基本信息

柴国良, 研究员, 博士生导师, 课题组长, 中国科学院福建物质结构研究所
电子邮件: g.chai@fjirsm.ac.cn
通信地址: 福州市杨桥西路155号中科院福建物质结构研究所

邮政编码: 350002

Group Homepage: http://www.fjirsm.ac.cn/chaiguoliang/

研究领域

1)能源材料的合成和第一性原理计算,如能源催化材料和电池材料等

2)无机光电功能材料,如非线性光学材料等 

3)人工智能(机器学习和高通量计算等)和大数据在材料开发中的应用

招生信息

长期招收硕士生、博士生、博士后和海外学生。

招生专业
070301-无机化学
070304-物理化学(含:化学物理)
招生方向
能源材料(光电催化、电池等)和无机功能材料(非线性光学、热电、稀土磁性等)的合成和第一性原理计算。
人工智能和大数据(机器学习、化学信息学和高通量计算等)在材料开发中的应用。

教育背景

   
学历

博士

学位
博士

工作经历

2012-2014在东京工业大学有机高分子专攻担任产学官连携研究员。

2014-2016在伦敦大学学院化学系担任Research Associate

2016作为引进海外人才回到中科院福建物质结构研究所从事科研工作,任研究员,课题组长。


专利与奖励

   
专利成果
[1] 柴国良, 庞泳喻, 谢欢, 张浩. 一种中空介孔碳球的应用. CN: CN111554944B, 2022-02-18.
[2] 柴国良, 周安宜, 林晨升, 程文旦, 张浩, 庞泳喻. 一种单晶材料及其制备方法和应用. CN: CN109778302A, 2019-05-21.
[3] 柴国良, 周安宜, 林晨升, 程文旦, 张浩. 一种单晶材料、其制备方法及其应用. CN: CN109722707A, 2019-05-07.
[4] 黄一枝, 张浩, 程文旦, 柴国良. 一种铅镓锗硫晶体,其制备方法及应用. CN: CN107338478A, 2017-11-10.

出版信息

   
发表论文
[1] Huan Xie, Ruikuan Xie, Zhiyuan Zhang, Yongyu Pang, Yuting Luo, Jiong Li, Bilu Liu, MariaMagdalena Titirici, Guoliang Chai. Achieving highly selective electrochemical CO2 reduction to C2H4 on Cu nanosheets. JOURNAL OF ENERGY CHEMISTRY. 2023, 79: 312-320, http://dx.doi.org/10.1016/j.jechem.2022.11.058.
[2] Pei, An, Xie, Ruikuan, Zhang, Yun, Feng, Yingliang, Wang, Weizhen, Zhang, Sifan, Huang, Zinan, Zhu, Lihua, Chai, Guoliang, Yang, Zhiqing, Gao, Qingsheng, Ye, Hengqiang, Shang, Congxiao, Chen, Bing Hui, Guo, Zhengxiao. Effective electronic tuning of Pt single atoms via heterogeneous atomic coordination of (Co,Ni)(OH)(2) for efficient hydrogen evolution. ENERGY & ENVIRONMENTAL SCIENCE. 2022, [3] Cheng, WenDan, Lin, ChenSheng, Zhang, Hao, Chai, Guo Liang. Computational Study of Dynamic Susceptibility and Phase-Matching Angle by Two-Photon Entangled Generation. JOURNAL OF PHYSICAL CHEMISTRY A[J]. 2022, 126(42): 7787-7793, http://dx.doi.org/10.1021/acs.jpca.2c05300.
[4] Li, Jianwei, Luo, Ningjing, Kang, Liqun, Zhao, Fangjia, Jiao, Yiding, Macdonald, Thomas J, Wang, Min, Parkin, Ivan P, Shearing, Paul R, Brett, Dan J L, Chai, Guoliang, He, Guanjie. Hydrogen-Bond Reinforced Superstructural Manganese Oxide As the Cathode for Ultra-Stable Aqueous Zinc Ion Batteries. ADVANCED ENERGY MATERIALS[J]. 2022, 12(44): http://dx.doi.org/10.1002/aenm.202201840.
[5] Xie, Ruikuan, Hou, Zhufeng, Chai, GuoLiang. Heusler alloy catalysts for electrochemical CO2 reduction. JOURNAL OF CHEMICAL PHYSICS[J]. 2022, 157(7): [6] Li, Jianwei, Hong, Ningyun, Luo, Ningjing, Dong, Haobo, Kang, Liqun, Peng, Zhengjun, Jia, Guofeng, Chai, Guoliang, Wang, Min, He, Guanjie. In-situ electrochemical modification of pre-intercalated vanadium bronze cathodes for aqueous zinc-ion batteries. SCIENCE CHINA-MATERIALS[J]. 2022, 65(5): 1165-1175, http://dx.doi.org/10.1007/s40843-021-1893-2.
[7] Xia, Dong, Yu, Huayang, Xie, Huan, Huang, Peng, Menzel, Robert, Titirici, Maria Magdalena, Chai, Guoliang. Recent progress of Bi-based electrocatalysts for electrocatalytic CO2 reduction. NANOSCALEnull. 2022, 14(22): 7957-7973, http://dx.doi.org/10.1039/d2nr01900k.
[8] Su, Yun, Rong, Xiaohui, Gao, Ang, Liu, Yuan, Li, Jianwei, Mao, Minglei, Qi, Xingguo, Chai, Guoliang, Zhang, Qinghua, Suo, Liumin, Gu, Lin, Li, Hong, Huang, Xuejie, Chen, Liquan, Liu, Binyuan, Hu, YongSheng. Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries. NATURE COMMUNICATIONS[J]. 2022, 13(1): [9] Liu, Heming, Xie, Ruikuan, Luo, Yuting, Cui, Zhicheng, Yu, Qiangmin, Gao, Zhiqiang, Zhang, Zhiyuan, Yang, Fengning, Kang, Xin, Ge, Shiyu, Li, Shaohai, Gao, Xuefeng, Chai, Guoliang, Liu, Le, Liu, Bilu. Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm(-2). NATURE COMMUNICATIONS[J]. 2022, 13(1): http://dx.doi.org/10.1038/s41467-022-34121-y.
[10] Zhang, Yunxian, Pang, Yongyu, Xia, Dong, Chai, Guoliang. Regulable pyrrolic-N-doped carbon materials as an efficient electrocatalyst for selective O-2 reduction to H2O2. NEW JOURNAL OF CHEMISTRY[J]. 2022, 46(30): 14510-14516, http://dx.doi.org/10.1039/d2nj02393h.
[11] Ruikuan Xie, Tan Zhang, Hongming Weng, GuoLiang Chai. Progress, Advantages, and Challenges of Topological Material Catalysts. SMALL SCIENCE[J]. 2022, 2(4): n/a-n/a, https://doaj.org/article/45c2d4881c4b42cbabf062eee81d4e0c.
[12] Zhu, Lihua, Sun, Yilun, Zhu, Huaze, Chai, Guoliang, Yang, Zhiqing, Shang, Congxiao, Ye, Hengqiang, Chen, Bing Hui, Kroner, Anna, Guo, Zhengxiao. Effective Ensemble of Pt Single Atoms and Clusters over the (Ni,Co)(OH)(2) Substrate Catalyzes Highly Selective, Efficient, and Stable Hydrogenation Reactions. ACS CATALYSIS[J]. 2022, 12(13): 8104-8115, http://dx.doi.org/10.1021/acscatal.2c01901.
[13] Wu, Qinke, Luo, Yuting, Xie, Ruikuan, Nong, Huiyu, Cai, Zhengyang, Tang, Lei, Tan, Junyang, Feng, Simin, Zhao, Shilong, Yu, Qiangmin, Lin, Junhao, Chai, Guoliang, Liu, Bilu. Space-Confined One-Step Growth of 2D MoO2/MoS2 Vertical Heterostructures for Superior Hydrogen Evolution in Alkaline Electrolytes. SMALL[J]. 2022, 18(32): http://dx.doi.org/10.1002/smll.202201051.
[14] Sun, YiLun, Chen, Jianshan, Qin, Yeyan, Zhang, Hao, Yao, Yuangen, Chai, GuoLiang. Rhodium-based bidentate phosphorus ligand catalyst for direct synthesis of ethylene glycol. MOLECULAR CATALYSIS[J]. 2022, 524: http://dx.doi.org/10.1016/j.mcat.2022.112288.
[15] Wu, Guangqing, Chen, Wu, Pang, Yongyu, Xie, Ruikuan, Xia, Dong, Chai, Guoliang. Modulating AgIn@In2O3 Core-Shell Catalysts for Amplified Electrochemical Reduction of CO2 to Formate. CHEMELECTROCHEM[J]. 2022, 9(10): http://dx.doi.org/10.1002/celc.202200318.
[16] Rong Guo, Zhufeng Hou, Jianshan Chen, Yeyan Qin, Guoliang Chai, Yuangen Yao. Improved catalytic performance of Pd-Cu/NaY zeolite by tunning Al distribution for the synthesis of dimethyl carbonate. FUEL. 2022, 330: http://dx.doi.org/10.1016/j.fuel.2022.125484.
[17] Sun, YiLun, Chai, GuoLiang. Direct Synthesis of Ethylene Glycol from Syngas. CHEMISTRYSELECTnull. 2022, 7(6): http://dx.doi.org/10.1002/slct.202103642.
[18] 许交兴. Pyrimidine-assisted synthesis of S, N-codoped few-layered graphene for highly efficient hydrogen peroxide production in acid. Chem Catalysis[J]. 2022, 2(6): 1450-1466, https://doi.org/10.1016/j.checat.2022.04.011.
[19] Li, Qun, Luo, Ningjing, Xia, Dong, Huang, Peng, Liu, Xiaobin, OdoomWubah, Tareque, Huang, Jiale, Chai, Guoliang, Sun, Daohua, Li, Qingbiao. Interfacial effects in CuO/Co3O4 heterostructures enhance benzene catalytic oxidation performance. ENVIRONMENTAL SCIENCE-NANO[J]. 2022, 9(2): 781-796, http://dx.doi.org/10.1039/d1en01044a.
[20] Ningjing Luo, Zhufeng Hou, GuoLiang Chai. Density functional theory study of CH4 dissociation and CsbndC coupling on W-terminated WC(0001) surface. APPLIED SURFACE SCIENCE. 2022, 591: [21] Siyu Zhao, Ruikuan Xie, Liqun Kang, Manni Yang, Xingyu He, Wenyao Li, Ryan Wang, Dan J L Brett, Guanjie He, Guoliang Chai, Ivan P Parkin. Enhancing Hydrogen Evolution Electrocatalytic Performance in Neutral Media via Nitrogen and Iron Phosphide Interactions. SMALL SCIENCE[J]. 2021, 1(7): n/a-n/a, https://doaj.org/article/a58bae197c5448278e14bbeee4f3ff55.
[22] Xie, Huan, Zhang, Tan, Xie, Ruikuan, Hou, Zhufeng, Ji, Xuecong, Pang, Yongyu, Chen, Shaoqing, Titirici, MariaMagdalena, Weng, Hongming, Chai, Guoliang. Facet Engineering to Regulate Surface States of Topological Crystalline Insulator Bismuth Rhombic Dodecahedrons for Highly Energy Efficient Electrochemical CO2 Reduction. ADVANCED MATERIALS[J]. 2021, 33(31): http://dx.doi.org/10.1002/adma.202008373.
[23] Li, Yan, Li, Junwei, Huang, Junheng, Chen, Junxiang, Kong, Yan, Yang, Bin, Li, Zhongjian, Lei, Lecheng, Chai, Guoliang, Wen, Zhenhai, Dai, Liming, Hou, Yang. Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution of Single-Atomic Iron Sites. ANGEWANDTECHEMIEINTERNATIONALEDITION[J]. 2021, 60(16): 9078-9085, https://www.webofscience.com/wos/woscc/full-record/WOS:000625387500001.
[24] Yi, JunDong, Si, DuanHui, Xie, Ruikuan, Yin, Qi, Zhang, MengDi, Wu, Qiao, Chai, GuoLiang, Huang, YuanBiao, Cao, Rong. Conductive Two-Dimensional Phthalocyanine-based Metal-Organic Framework Nanosheets for Efficient Electroreduction of CO2. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2021, 60(31): 17108-17114, http://dx.doi.org/10.1002/anie.202104564.
[25] Guo, Jian, Kang, Liqun, Lu, Xuekun, Zhao, Siyu, Li, Jianwei, Shearing, Paul R, Wang, Ryan, Brett, Dan J L, He, Guanjie, Chai, Guoliang, Parkin, Ivan P. Self-activated cathode substrates in rechargeable zinc-air batteries. ENERGY STORAGE MATERIALS[J]. 2021, 35: 530-537, http://dx.doi.org/10.1016/j.ensm.2020.11.036.
[26] Wang, Tianlei, Chutia, Arunabhiram, Brett, Dan J L, Shearing, Paul R, He, Guanjie, Chai, Guoliang, Parkin, Ivan P. Palladium alloys used as electrocatalysts for the oxygen reduction reaction. ENERGY & ENVIRONMENTAL SCIENCEnull. 2021, 14(5): 2639-2669, http://dx.doi.org/10.1039/d0ee03915b.
[27] Rao Shuang, Lin ChenSheng, He ZhangZhen, Chai GuoLiang. Density Functional Theory Study on the Complete Substitutions of Nd and Fe by Other Rare-earth and Transition-metal Elements in Nd2Fe14B Compound. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY[J]. 2021, 40(1): 136-144, http://lib.cqvip.com/Qikan/Article/Detail?id=7104226042.
[28] Huang, Jiajia, Li, Yuying, Xie, Ruikuan, Li, Jianwei, Tian, Zhihong, Chai, Guoliang, Zhang, Yanwu, Lai, Feili, He, Guanjie, Liu, Chuntai, Liu, Tianxi, Brett, Dan J L. Structural engineering of cathodes for improved Zn-ion batteries. JOURNAL OF ENERGY CHEMISTRY[J]. 2021, 58(7): 147-155, http://dx.doi.org/10.1016/j.jechem.2020.09.035.
[29] Guo, Xiaoxia, Zhang, Zhenyu, Li, Jianwei, Luo, Ningjing, Chai, GuoLiang, Miller, Thomas S, Lai, Feili, Shearing, Paul, Brett, Dan J L, Han, Daliang, Weng, Zhe, He, Guanjie, Parkin, Ivan P. Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS ENERGY LETTERS[J]. 2021, 6(2): 395-403, http://dx.doi.org/10.1021/acsenergylett.0c02371.
[30] Zhang, Tao, Xu, Shunqi, Hou, Yang, Chai, Guoliang, Olianas, Davide, Liao, Zhongquan, Milani, Alberto, Sun, Hanjun, Li, Wei, Zhang, Zhe, Mannsfeld, Stefan, Zschech, Ehrenfried, Tommasini, Matteo, Feng, Xinliang. Solvent-mediated engineering of copper-metalated acetylenic polymer scaffolds with enhanced photoelectrochemical performance. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2021, 9(15): 9729-9734, http://dx.doi.org/10.1039/d1ta01138c.
[31] Xie, Huan, Chen, Shaoqing, Liang, Jiashun, Wang, Tanyuan, Hou, Zhufeng, Wang, HsingLin, Chai, Guoliang, Li, Qing. Weakening Intermediate Bindings on CuPd/Pd Core/shell Nanoparticles to Achieve Pt-Like Bifunctional Activity for Hydrogen Evolution and Oxygen Reduction Reactions. ADVANCED FUNCTIONAL MATERIALS[J]. 2021, 31(26): http://dx.doi.org/10.1002/adfm.202100883.
[32] Sun, Yingshuang, Chen, Jindong, Yang, Shunda, Li, Bingxuan, Chai, Guoliang, Lin, Chensheng, Luo, Min, Ye, Ning. LaSiP3 and LaSi2P6: Two Excellent Rare-Earth Pnictides with Strong SHG Responses as Mid- and Far-Infrared Nonlinear Optical Crystals. ADVANCED OPTICAL MATERIALS[J]. 2021, 9(10): http://dx.doi.org/10.1002/adom.202002176.
[33] Xie, Huan, Wan, Yangyang, Wang, Xiaoming, Liang, Jiashun, Lu, Gang, Wang, Tanyuan, Chai, Guoliang, Adli, Nadia Mohd, Priest, Cameron, Huang, Yunhui, Wu, Gang, Li, Qing. Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2021, 289: http://dx.doi.org/10.1016/j.apcatb.2020.119783.
[34] Wang Ke, Pang YongYu, Xie Huan, Sun Yuan, Chai GuoLiang. Synergistic Effect of Ta2O5/F-C Composites for Effective Electrosynthesis of Hydrogen Peroxide from O-2 Reduction. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY[J]. 2021, 40(2): 225-232, http://lib.cqvip.com/Qikan/Article/Detail?id=7104318093.
[35] Zhang, Tao, Xu, Shunqi, Hou, Yang, Chai, Guoliang, Olianas, Davide, Liao, Zhongquan, Milani, Alberto, Sun, Hanjun, Li, Wei, Zhang, Zhe, Mannsfeld, Stefan, Zschech, Ehrenfried, Tommasini, Matteo, Feng, Xinliang. Solvent-mediated engineering of copper-metalated acetylenic polymer scaffolds with enhanced photoelectrochemical performance dagger. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2021, 9(15): 9729-9734, http://dx.doi.org/10.1039/d1ta01138c.
[36] Guo, Zhen, Pang, Yongyu, Xie, Huan, He, Guanjie, Parkin, Ivan P, Chai, GuoLiang. Phosphorus-Doped CuCo2O4 Oxide with Partial Amorphous Phase as a Robust Electrocatalyst for the Oxygen Evolution Reaction. CHEMELECTROCHEM[J]. 2021, 8(1): 135-141, https://www.webofscience.com/wos/woscc/full-record/WOS:000592481700001.
[37] Rao Shuang, Lin ChenSheng, He ZhangZhen, Chai GuoLiang. Theoretical Stidies on the Electronic Properties of R2M14B (R = Lanthanides from La to Lu; M = Mn, Fe, Co, and Ni). CHINESE JOURNAL OF STRUCTURAL CHEMISTRY[J]. 2021, 40(2): 160-168, https://www.webofscience.com/wos/woscc/full-record/WOS:000628844200002.
[38] 柴国良. Acidic Electrolytes: High‐Performance Metal‐Free Nanosheets Array Electrocatalyst for Oxygen Evolution Reaction in Acid. ADVANCED FUNCTIONAL MATERIALS. 2020, [39] 柴国良. Defected vanadium bronzes as improved cathodes in aqueous zinc-ion batteries. nanoscale. 2020, [40] Li, Jianwei, Luo, Ningjing, Wan, Feng, Zhao, Siyu, Li, Zhuangnan, Li, Wenyao, Guo, Jian, Shearing, Paul R, Brett, Dan J L, Carmalt, Claire J, Chai, Guoliang, He, Guanjie, Parkin, Ivan P. Defected vanadium bronzes as superb cathodes in aqueous zinc-ion batteries. NANOSCALE[J]. 2020, 12(40): 20638-20648, http://dx.doi.org/10.1039/d0nr03394d.
[41] Zhou, Anyi, Lin, Chensheng, Li, Bingxuan, Cheng, Wendan, Guo, Zhengxiao, Hou, Zhufeng, Yuan, Fangyu, Chai, GuoLiang. Ba6In6Zn4Se19: a high performance infrared nonlinear optical crystal with InSe3(3-)trigonal planar functional motifs. JOURNALOFMATERIALSCHEMISTRYC[J]. 2020, 8(23): 7947-7955, https://www.webofscience.com/wos/woscc/full-record/WOS:000544086800032.
[42] Hu, Xiang, Liu, Yuchuan, Huang, Haitao, Huang, Baobing, Chai, Guoliang, Xie, Zailai. Template-free synthesis of graphene-like carbons as efficient carbocatalysts for selective oxidation of alkanes. GREEN CHEMISTRY[J]. 2020, 22(4): 1291-1300, https://www.webofscience.com/wos/woscc/full-record/WOS:000518034000024.
[43] Lei, Chaojun, Zheng, Qiang, Cheng, Fanpeng, Hou, Yang, Yang, Bin, Li, Zhongjian, Wen, Zhenhai, Lei, Lecheng, Chai, Guoliang, Feng, Xinliang. High-Performance Metal-Free Nanosheets Array Electrocatalyst for Oxygen Evolution Reaction in Acid. ADVANCED FUNCTIONAL MATERIALS[J]. 2020, 30(31): https://www.webofscience.com/wos/woscc/full-record/WOS:000541505300001.
[44] Pang, Yongyu, Xie, Huan, Sun, Yuan, Titirici, MariaMagdalena, Chai, GuoLiang. Electrochemical oxygen reduction for H2O2 production: catalysts, pH effects and mechanisms. JOURNAL OF MATERIALS CHEMISTRY Anull. 2020, 8(47): 24996-25016, http://dx.doi.org/10.1039/d0ta09122g.
[45] 柴国良. A Universal pH range and Highly-efficient Mo2C-based Electrocatalyst for the Hydrogen Evolution Reaction. Journal of Materials Chemistry A. 2020, [46] Pang, Yongyu, Wang, Ke, Xie, Huan, Sun, Yuan, Titirici, MariaMagdalena, Chai, GuoLiang. Mesoporous Carbon Hollow Spheres as Efficient Electrocatalysts for Oxygen Reduction to Hydrogen Peroxide in Neutral Electrolytes. ACS CATALYSIS[J]. 2020, 10(14): 7434-7442, http://dx.doi.org/10.1021/acscatal.0c00584.
[47] Yi, JunDong, Xie, Ruikuan, Xie, ZaiLai, Chai, GuoLiang, Liu, TianFu, Chen, RuiPing, Huang, YuanBiao, Cao, Rong. Highly Selective CO2 Electroreduction to CH4 by In Situ Generated Cu2O Single-Type Sites on a Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bonding. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2020, 59(52): 23641-23648, http://dx.doi.org/10.1002/anie.202010601.
[48] Wu, Qiao, Xie, RuiKuan, Mao, MinJie, Chai, Guoliang, Yi, JunDong, Zhao, ShaoShuai, Huang, YuanBiao, Cao, Rong. Integration of Strong Electron Transporter Tetrathiafulvalene into Metalloporphyrin-Based Covalent Organic Framework for Highly Efficient Electroreduction of CO2. ACS ENERGY LETTERS[J]. 2020, 5(3): 1005-1012, https://www.webofscience.com/wos/woscc/full-record/WOS:000526311000038.
[49] Huang, Jiajia, Wang, Jingyi, Xie, Ruikuan, Tian, Zhihong, Chai, Guoliang, Zhang, Yanwu, Lai, Feili, He, Guanjie, Liu, Chuntai, Liu, Tianxi, Shearing, Paul R, Brett, Dan J L. A universal pH range and a highly efficient Mo2C-based electrocatalyst for the hydrogen evolution reaction. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2020, 8(38): 19879-19886, http://dx.doi.org/10.1039/d0ta07091b.
[50] Li, Xiaoxin, Chai, Guoliang, Xu, Xiao, Liu, Jingjing, Zhong, Zhou, Cao, Aihui, Tao, Zhijie, You, Weifeng, Kang, Longtian. Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites. CARBON[J]. 2020, 167: 658-667, http://dx.doi.org/10.1016/j.carbon.2020.06.036.
[51] Ma, Xiao, Li, Jipeng, Lin, Chensheng, Chai, Guoliang, Xie, Yangbin, Huang, Wei, Wu, Dayu, Wong, WaiYeung. Reversible two-channel mechanochromic luminescence for a pyridinium-based white-light emitter with room-temperature fluorescence-phosphorescence dual emission. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2019, 21(27): 14728-14733, https://www.webofscience.com/wos/woscc/full-record/WOS:000477969700028.
[52] Pang, Yongyu, Zhou, Anyi, Lin, Chensheng, Cheng, Wendan, Chai, GuoLiang. Ba10In6Zn7S10Se16 and Ba10In6Zn7Se26: Two new infrared nonlinear optical materials with T2 super tetrahedron. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2019, 797: 356-362, http://dx.doi.org/10.1016/j.jallcom.2019.04.321.
[53] 曹荣. Unraveling the Reactivity and Selectivity of Atomically Isolated Metal–Nitrogen Sites Anchored on Porphyrinic Triazine Frameworks for Electroreduction of CO2. CCS Chemistry. 2019, [54] Lin, ChenSheng, Zhou, AnYi, Cheng, WenDan, Ye, Ning, Chai, GuoLiang. Atom-Resolved Analysis of Birefringence of Nonlinear Optical Crystals by Bader Charge Integration. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2019, 123(51): 31183-31189, https://www.webofscience.com/wos/woscc/full-record/WOS:000505632900045.
[55] Olsson, Emilia, Chai, Guoliang, Dove, Martin, Cai, Qiong. Adsorption and migration of alkali metals (Li, Na, and K) on pristine and defective graphene surfaces. NANOSCALE[J]. 2019, 11(12): 5274-5284, http://dx.doi.org/10.1039/c8nr10383f.
[56] Yi, JunDong, Xu, Rui, Chai, GuoLiang, Zhang, Teng, Zang, Ketao, Nan, Bing, Lin, Hua, Liang, YuLin, Lv, Jiangquan, Luo, Jun, Si, Rui, Huang, YuanBiao, Cao, Rong. Cobalt single-atoms anchored on porphyrinic triazine-based frameworks as bifunctional electrocatalysts for oxygen reduction and hydrogen evolution reactions. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(3): 1252-1259, [57] Tian, Xuemin, Lin, Chensheng, Zhong, Zhou, Li, Xiaoxin, Xu, Xiao, Liu, Jingjing, Kang, Longtian, Chai, Guoliang, Yao, Jiannian. Effect of Axial Coordination of Iron Porphyrin on Their Nanostructures and Photocatalytic Performance. CRYSTAL GROWTH & DESIGN[J]. 2019, 19(6): 3279-3287, http://dx.doi.org/10.1021/acs.cgd.9b00125.
[58] Zhou, AnYi, Zhang, WeiLong, Lin, ChenSheng, Yuan, FangYu, Pang, YongYu, Zhang, Hao, Cheng, WenDan, Zhu, Jing, Chai, GuoLiang. Ba10In6Zn7S26-nZnS: An Inorganic Composite System with Interface Phase-Matching Tuned for High-Performance Infrared Nonlinear Optical Materials. INORGANIC CHEMISTRY[J]. 2019, 58(6): 3990-3999, https://www.webofscience.com/wos/woscc/full-record/WOS:000461978700051.
[59] Li, Yan, Huang, Junheng, Hu, Xiang, Bi, Linlin, Cai, Pingwei, Jia, Jingchun, Chai, Guoliang, Wei, Shiqiang, Dai, Liming, Wen, Zhenhai. Fe Vacancies Induced Surface FeO6 in Nanoarchitectures of N-Doped Graphene Protected beta-FeOOH: Effective Active Sites for pH-Universal Electrocatalytic Oxygen Reduction. ADVANCED FUNCTIONAL MATERIALS[J]. 2018, 28(34): https://www.webofscience.com/wos/woscc/full-record/WOS:000442205200030.
[60] 柴国良. PbGa2GeS6: An Infrared Nonlinear Optical Material Synthesized by A Intermediate-Temperature Self-Fluxing Method. Crystal Growth & Design. 2018, [61] Zhang, Wei, Wu, Quansheng, Yazyev, Oleg, V, Weng, Hongming, Guo, Zhengxiao, Cheng, WenDan, Chai, GuoLiang. Topological phase transitions driven by strain in monolayer tellurium. PHYSICAL REVIEW B[J]. 2018, 98(11): http://dx.doi.org/10.1103/PhysRevB.98.115411.
[62] Huang, YiZhi, Zhang, Hao, Lin, ChenSheng, Cheng, WenDan, Guo, Zhengxiao, Chai, GuoLiang. PbGa2GeS6: An Infrared Nonlinear Optical Material Synthesized by an Intermediate-Temperature Self-Fluxing Method. CRYSTAL GROWTH & DESIGN[J]. 2018, 18(2): 1162-1167, http://dx.doi.org/10.1021/acs.cgd.7b01586.
[63] Lin, Chensheng, Cheng, Wendan, Chai, Guoliang, Zhang, Hao. Thermoelectric properties of two-dimensional selenene and tellurene from group-VI elements. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2018, 20(37): 24250-24256, http://dx.doi.org/10.1039/c8cp04069a.
[64] 柴国良. Theoretical Evaluation on Terahertz Source Generator from Ternary Metal Chalcogenides of PbM6Te10 (M = Ga, In). The Journal of Physical Chemistry C. 2018, [65] Guo, Jia, Yan, Xiaomei, Liu, Qin, Li, Qiang, Xu, Xiao, Kang, Longtian, Cao, Zhanmin, Chai, Guoliang, Chen, Jun, Wang, Yaobing, Yao, Jiannian. The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. NANO ENERGY[J]. 2018, 46: 347-355, http://dx.doi.org/10.1016/j.nanoen.2018.02.026.
[66] Tao Zhang, Yang Hou, Volodymyr Dzhagan, Zhongquan Liao, Guoliang Chai, Markus Lffler, Davide Olianas, Alberto Milani, Shunqi Xu, Matteo Tommasini, Dietrich R T Zahn, Zhikun Zheng, Ehrenfried Zschech, Rainer Jordan, Xinliang Feng. Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes. NATURE COMMUNICATIONS[J]. 2018, 9(1): https://doaj.org/article/c788045032d547dc867998560a1961c7.
[67] Cheng, WenDan, Lin, ChenSheng, Zhang, Hao, Chai, GuoLiang. Theoretical Evaluation on Terahertz Source Generators from Ternary Metal Chalcogenides of PbM6Te10 (M = Ga, In). JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2018, 122(8): 4557-4564, http://dx.doi.org/10.1021/acs.jpcc.7b10972.
[68] 柴国良. Robust 3D Macroporous Structures with SnS Nanoparticle Decorating Nitrogen-doped Carbon Nanosheet Networks for High-Performance Sodium-Ion Batteries. Journal of Materials Chemistry A. 2017, [69] GuoLiang Chai, Stephen A Shevlin, Zhengxiao Guo. Nitrogen-Mediated Graphene Oxide Enables Highly Efficient Proton Transfer. SCIENTIFIC REPORTS[J]. 2017, 7(1): https://doaj.org/article/54b69fbd54da4e529a6ffa9dfedbe308.
[70] Chai, GuoLiang, Boero, Mauro, Hou, Zhufeng, Terakura, Kiyoyuki, Cheng, Wendan. Indirect Four-Electron Oxygen Reduction Reaction on Carbon Materials Catalysts in Acidic Solutions. ACS CATALYSIS[J]. 2017, 7(11): 7908-7916, http://dx.doi.org/10.1021/acscatal.7b02548.
[71] Chai, GuoLiang, Hou, Zhufeng, Ikeda, Takashi, Terakura, Kiyoyuki. Two-Electron Oxygen Reduction on Carbon Materials Catalysts: Mechanisms and Active Sites. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2017, 121(27): 14524-14533, https://www.webofscience.com/wos/woscc/full-record/WOS:000405761600017.
[72] Cheng, WenDan, Lin, ChenSheng, Zhang, Hao, Huang, YiZhi, Chai, GuoLiang. Theoretical Evaluation of Terahertz Sources Generated From SnGa(4)Q(7) (Q = S, Se) as Infrared Nonlinear Optical Materials. CHEMPHYSCHEM[J]. 2017, 18(5): 519-525, http://dx.doi.org/10.1002/cphc.201601128.
[73] Chai, GuoLiang, Qiu, Kaipei, Qiao, Mo, Titirici, MariaMagdalena, Shang, Congxiao, Guo, Zhengxiao. Active sites engineering leads to exceptional ORR and OER bifunctionality in P,N Co-doped graphene frameworks. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2017, 10(5): 1186-1195, http://dx.doi.org/10.1039/c6ee03446b.
[74] Ye, Lin, Chai, Guoliang, Wen, Zhenhai. Zn-MOF-74 Derived N-Doped Mesoporous Carbon as pH-Universal Electrocatalyst for Oxygen Reduction Reaction. ADVANCED FUNCTIONAL MATERIALS[J]. 2017, 27(14): https://www.webofscience.com/wos/woscc/full-record/WOS:000398572600011.
[75] Hu, Xiang, Chen, Junxiang, Zeng, Guang, Jia, Jingchun, Cai, Pingwei, Chai, Guoliang, Wen, Zhenhai. Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2017, 5(45): 23460-23470, https://www.webofscience.com/wos/woscc/full-record/WOS:000415990800006.
[76] Lin, Chensheng, Cheng, Wendan, Guo, Zhengxiao, Chai, Guoliang, Zhang, Hao. Exceptional thermoelectric performance of a "star-like'' SnSe nanotube with ultra-low thermal conductivity and a high power factor. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2017, 19(34): 23247-23253, http://dx.doi.org/10.1039/c7cp04508e.
[77] Chai, GuoLiang, Guo, ZhengXiao. Highly effective sites and selectivity of nitrogen-doped graphene/CNT catalysts for CO2 electrochemical reduction. CHEMICAL SCIENCE[J]. 2016, 7(2): 1268-1275, [78] Qiu, Kaipei, Chai, Guoliang, Jiang, Chaoran, Ling, Min, Tang, Junwang, Guo, Zhengxiao. Highly Efficient Oxygen Reduction Catalysts by Rational Synthesis of Nanoconfined Maghemite in a Nitrogen-Doped Graphene Framework. ACS CATALYSIS[J]. 2016, 6(6): 3558-3568, http://dx.doi.org/10.1021/acscatal.6b00531.
[79] Chai, GuoLiang, Hou, Zhufeng, Shu, DaJun, Ikeda, Takashi, Terakura, Kiyoyuki. Active Sites and Mechanisms for Oxygen Reduction Reaction on Nitrogen-Doped Carbon Alloy Catalysts: Stone-Wales Defect and Curvature Effect. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2014, 136(39): 13629-13640, https://www.webofscience.com/wos/woscc/full-record/WOS:000342608800040.
[80] Lin, Chensheng, Cheng, Wendan, Luo, Zhongzhen, Chai, Guoliang. Evolutionary search for BiInS3 crystal structure and predicting its second-order nonlinear optical property. JOURNAL OF SOLID STATE CHEMISTRY[J]. 2013, 199: 78-83, http://dx.doi.org/10.1016/j.jssc.2012.12.011.
[81] Chai, GuoLiang, Lin, ChenSheng, Cheng, WenDan. Reply to the 'Comment on "Planar tetra-coordinate carbon resulting in enhanced third-order nonlinear optical response of metal-terminated graphene nanoribbons"' by P. Karamanis, N. Otero and C. Pouchan, J. Mater. Chem. C, 2013, DOI: 10.1039/C3TC00922J. JOURNAL OF MATERIALS CHEMISTRY Cnull. 2013, 1(17): 3041-3042, https://www.webofscience.com/wos/woscc/full-record/WOS:000317299600012.
[82] Chai, GuoLiang, Lin, ChenSheng, Wei, Jing, Zhang, MingYi, Cheng, WenDan. Nonlinear optical properties of carbon nitride nanotubes. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2012, 14(2): 835-839, https://www.webofscience.com/wos/woscc/full-record/WOS:000298552800047.
[83] Chai, GuoLiang, Lin, ChenSheng, Cheng, WenDan. Planar tetra-coordinate carbon resulting in enhanced third-order nonlinear optical response of metal-terminated graphene nanoribbons. JOURNALOFMATERIALSCHEMISTRY[J]. 2012, 22(22): 11303-11309, https://www.webofscience.com/wos/woscc/full-record/WOS:000304062300053.
[84] Wang, JinYun, Lin, ChenSheng, Zhang, MinYi, Chai, GuoLiang, Cheng, WenDan. Theoretical study on the one-, two-, and three-photon absorption properties of exohedral functionalized derivative of Sc3N@C80. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY[J]. 2012, 112(4): 1198-1208, https://www.webofscience.com/wos/woscc/full-record/WOS:000299079200023.
[85] Cui, Honghua, Hu, Mingqiang, Wen, Huimin, Chai, Guoliang, Ma, Chengbing, Chen, Hui, Chen, Changneng. Efficient FeFe hydrogenase mimic dyads covalently linking to iridium photosensitizer for photocatalytic hydrogen evolution. DALTON TRANSACTIONS[J]. 2012, 41(45): 13899-13907, https://www.webofscience.com/wos/woscc/full-record/WOS:000310371500017.
[86] Wang, JinYun, Lin, ChenSheng, Zhang, MinYi, Chai, GuoLiang, Cheng, WenDan. Effect of cage size on the third-order optical properties of endohedral metallofullerenes Sc3N@C2n (2n=68, 70, 78, and 80): A theoretical study. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY[J]. 2012, 112(3): 759-769, https://www.webofscience.com/wos/woscc/full-record/WOS:000298596800013.
[87] Chai, GuoLiang, Lin, ChenSheng, Cheng, WenDan. Structure dependent electronic and magnetic properties of graphitic GaN-ZnO nanoribbons. JOURNAL OF MATERIALS CHEMISTRY[J]. 2012, 22(16): 7708-7711, https://www.webofscience.com/wos/woscc/full-record/WOS:000302026100012.
[88] Li, YeYu, Cheng, WenDan, Zhang, Hao, Lin, ChenSheng, Zhang, WeiLong, Geng, Lei, Chai, GuoLiang, Luo, ZhongZhen, He, ZhangZhen. A series of novel rare-earth bismuth tungstate compounds LnBiW(2)O(9) (Ln = Ce, Sm, Eu, Er): Synthesis, crystal structure, optical and electronic properties. DALTON TRANSACTIONS[J]. 2011, 40(28): 7357-7364, http://ir.fjirsm.ac.cn/handle/335002/1316.
[89] Chai, Guoliang, Lin, Chensheng, Wang, Jinyun, Zhang, Minyi, Wei, Jing, Cheng, Wendan. Density Functional Theory Simulations of Structures and Properties for Ag-Doped ZnO Nanotubes. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2011, 115(7): 2907-2913, https://www.webofscience.com/wos/woscc/full-record/WOS:000287338100001.
[90] Chai, GuoLiang, Lin, ChenSheng, Cheng, WenDan. First-principles study of ZnO cluster-decorated carbon nanotubes. NANOTECHNOLOGY[J]. 2011, 22(44): http://ir.fjirsm.ac.cn/handle/335002/1082.
[91] Chai, GuoLiang, Lin, ChenSheng, Cheng, WenDan. Graphitic GaN-ZnO and corresponding nanotubes. JOURNAL OF MATERIALS CHEMISTRY[J]. 2011, 21(43): 17071-17076, http://ir.fjirsm.ac.cn/handle/335002/1085.
[92] Zhang, WeiLong, Chai, GuoLiang, Zhang, Hao, Lin, ChenSheng, He, ChangZhen, Cheng, WenDan. Two new barium indium phosphates with intersecting tunnel structures: BaIn2P4O14, and Ba3In2P4O16. MATERIALS RESEARCH BULLETIN[J]. 2010, 45(12): 1796-1802, http://dx.doi.org/10.1016/j.materresbull.2010.09.020.
[93] Wang, JinYun, Lin, ChenSheng, Zhang, MinYi, Chai, GuoLiang, Zhang, Hao, He, ZhangZhen, Cheng, WenDan. ELECTRONIC STRUCTURES, EXCITED SPECTRA, AND NONLINEAR OPTICAL PROPERTIES OF N-METHYL-FULLEROPYRROLIDINE-OLIGOANILINE DYADS NMPC60-AN(n)(n = 1-5): QUANTUM CHEMISTRY STUDY. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY[J]. 2010, 9(5): 903-917, http://ir.fjirsm.ac.cn/handle/335002/1830.
[94] Chai, Guoliang, Lin, Chensheng, Zhang, Minyi, Wang, Jinyun, Cheng, Wendan. First-principles study of CN carbon nitride nanotubes. NANOTECHNOLOGY[J]. 2010, 21(19): http://ir.fjirsm.ac.cn/handle/335002/1946.

指导学生

已指导学生

庞泳喻  硕士研究生  085204-材料工程  

现指导学生

庞泳喻  博士研究生  080501-材料物理与化学  

杲辉  硕士研究生  070301-无机化学  

吴广青  硕士研究生  070301-无机化学  

陈武  硕士研究生  085600-材料与化工