[17] Sankhyabrata Bandyopadhyay, Liyang Shao, Chao Wang, Shuaiqi Liu, Qiang Wu, Guoqiang Gu, Jie Hu, Yanjun Liu, Xiaolong Chen, Zhangqi Song, Xuefeng Song, Qiaoliang Bao, Mateusz Smietana. Study on optimization of nano-coatings for ultra-sensitive biosensors based on long-period fiber grating. SENSING AND BIO-SENSING RESEARCH[J]. 2020, 27: http://dx.doi.org/10.1016/j.sbsr.2019.100320.
[18] Yi, Chenghan, Hou, Yuxin, He, Ke, Li, Weimin, Li, Nianci, Wang, Zhongguo, Yang, Bing, Xu, Shuda, Wang, Heng, Gao, Chuanzeng, Wang, Zhengyan, Gu, Guoqiang, Wang, Zhixun, Wei, Lei, Yang, Chunlei, Chen, Ming. Highly Sensitive and Wide Linear-Response Pressure Sensors Featuring Zero Standby Power Consumption under Bending Conditions. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(17): 19563-19571, https://www.webofscience.com/wos/woscc/full-record/WOS:000529924800035.
[19] Zeng Peng, Guoqiang Gu, Liyang Shao, Xingliang Shen. Easily tunable long photonic hook generated from Janus liquids-filled hollow microcylinder. arxivnull. 2020, https://arxiv.org/abs/2007.13093.
[20] He, Ke, Hou, Yuxin, Yi, Chenghan, Li, Nianci, Sui, Fan, Yang, Bing, Gu, Guoqiang, Li, Weimin, Wang, Zhixun, Li, Yinghe, Tao, Guangming, Wei, Lei, Yang, Chunlei, Chen, Ming. High-performance zero-standby-power-consumption-under-bending pressure sensors for artificial reflex arc. NANO ENERGY[J]. 2020, 73: http://dx.doi.org/10.1016/j.nanoen.2020.104743.
[21] Chen, Ming, Wang, Zhixun, Ge, Xin, Wang, Zhe, Fujisawa, Kazunori, Xia, Juan, Zeng, Qingsheng, Li, Kaiwei, Zhang, Ting, Zhang, Qichong, Chen, Mengxiao, Zhang, Nan, Wu, Tingting, Ma, Shaoyang, Gu, Guoqiang, Shen, Zexiang, Liu, Linbo, Liu, Zheng, Terrones, Mauricio, Wei, Lei. Controlled Fragmentation of Single-Atom-Thick Polycrystalline Graphene. MATTER[J]. 2020, 2(3): 666-679, http://dx.doi.org/10.1016/j.matt.2019.11.004.
[22] Hu, Jie, Shao, Liyang, Gu, Guoqiang, Zhang, Xuming, Liu, Yanjun, Song, Xuefeng, Song, Zhangqi, Feng, Jiansong, Buczynski, Ryszard, Smietana, Mateusz, Wang, Taihong, Lang, Tingting. Dual Mach-Zehnder Interferometer Based on Side-Hole Fiber for High-Sensitivity Refractive Index Sensing. IEEE PHOTONICS JOURNAL[J]. 2019, 11(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000575105900001.
[23] Zhang, Le, Shao, Li Yang, Gu, Guogiong, Wang, Taihong, Sun, Xiao Wei, Chen, Xiaolong. Type-Switchable Inverter and Amplifier Based on High-Performance Ambipolar Black-Phosphorus Transistors. ADVANCED ELECTRONIC MATERIALS[J]. 2019, 5(6): http://dx.doi.org/10.1002/aelm.201900133.
[24] Li, Weiwei, Xiong, Lei, Li, Nianci, Pang, Shuo, Xu, Guoliang, Yi, Chenghan, Wang, Zhixun, Gu, Guoqiang, Li, Kaiwei, Li, Weimin, Wei, Lei, Li, Guangyuan, Yang, Chunlei, Chen, Ming. Tunable 3D light trapping architectures based on self-assembled SnSe2 nanoplate arrays for ultrasensitive SERS detection. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2019, 7(33): 10179-10186, http://dx.doi.org/10.1039/c9tc03715b.
[25] Yang, Yatao, Shao, Liyang, Gu, Guoqiang, Bandyopadhyay, Sankhyabrata, Liu, Yanjun, Hu, Jiandong, Wang, Chao, Peng, Zeng, IEEE. Designing of Surface Plasmon Sensor in a Side Hole Fiber with Simultaneous Double Channel Detection. 2019 18TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN)[J]. 2019, [26] Xinfeng Yang, Sankhyabrata Bandyopadhyay, LiYang Shao, Dongrui Xiao, Guoqiang Gu, Zhangqi Song. Side-Polished DBR Fiber Laser with Enhanced Sensitivity for Axial Force and Refractive Index Measurement. IEEE PHOTONICS JOURNAL[J]. 2019, 11(3): 1-10, https://doaj.org/article/6cd8c20bb7844520a3f7c0eb05ebc137.
[27] Gu Guoqiang, Shen Xingliang, Peng Zeng, Yang Xinfeng, Bandyopadhyay Sankhyabrata, Feng Jiansong, Xiao Dongrui, Shao Liyang, Yuan XC, Carney PS, Shi K, Somekh MG. Numerical investigation of photonic nanojets generated from D-shaped dielectric microfibers. ADVANCED OPTICAL IMAGING TECHNOLOGIES IInull. 2019, 11186: [28] Gu, Guoqiang, Shao, Liyang, Song, Jun, Qu, Junle, Zheng, Kai, Shen, Xingliang, Peng, Zeng, Hu, Jie, Chen, Xiaolong, Chen, Ming, Wu, Qiang. Photonic hooks from Janus microcylinders. OPTICS EXPRESS[J]. 2019, 27(26): 37771-37780, http://dx.doi.org/10.1364/OE.27.037771.
[29] Zheng, Kai, Yuan, Yufeng, He, Junjie, Gu, Guoqiang, Zhang, Fan, Chen, Yu, Song, Jun, Qu, Junle. Ultra-high light confinement and ultra-long propagation distance design for integratable optical chips based on plasmonic technology. NANOSCALE[J]. 2019, 11(10): 4601-4613, https://www.webofscience.com/wos/woscc/full-record/WOS:000465410200046.
[30] Chen, Ming, Li, Zhenkai, Li, Weimin, Shan, Chengwei, Li, Wenjie, Li, Kaiwei, Gu, Guodiang, Feng, Ye, Zhong, Guohua, Wei, Lei, Yang, Chunlei. Large-scale synthesis of single-crystalline self-standing SnSe2 nanoplate arrays for wearable gas sensors. NANOTECHNOLOGY[J]. 2018, 29(45): http://ir.siat.ac.cn:8080/handle/172644/13483.
[31] Gu, Guoqiang, Song, Jun, Chen, Ming, Peng, Xiao, Liang, Hongda, Qu, Junle. Single nanoparticle detection using a photonic nanojet. NANOSCALE[J]. 2018, 10(29): 14182-14189, http://ir.siat.ac.cn:8080/handle/172644/13482.
[32] Guoqiang Gu, Jun Song, Hongda Liang, Mengjie Zhao, Yue Chen, Junle Qu. Overstepping the upper refractive index limit to form ultra-narrow photonic nanojets. SCIENTIFIC REPORTS[J]. 2017, 7(1): https://doaj.org/article/06f5b29a972b42dfa51ce06e9a2ba4ab.
[33] Soh, Jia Hao, Wu, Mengxue, Gu, Guoqiang, Chen, Lianwei, Hong, Minghui. Temperature-controlled photonic nanojet via VO2 coating. APPLIED OPTICS[J]. 2016, 55(14): 3751-3756, [34] Chen, Ming, Gu, Guoqiang, Zhang, Baoping, Cai, Zhiping, Wei, Lei. Self-assembled on-chip spherical-cap-shaped microresonators for high sensitivity temperature sensing. OPTICS EXPRESS[J]. 2016, 24(23): 26948-26955, http://dx.doi.org/10.1364/OE.24.026948.
[35] Gu, Guoqiang, Zhou, Rui, Xu, Huiying, Cai, Guoxiong, Cai, Zhiping. Subsurface nano-imaging with self-assembled spherical cap optical nanoscopy. OPTICS EXPRESS[J]. 2016, 24(5): 4937-4948, https://www.webofscience.com/wos/woscc/full-record/WOS:000371435000059.
[36] Guo, Changlei, Che, Kaijun, Cai, Zhiping, Liu, Shuai, Gu, Guoqiang, Chu, Chengxu, Zhang, Pan, Fu, Hongyan, Luo, Zhengqian, Xu, Huiying. Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation. OPTICS LETTERS[J]. 2015, 40(21): 4971-4974, https://www.webofscience.com/wos/woscc/full-record/WOS:000364468600038.
[37] Guo, ChangLei, Che, KaiJun, Gu, GuoQiang, Cai, GuoXiong, Cai, ZhiPing, Xu, HuiYing. Tailoring the plasmonic whispering gallery modes of a metal-coated resonator for potential application as a refractometric sensor. APPLIED OPTICS[J]. 2015, 54(6): 1250-1256, https://www.webofscience.com/wos/woscc/full-record/WOS:000349685700003.
[38] Gu, Guoqiang, Zhou, Rui, Chen, Zaichun, Xu, Huiying, Cai, Guoxiong, Cai, Zhiping, Hong, Minghui. Super-long photonic nanojet generated from liquid-filled hollow microcylinder. OPTICS LETTERS[J]. 2015, 40(4): 625-628, https://www.webofscience.com/wos/woscc/full-record/WOS:000349848400048.
[39] Guoqiang Gu, Changlei Guo, Zhiping Cai, Huiying Xu, Lujian Chen, Hongyan Fu, Kaijun Che. Fabrication and characterization of UV curable adhesive microbottle resonators. 6th International Symposium on Functional Materials (ISFM-2014)null. 2014, [40] Gu, Guoqiang, Guo, Changlei, Cai, Zhiping, Xu, Huiying, Chen, Lujian, Fu, Hongyan, Che, Kaijun, Hong, Minghui, Sun, Shufeng, Li, Fengping. Fabrication of ultraviolet-curable adhesive bottle-like microresonators by wetting and photocuring. APPLIED OPTICS[J]. 2014, 53(32): 7819-7824, https://www.webofscience.com/wos/woscc/full-record/WOS:000345104100030.
[41] Che, KaiJun, Lei, MeiXin, Gu, GuoQiang, Cai, ZhiPing, Huang, YongZhen. Optical processing between two metallically hybrid microdisks. APPLIED OPTICS[J]. 2013, 52(34): 8190-8194, http://ir.semi.ac.cn/handle/172111/24922.
[42] Guoqiang Gu, Huiying Xu, Zhiping Cai. Optical adhesive microsphere resonators prepared by using half-tapered fibers and its temperature sensing properties. Optical Fiber Sensors - China (OFSC-2013)null. 2013, [43] Gu, Guoqiang, Chen, Lujian, Fu, Hongyan, Che, Kaijun, Cai, Zhiping, Xu, Huiying. UV-curable adhesive microsphere whispering gallery mode resonators. CHINESE OPTICS LETTERS[J]. 2013, 11(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000327321800011.
[44] 顾国强, 蔡志平, 许惠英, 王金章, 徐斌, 闫宇. 光学微球腔谐振模式间隔参数的一种简便计算方法. 光电子·激光[J]. 2012, 23(12): 2267-2272, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=4793041&detailType=1.

科研活动

   
科研项目
( 1 ) 微透镜辅助的表面增强拉曼光谱技术对肿瘤外泌体的检测研究, 负责人, 国家任务, 2022-01--2025-12
( 2 ) 微球纳米显微镜中微球与样品之间的相互作用方式研究, 负责人, 国家任务, 2017-11--2018-10
( 3 ) 利用锥光纤耦合技术探究微颗粒透镜超分辨成像的机理, 负责人, 地方任务, 2019-10--2022-09
( 4 ) 光与微颗粒的相互作用研究, 负责人, 地方任务, 2019-03--2023-07
( 5 ) 低剂量双酚A替代物影响乳腺癌肿瘤形成及其诱导脏器损伤的机制研究, 参与, 国家任务, 2022-01--2025-12
( 6 ) 连续毫米波/太赫兹波信号的非线性光子学产生研究, 参与, 国家任务, 2016-01--2019-12
( 7 ) 利用双光子FLIM技术动态监测镉对紫贻贝的毒理效应过程, 参与, 国家任务, 2019-01--2021-12
( 8 ) 超高灵敏小型化成像式光学检测部件与系统的研发, 参与, 地方任务, 2021-11--2024-11
( 9 ) 数字化光子纳米喷流技术检测蛋白标志物用于阿尔茨海默病早期诊断的研究, 参与, 地方任务, 2021-10--2024-10
( 10 ) 基于全近红外荧光探测的均相免疫全血检测应用研究, 参与, 地方任务, 2019-03--2021-03
( 11 ) 新型银纳米三角棱柱制备及其表面等离子体共振传感特性研究, 参与, 地方任务, 2017-05--2019-04
( 12 ) 单模多端口的微腔激光器的研制, 参与, 其他, 2012-01--2013-01
( 13 ) 可应用于无标记超分辨成像的微球辅助超显微物镜研究, 负责人, 地方任务, 2024-01--2026-12
参与会议
(1)微瓶透镜辅助的超分辨成像技术   2023中国生物医学工程大会   2023-05-20
(2)Subwavelength Nano-imaging with a Microbottle Lens   2022-11-07
(3)Photonic Nanojet Produced by A Microfludic Channel for Biofluid Monitoring   2021-04-27
(4)Numerical investigation of photonic nanojets generated from D-shaped dielectric microfibers   2019-10-22
(5)Research on photonic nanojet effect of microparticles   2018光子技术前沿论坛   2018-12-08
(6)Functional optical nanomaterials with anti-cancer, biosensing and bio-imaging capabilities   2017-06-15
(7)Fabrication and characterization of UV curable adhesive microbottle resonators   2014-08-04
(8)Preparation of high-Q hemispherical whispering gallery mode resonators by UV cured method   2013年中国光学学会学术大会   2013-08-15
(9)Optical adhesive microsphere resonators prepared by using half-tapered fibers and its temperature sensing properties   2013年中国光纤传感学术会议   2013-05-18

指导学生

   
已指导学生

彭曾 硕士研究生 080300-光学工程

马璐 硕士研究生 085600-材料与化工

现指导学生

瞿驰野 硕士研究生 085210-控制工程

王振民 硕士研究生 085408-光电信息工程

郑泽杰 硕士研究生 080300-光学工程