基本信息
高连如 男 博导 中国科学院空天信息创新研究院
电子邮件: gaolr@aircas.ac.cn
通信地址: 北京市海淀区邓庄南路9号
邮政编码: 100094
电子邮件: gaolr@aircas.ac.cn
通信地址: 北京市海淀区邓庄南路9号
邮政编码: 100094
个人简介
IET Fellow,主持国家自然科学基金委的杰青、优青项目以及国家重点研发计划课题、国家高分专项项目等,已发表学术论文230余篇,其中SCI收录140余篇,ESI高被引论文22篇;授权国家发明专利29项;出版《高光谱图像信息提取》等学术著作3部。获得国家科技进步二等奖、中国科学院杰出科技成就奖、军队科技进步一等奖各1项;获得国际高光谱遥感顶级会议WHISPERS的杰出论文奖1项。现担任IEEE TGRS、IET Image Processing期刊的副主编以及Chinese Geographical Science、《遥感学报》的编委,担任IGARSS国际会议评奖委员会委员和WHISPERS国际会议技术委员会委员。
招生信息
直博生3名
招生专业
081002-信号与信息处理
招生方向
高光谱遥感
教育背景
2002-09--2007-07 中国科学院遥感应用研究所 博士1998-09--2002-07 清华大学 学士
工作经历
工作简历
2020-03~现在, 中国科学院空天信息创新研究院, 研究员2015-02~2020-02,中国科学院遥感与数字地球研究所, 研究员2012-09~2015-01,中国科学院遥感与数字地球研究所, 副研究员2010-01~2012-08,中国科学院对地观测与数字地球科学中心, 副研究员2008-01~2009-12,中国科学院对地观测与数字地球科学中心, 助理研究员2007-07~2007-12,中国科学院遥感应用研究所, 助理研究员
社会兼职
2022-12-01-今,遥感学报, 编委
2022-11-09-今,IEEE Transactions on Geoscience and Remote Sensing, 副主编
2022-09-15-今,IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 技术委员会委员
2022-08-24-今,The Institution of Engineering and Technology, 会士
2022-07-18-今,IEEE International Geoscience and Remote Sensing Symposium, 评奖委员会委员
2022-05-26-今,中国测绘学会摄影测量与遥感专业委员会, 委员
2022-01-01-今,中国遥感应用协会黄土高原遥感分会, 常务理事
2021-12-01-今,Chinese Geographical Science, 编委
2019-12-01-今,工信部空间光电探测与感知重点实验室, 学术委员会委员
2019-11-30-今,IET Image Processing, 副主编
2018-06-01-今,中国图象图形学学会遥感图像专业委员会, 委员
2022-11-09-今,IEEE Transactions on Geoscience and Remote Sensing, 副主编
2022-09-15-今,IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 技术委员会委员
2022-08-24-今,The Institution of Engineering and Technology, 会士
2022-07-18-今,IEEE International Geoscience and Remote Sensing Symposium, 评奖委员会委员
2022-05-26-今,中国测绘学会摄影测量与遥感专业委员会, 委员
2022-01-01-今,中国遥感应用协会黄土高原遥感分会, 常务理事
2021-12-01-今,Chinese Geographical Science, 编委
2019-12-01-今,工信部空间光电探测与感知重点实验室, 学术委员会委员
2019-11-30-今,IET Image Processing, 副主编
2018-06-01-今,中国图象图形学学会遥感图像专业委员会, 委员
专利与奖励
奖励信息
(1) 第11届国际高光谱图像与信号处理研讨会杰出论文奖, , 其他, 2021(2) ***遥感信息***关键技术, 一等奖, 部委级, 2019(3) 高光谱遥感信息机理与多学科应用, 二等奖, 国家级, 2018(4) 2017年度IEEE TGRS期刊最佳审稿人, , 其他, 2017(5) 高光谱遥感研究集体, , 院级, 2016(6) 2015年度IEEE JSTARS期刊优秀审稿人, , 其他, 2015
专利成果
[1] 赵博雅, 吴远峰, 关欣然, 高连如, 张兵. 一种面向遥感图像的数据增广方法、装置及电子设备. CN: CN113902610A, 2022-01-07.[2] 孙旭, 高连如, 孙晓彤, 白建东, 张兵. 一种高光谱图像目标探测方法及相关装置. CN: CN112801011A, 2021-05-14.[3] 高连如, 孙旭, 孙晓彤, 郑珂, 刘潋. 高光谱图像中目标区域的确定方法及相关装置. CN: CN112183426A, 2021-01-05.[4] 孙旭, 董晓宇, 高连如, 张兵. 一种网络构建方法、图像超分辨率重建方法及系统. CN: CN111461987A, 2020-07-28.[5] 孙旭, 董晓宇, 高连如, 雷莉萍, 张兵. 一种图像超分辨率重建方法及装置. CN: CN109447900A, 2019-03-08.[6] 张文娟, 马建行, 高连如, 陈正超, 高建威, 张兵. 一种全谱段高光谱图像模拟方法及装置. 中国: CN107274460B, 2019-01-29.[7] 张文娟, 莫云华, 张兵, 陈正超, 高连如. 植被区高光谱图像模拟方法. 中国: CN107437267B, 2019-01-04.[8] 张文娟, 张兵, 高连如, 陈正超, 高建威. 一种图像空间退化模拟方法及系统. CN: CN105976317A, 2016-09-28.[9] 高连如, 苏远超, 孙旭, 李军, 张兵. 一种高光谱图像端元提取方法及系统. CN: CN105976357B, 2019-05-03.[10] 张兵, 孙旭, 于浩洋, 高连如, 吴远峰, 李利伟. 一种图像目标区域提取的方法及系统. CN: CN105913065A, 2016-08-31.[11] 张兵, 高建威, 李利伟, 高连如, 吴远峰. 一种高维数据模式分类方法、装置及系统. CN: CN105760427A, 2016-07-13.[12] 张兵, 申茜, 孙旭, 高连如, 吴远峰. 一种高光谱图像端元提取方法及装置. CN: CN105354849A, 2016-02-24.[13] 张兵, 高连如, 杨斌, 孙旭, 李聪. 一种从图像中探测目标的方法及装置. CN: CN104574409A, 2015-04-29.[14] 吴远峰, 张浩, 陈正超, 孙旭, 高连如, 张兵. 高光谱遥感图像校正方法及装置. 中国: CN103971334A, 2016-11-30.[15] 张兵, 孙旭, 于浩洋, 高连如, 庄丽娜, 李聪. 高光谱图像的道路提取方法及装置. 中国: CN103839275A, 2016-11-16.[16] 张兵, 孙旭, 高连如, 高建威, 于浩洋. 一种高光谱图像的波段选择方法及装置. 中国: CN104268582A, 2017-07-14.[17] 吴远峰, 高连如, 申茜, 胡锦洪, 孙旭, 张兵. 光谱数据处理方法及装置. 中国: CN103942450A, 2017-02-22.[18] 吴远峰, 高连如, 赵海娜, 高建威, 张兵. 高光谱遥感图像特征提取方法及装置. 中国: CN103942788A, 2017-01-04.[19] 张兵, 吴远峰, 高连如, 张文娟, 申茜. 数字图像显示方法以及高光谱望远镜. 中国: CN103822711A, 2015-12-02.[20] 张兵, 高连如, 郭乾东, 孙旭, 吴远峰, 李利伟. 一种异常检测方法及装置. 中国: CN103559714A, 2017-05-24.[21] 张兵, 高连如, 孙旭, 郭乾东, 吴远峰, 李利伟. 一种高光谱图像的异常检测方法及装置. 中国: CN103559715A, 2016-04-27.[22] 张兵, 孙旭, 高连如, 吴远峰, 李利伟, 庄丽娜. 一种基于高光谱遥感图像的分类方法及装置. 中国: CN103295030A, 2016-11-30.[23] 张兵, 张文娟, 刘瑶, 高连如, 王俊, 李霞. 一种中红外强吸收通道图像模拟方法及装置. 中国: CN103295251A, 2016-03-02.[24] 张兵, 高连如, 孙旭, 杨斌, 倪丽. 高光谱图像波段选择方法及装置. 中国: CN103268502A, 2016-04-20.[25] 张兵, 孙旭, 高连如, 吴远峰, 李利伟, 张文娟. 一种目标地物数据处理装置. 中国: CN103198115A, 2016-12-28.[26] 李利伟, 张兵, 高连如. 从高空间分辨率光学影像中提取倒塌房屋的方法及装置. 中国: CN103218597A, 2016-05-11.[27] 张兵, 高连如, 孙旭, 吴远峰, 郭乾东, 高建威. 地物光谱获取方法及装置、高光谱图像目标探测方法及装置. 中国: CN103115679A, 2015-03-25.[28] 张兵, 孙旭, 高连如, 吴远峰, 高建威, 倪丽. 一种目标识别方法及装置. 中国: CN103020644A, 2016-03-30.[29] 张兵, 高连如, 孙旭, 高建威, 吴远峰, 申茜. 一种高维数据可视化方法及装置. 中国: CN102707917A, 2015-03-25.[30] 张兵, 高连如, 杨威, 孙旭, 吴远峰, 李利伟. 一种高光谱图像中目标地物检测方法及装置. 中国: CN102609703A, 2013-10-02.[31] 张兵, 高连如, 孙旭, 吴远峰, 张文娟, 申茜. 高维空间定向投影端元提取方法. 中国: CN102184400A, 2013-04-10.
出版信息
发表论文
[1] Wang, Degang, Gao, Lianru, Qu, Ying, Sun, Xu, Liao, Wenzhi. Frequency-to-spectrum mapping GAN for semisupervised hyperspectral anomaly detection. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY[J]. 2023, 8(4): http://dx.doi.org/10.1049/cit2.12154.[2] Sun, Xiaotong, Zhuang, Lina, Gao, Lianru, Gao, Hongmin, Sun, Xu, Zhang, Bing. Information Retrieval With Chessboard-Shaped Topology for Hyperspectral Target Detection. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2023, 61: http://dx.doi.org/10.1109/TGRS.2023.3284653.[3] Zhu Han, Ce Zhang, Lianru Gao, Zhiqiang Zeng, Bing Zhang, Peter M Atkinson. Spatio-temporal multi-level attention crop mapping method using time-series SAR imagery. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING. 2023, 206: 293-310, http://dx.doi.org/10.1016/j.isprsjprs.2023.11.016.[4] Degang Wang, Lina Zhuang, Lianru Gao, Xu Sun, 黄旻, Plaza, Antonio. PDBSNet: Pixel-shuffle Down-sampling Blind-Spot Reconstruction Network for Hyperspectral Anomaly Detection. Ieee Transactions on Geoscience and Remote Sensing[J]. 2023, [5] Ren, Longfei, Hong, Danfeng, Gao, Lianru, Sun, Xu, Huang, Min, Chanussot, Jocelyn. Orthogonal Subspace Unmixing to Address Spectral Variability for Hyperspectral Image. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2023, 61: http://dx.doi.org/10.1109/TGRS.2023.3236471.[6] Zhang, Haotian, Yao, Jing, Ni, Li, Gao, Lianru, Huang, Min. Multimodal Attention-Aware Convolutional Neural Networks for Classification of Hyperspectral and LiDAR Data. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2023, 16: 3635-3644, http://dx.doi.org/10.1109/JSTARS.2022.3187730.[7] Yuanchao Su, Jiangyi Chen, Lianru Gao, Plaza, Antonio, Mengying Jiang, Xiang Xu, Xu Sun, Pengfei Li. ACGT-Net: adaptive cuckoo refinement-based graph transfer network for hyperspectral image classification. Ieee Transactions on Geoscience and Remote Sensing[J]. 2023, 61(5521314): 1-14, [8] Ren, Longfei, Hong, Danfeng, Gao, Lianru, Sun, Xu, Huang, Min, Chanussot, Jocelyn. Hyperspectral Sparse Unmixing via Nonconvex Shrinkage Penalties. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2023, 61: http://dx.doi.org/10.1109/TGRS.2022.3232570.[9] Zhang, Tianwei, Sun, Xu, Zhuang, Lina, Dong, Xiaoyu, Gao, Lianru, Zhang, Bing, Zheng, Ke. FFN: Fountain Fusion Net for Arbitrary-Oriented Object Detection. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2023, 61: http://dx.doi.org/10.1109/TGRS.2023.3276995.[10] Gao, Lianru, Li, Jiaxin, Zheng, Ke, Jia, Xiuping. Enhanced Autoencoders With Attention-Embedded Degradation Learning for Unsupervised Hyperspectral Image Super-Resolution. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2023, 61: http://dx.doi.org/10.1109/TGRS.2023.3267890.[11] Lianru Gao, Degang Wang, Lina Zhuang, Xu Sun, HUANG Min, Plaza, Antonio. BS3LNet: A New Blind-Spot Self-Supervised Learning Network for Hyperspectral Anomaly Detection. Ieee Transactions on Geoscience and Remote Sensing[J]. 2023, [12] Gao, Lianru, Xiaotong Sun, Xu Sun, Lina Zhuang, Qian Du, Bing Zhang. Hyperspectral Anomaly Detection Based on Chessboard Topology. Ieee Transactions on Geoscience and Remote Sensing[J]. 2023, [13] Wang, Minghua, Hong, Danfeng, Han, Zhu, Li, Jiaxin, Yao, Jing, Gao, Lianru, Zhang, Bing, Chanussot, Jocelyn. Tensor Decompositions for Hyperspectral Data Processing in Remote Sensing: A comprehensive review. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE. 2023, 11(1): 26-72, http://dx.doi.org/10.1109/MGRS.2022.3227063.[14] Gao, Lianru, Wang, Zhicheng, Zhuang, Lina, Yu, Haoyang, Zhang, Bing, Chanussot, Jocelyn. Using low-rank representation of abundance maps and nonnegative tensor factorization for hyperspectral nonlinear unmixing. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2022, 60(5504017): 1-17, http://arxiv.org/abs/2103.16204.[15] Danfeng Hong, Lianru Gao, Renlong Hang, Bing Zhang, Jocelyn Chanussot. Deep encoder-decoder networks for classification of hyperspectral and LiDAR data. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2022, 19(5500205): 1-5, [16] Zhang, Bing, Aziz, Yashinov, Wang, Zhicheng, Zhuang, Lina, Michael, K. Ng, Gao, Lianru. Hyperspectral image stripe detection and correction using Gabor filters and subspace representation. IEEE Geoscience and Remote Sensing Letters[J]. 2022, 19(5504005): 1-5, [17] Danfeng Hong, Xin Wu, Lianru Gao, Bing Zhang, Jocelyn Chanussot. Learning locality-constrained sparse coding for spectral enhancement of multispectral imagery. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2022, 19(5000405): 1-5, [18] Hong, Danfeng, Han, Zhu, Yao, Jing, Gao, Lianru, Zhang, Bing, Plaza, Antonio, Chanussot, Jocelyn. SpectralFormer: rethinking hyperspectral image classification with transformers. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2022, 60(5518615): 1-15, http://arxiv.org/abs/2107.02988.[19] Han, Zhu, Hong, Danfeng, Gao, Lianru, Zhang, Bing, Huang, Min, Chanussot, Jocelyn. AutoNAS: Automatic Neural Architecture Search for Hyperspectral Unmixing. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2022, 60: http://dx.doi.org/10.1109/TGRS.2022.3186480.[20] Wang, Zhicheng, Ng, Michael K, Zhuang, Lina, Gao, Lianru, Zhang, Bing. Nonlocal Self-Similarity-Based Hyperspectral Remote Sensing Image Denoising With 3-D Convolutional Neural Network. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2022, 60: http://dx.doi.org/10.1109/TGRS.2022.3182144.[21] Sun, Hezhi, Liu, Ming, Zheng, Ke, Yang, Dong, Li, Jindong, Gao, Lianru. Hyperspectral image denoising via low-rank representation and CNN denoiser. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2022, 15: 716-728, [22] Sun, Xiaotong, Qu, Ying, Gao, Lianru, Sun, Xu, Qi, Hairong, Zhang, Bing, Shen, Ting. Ensemble-based information retrieval with mass estimation for hyperspectral target detection. IEEE Transactions on Geoscience and Remote Sensing[J]. 2022, 60(5508123): 1-23, [23] Weiqiang Rao, Lianru Gao, Ying Qu, Xu Sun, Bing Zhang, Jocelyn Chanussot. Siamese transformer network for hyperspectral image target detection. Ieee Transactions on Geoscience and Remote Sensing[J]. 2022, 60(5526419): 1-19, [24] Zhu Han, Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Jocelyn Chanussot. Multimodal hyperspectral unmixing: insights from attention networks. Ieee Transactions on Geoscience and Remote Sensing[J]. 2022, 60(5524913): 1-13, [25] Li, Jiaxin, Hong, Danfeng, Gao, Lianru, Yao, Jing, Zheng, Ke, Zhang, Bing, Chanussot, Jocelyn. Deep learning in multimodal remote sensing data fusion: A comprehensive review. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION. 2022, 112: http://dx.doi.org/10.1016/j.jag.2022.102926.[26] Zhang, Bing, Wu, YuanFeng, Zhao, Boya, Chanussot, Jocelyn, Hong, Danfeng, Yao, Jing, Gao, Lianru. Progress and challenges in intelligent remote sensing satellite systems. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2022, 15: 1814-1822, [27] Hong, Danfeng, Gao, Lianru, Yao, Jing, Yokoya, Naoto, Chanussot, Jocelyn, Heiden, Uta, Zhang, Bing. Endmember-Guided Unmixing Network (EGU-Net): A General Deep Learning Framework for Self-Supervised Hyperspectral Unmixing. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS[J]. 2022, 33(11): 6518-6531, http://dx.doi.org/10.1109/TNNLS.2021.3082289.[28] Su, Yuanchao, Gao, Lianru, Jiang, Mengying, Plaza, Antonio, Sun, Xu, Zhang, Bing. NSCKL: Normalized Spectral Clustering With Kernel-Based Learning for Semisupervised Hyperspectral Image Classification. IEEE TRANSACTIONS ON CYBERNETICS. 2022, [29] Liu, Lian, Hong, Danfeng, Ni, Li, Gao, Lianru. Multilayer cascade screening strategy for semi-supervised change detection in hyperspectral images. IEEEJOURNALOFSELECTEDTOPICSINAPPLIEDEARTHOBSERVATIONSANDREMOTESENSING[J]. 2022, 15: 1926-1940, [30] Gao, Lianru, Han, Zhu, Hong, Danfeng, Zhang Bing, Chanussot, Jocelyn. CyCU-Net: cycle-consistency unmixing network by learning cascaded autoencoders. IEEE Transactions on Geoscience and Remote Sensing[J]. 2022, 60(5503914): 1-14, [31] Ke Zheng, Lianru Gao, Danfeng Hong, Bing Zhang, Jocelyn Chanussot. NonRegSRNet: a nonrigid registration hyperspectral super-resolution network. Ieee Transactions on Geoscience and Remote Sensing[J]. 2022, 60(5520216): 1-16, [32] Han, Zhu, Hong, Danfeng, Gao, Lianru, Roy, Swalpa Kumar, Zhang, Bing, Chanussot, Jocelyn. Reinforcement Learning for Neural Architecture Search in Hyperspectral Unmixing. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2022, 19: http://dx.doi.org/10.1109/LGRS.2022.3199583.[33] Rao, Weiqiang, Qu, Ying, Gao, Lianru, Sun, Xu, Wu, Yuanfeng, Zhang, Bing. Transferable network with Siamese architecture for anomaly detection in hyperspectral images. INTERNATIONALJOURNALOFAPPLIEDEARTHOBSERVATIONSANDGEOINFORMATION[J]. 2022, 106(102669): 1-14, [34] Su, Yuanchao, Jiang, Mengying, Gao, Lianru, Sun, Xu, You, Xueer, Li, Pengfei. Graph-Cut-Based Collaborative Node Embeddings for Hyperspectral Images Classification. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2022, 19: http://dx.doi.org/10.1109/LGRS.2022.3184817.[35] Li, Jiaxin, Zheng, Ke, Yao, Jing, Gao, Lianru, Hong, Danfeng. Deep unsupervised blind hyperspectral and multispectral data fusion. IEEE Geoscience and Remote Sensing Letters[J]. 2022, 19(6007305): 1-15, [36] Luo, Wenfei, Gao, Lianru, Hong, Danfeng, Chanussot, Jocelyn. Endmember Purification With Affine Simplicial Cone Model. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2022, 60: [37] Wang, Yanheng, Gao, Lianru, Hong, Danfeng, Sha, Jianjun, Liu, Lian, Zhang, Bing, Rong, Xianhui, Zhang, Yonggang. Mask DeepLab: end-to-end image segmentation for change detection in high-resolution remote sensing images. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATIONS AND GEOINFORMATION[J]. 2021, 104(102582): 1-19, [38] Sun, Xiaotong, Qu, Ying, Gao, Lianru, Sun, Xu, Qi, Hairong, Zhang, Bing, Shen, Ting. Target detection through tree-structured encoding for hyperspectral images. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2021, 59(5): 4233-4249, http://dx.doi.org/10.1109/TGRS.2020.3024852.[39] Hong, Danfeng, He, Wei, Yokoya, Naoto, Yao, Jing, Gao, Lianru, Zhang, Liangpei, Chanussot, Jocelyn, Zhu, Xiaoxiang. Interpretable hyperspectral artificial intelligence: when nonconvex modeling meets hyperspectral remote sensing. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE[J]. 2021, 9(2): 52-87, http://dx.doi.org/10.1109/MGRS.2021.3064051.[40] Lv, Qinzhe, Feng, Wei, Quan, Yinghui, Dauphin, Gabriel, Gao, Lianru, Xing, Mengdao. Enhanced-Random-Feature-Subspace-Based ensemble CNN for the imbalanced hyperspectral image classification. IEEEJOURNALOFSELECTEDTOPICSINAPPLIEDEARTHOBSERVATIONSANDREMOTESENSING[J]. 2021, 14: 3988-3999, http://dx.doi.org/10.1109/JSTARS.2021.3069013.[41] Qu, Ying, Baghbaderani, Razieh Kaviani, Li, Wei, Gao, Lianru, Zhang, Yuxiang, Qi, Hairong. Physically constrained transfer learning through shared abundance space for hyperspectral image classification. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2021, 59(12): 10455-10472, [42] Dong, Xiaoyu, Wang, Longguang, Sun, Xu, Jia, Xiuping, Gao, Lianru, Zhang, Bing. Remote sensing image super-resolution using second-order multi-scale networks. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2021, 59(4): 3473-3485, http://dx.doi.org/10.1109/TGRS.2020.3019660.[43] Hong, Danfeng, Gao, Lianru, Yao, Jing, Zhang, Bing, Plaza, Antonio, Chanussot, Jocelyn. Graph convolutional networks for hyperspectral image classification. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2021, 59(7): 5966-5978, http://dx.doi.org/10.1109/TGRS.2020.3015157.[44] Han, Zhu, Hong, Danfeng, Gao, Lianru, Zhang, Bing, Chanussot, Jocelyn. Deep Half-siamese networks for hyperspectral unmixing. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2021, 18(11): 1996-2000, [45] Zhao, Xuemei, Hong, Danfeng, Gao, Lianru, Zhang, Bing, Chanussot, Jocelyn. Transferable deep learning from time series of Landsat data for national land-cover mapping with noisy labels: a case study of China. REMOTE SENSING[J]. 2021, 13(21): 4194, http://dx.doi.org/10.3390/rs13214194.[46] Hong, Danfeng, Gao, Lianru, Yokoya, Naoto, Yao, Jing, Chanussot, Jocelyn, Du, Qian, Zhang, Bing. More diverse means better: multimodal deep learning meets remote-sensing imagery classification. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2021, 59(5): 4340-4354, http://dx.doi.org/10.1109/TGRS.2020.3016820.[47] Gao, Lianru, Hong, Danfeng, Yao, Jing, Zhang, Bing, Gamba, Paolo, Chanussot, Jocelyn. Spectral superresolution of multispectral imagery with joint sparse and low-rank learning. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2021, 59(3): 2269-2280, https://www.webofscience.com/wos/woscc/full-record/WOS:000622319000032.[48] 王德港, 饶伟强, 孙旭, 渠瀛, 刘雪梅, 高连如. 结合孪生网络和像素配对的高光谱图像异常检测. 中国图象图形学报[J]. 2021, 26(8): 1860-1870, http://lib.cqvip.com/Qikan/Article/Detail?id=7105571682.[49] Zheng, Ke, Gao, Lianru, Liao, Wenzhi, Hong, Danfeng, Zhang, Bing, Cui, Ximin, Chanussot, Jocelyn. Coupled convolutional neural network with adaptive response function learning for unsupervised hyperspectral super resolution. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2021, 59(3): 2487-2502, https://www.webofscience.com/wos/woscc/full-record/WOS:000622319000047.[50] Yu, Haoyang, Shang, Xiaodi, Zhang, Xiao, Gao, Lianru, Song, Meiping, Hu, Jiaochan. Hyperspectral image classification based on adjacent constraint representation. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2021, 18(4): 707-711, https://www.webofscience.com/wos/woscc/full-record/WOS:000633394400029.[51] Dong, Xiaoyu, Sun, Xu, Jia, Xiuping, Xi, Zhihong, Gao, Lianru, Zhang, Bing. Remote sensing image super-resolution using novel dense-sampling networks. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2021, 59(2): 1618-1633, http://dx.doi.org/10.1109/TGRS.2020.2994253.[52] Feng, Wei, Quan, Yinghui, Dauphin, Gabriel, Li, Qiang, Gao, Lianru, Huang, Wenjiang, Xia, Junshi, Zhu, Wentao, Xing, Mengdao. Semi-supervised rotation forest based on ensemble margin theory for the classification of hyperspectral image with limited training data. INFORMATION SCIENCES[J]. 2021, 575: 611-638, http://dx.doi.org/10.1016/j.ins.2021.06.059.[53] Zhuang, Lina, Gao, Lianru, Zhang, Bing, Fu, Xiyou, BioucasDias, Jose M. Hyperspectral image denoising and anomaly detection based on low-rank and sparse representations. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2021, 60(5500117): 1-17, http://arxiv.org/abs/2103.07437.[54] Zhao, Boya, Wu, Yuanfeng, Guan, Xinran, Gao, Lianru, Zhang, Bing. An improved aggregated-mosaic method for the sparse object detection of remote sensing imagery. REMOTE SENSING[J]. 2021, 13(13): 2602, http://dx.doi.org/10.3390/rs13132602.[55] Dong, Shuxian, Quan, Yinghui, Feng, Wei, Dauphin, Gabriel, Gao, Lianru, Xing, Mengdao. A pixel cluster CNN and spectral-spatial fusion algorithm for hyperspectral image classification with small-size training samples. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2021, 14: 4101-4114, https://doaj.org/article/111603a4aa184095982f0e18ec5cd01c.[56] Gao, Hongmin, Yang, Yao, Li, Chenming, Gao, Lianru, Zhang, Bing. Multiscale residual network with mixed depthwise convolution for hyperspectral image classification. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2021, 59(4): 3396-3408, http://dx.doi.org/10.1109/TGRS.2020.3008286.[57] Liu, Yao, Gao, Lianru, Xiao, Chenchao, Qu, Ying, Zheng, Ke, Marinoni, Andrea. Hyperspectral image classification based on a shuffled group convolutional neural network with transfer learning. REMOTE SENSING[J]. 2020, 12(11): 1780, https://doaj.org/article/dfe6022369b74211955e36f4074ba326.[58] 韩竹, 高连如, 张兵, 孙旭, 李庆亭. 高分五号高光谱图像自编码网络非线性解混. 遥感学报[J]. 2020, 24(4): 388-400, http://lib.cqvip.com/Qikan/Article/Detail?id=7101804435.[59] Yu, Haoyang, Zhang, Xiao, Yu, Chunyan, Gao, Lianru, Zhang, Bing. Neighborhood activity-driven representation for hyperspectral imagery classification. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2020, 13: 4506-4517, https://doaj.org/article/9983dd6f0da94faeb96bf7f8f6fec9c0.[60] Yu, Haoyang, Gao, Lianru, Li, Jun, Zhang, Bing. Subspace-based multitask learning framework for hyperspectral imagery classification. MULTIMEDIATOOLSANDAPPLICATIONS[J]. 2020, 79(13-14): 8887-8909, https://www.webofscience.com/wos/woscc/full-record/WOS:000524950600027.[61] Gao, Lianru, Gu, Daixin, Zhuang, Lina, Ren, Jinchang, Yang, Dong, Zhang, Bing. Combining t-distributed stochastic neighbor embedding with convolutional neural networks for hyperspectral image classification. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2020, 17(8): 1368-1372, https://www.webofscience.com/wos/woscc/full-record/WOS:000552271800016.[62] Zhang, Mengmeng, Li, Wei, Du, Qian, Gao, Lianru, Zhang, Bing. Feature extraction for classification of hyperspectral and LiDAR data using patch-to-patch CNN. IEEE TRANSACTIONS ON CYBERNETICS[J]. 2020, 50(1): 100-111, http://dx.doi.org/10.1109/TCYB.2018.2864670.[63] Quan, Yinghui, Zhong, Xian, Feng, Wei, Dauphin, Gabriel, Gao, Lianru, Xing, Mengdao. A novel feature extension method for the forest disaster monitoring using multispectral data. REMOTE SENSING[J]. 2020, 12(14): 2261, https://doaj.org/article/7cc1b642ffb4427a9ae49a9e2a65f97f.[64] Wang, Zhicheng, Zhuang, Lina, Gao, Lianru, Marinoni, Andrea, Zhang, Bing, Michael, K Ng. Hyperspectral nonlinear unmixing by using plug-and-play prior for abundance maps. REMOTE SENSING[J]. 2020, 12(24): 4117, https://doaj.org/article/b8c3762dc0ec4cbdb953ff7b445af49d.[65] 王艳恒, 高连如, 陈正超, 张兵. 结合深度学习和超像元的高分遥感影像变化检测. 中国图象图形学报[J]. 2020, 25(6): 1271-1282, http://lib.cqvip.com/Qikan/Article/Detail?id=7102356819.[66] Yu, Haoyang, Zhang, Xiao, Song, Meiping, Hu, Jiaochan, Guo, Qiandong, Gao, Lianru. Hyperspectral imagery classification based on multiscale superpixel-level constraint representation. REMOTE SENSING[J]. 2020, 12(20): 3342, https://doaj.org/article/fb176b63c8204c0a8bee5dfd7a23076f.[67] Yu, Haoyang, Gao, Lianru, Liao, Wenzhi, Zhang, Bing, Zhuang, Lina, Song, Meiping, Chanussot, Jocelyn. Global spatial and local spectral similarity-based manifold learning group sparse representation for hyperspectral imagery classification. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2020, 58(5): 3043-3056, [68] Li, Liwei, Zhu, Jinming, Gao, Lianru, Cheng, Gang, Zhang, Bing. Detecting and analyzing the increase of high-rising buildings to monitor the dynamic of the Xiong'an new area. SUSTAINABILITY[J]. 2020, 12(11): 4355, https://doaj.org/article/b8b60feda97146e4aa7c6009931c59d9.[69] Yang, Xiaochen, Dong, Mingzhi, Wang, Ziyu, Gao, Lianru, Zhang, Lefei, Xue, JingHao. Data-augmented matched subspace detector for hyperspectral subpixel target detection. PATTERN RECOGNITION[J]. 2020, 106: 107464, http://dx.doi.org/10.1016/j.patcog.2020.107464.[70] Zhang, Peng, He, Haixia, Gao, Lianru. A nonlinear and explicit framework of supervised manifold-feature extraction for hyperspectral image classification. NEUROCOMPUTING[J]. 2019, 337: 315-324, http://dx.doi.org/10.1016/j.neucom.2019.01.077.[71] Wu, Yuanfeng, Lopez, Sebastian, Zhang, Bing, Qiao, Fei, Gao, Lianru. Approximate computing for onboard anomaly detection from hyperspectral images. JOURNAL OF REAL-TIME IMAGE PROCESSING[J]. 2019, 16(1): 99-114, https://www.webofscience.com/wos/woscc/full-record/WOS:000458551300009.[72] Bai, Xinhua, Li, Lu, Xie, Xiaoming, Li, Wei, Wu YuanFeng, Gao, Lianru. FPGA implementation for hyperspectral target detection with adaptive coherence estimator. 2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP 2019). 2019, [73] Chen, Zhengchao, Lu, Kaixuan, Gao, Lianru, Li, Baipeng, Gao, Jianwei, Yang, Xuan, Yao, Mufeng, Zhang, Bing. Automatic detection of track and fields in China from high-resolution satellite images using multi-scale-fused single shot multibox detector. REMOTE SENSING[J]. 2019, 11(11): http://dx.doi.org/10.3390/rs11111377.[74] Liao, Wenzhi, Ochoa, Daniel, Gao, Lianru, Zhang, Bing, Philips, Wilfried. Morphological analysis for banana disease detection in close range hyperspectral remote sensing images. 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019). 2019, [75] Zhao, Xuemei, Gao, Lianru, Chen, Zhengchao, Zhang, Bing, Liao, Wenzhi, Yang, Xuan. An Entropy and MRF model-based CNN for large-scale Landsat image classification. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2019, 16(7): 1145-1149, [76] Pan, Xuran, Yang, Fan, Gao, Lianru, Chen, Zhengchao, Zhang, Bing, Fan, Hairui, Ren, Jinchang. Building extraction from high-resolution aerial imagery using a generative adversarial network with spatial and channel attention mechanisms. REMOTE SENSING[J]. 2019, 11(8): https://doaj.org/article/c0e3f749da2c4975afbe9ab6f02ca32d.[77] Luo, Wenfei, Gao, Lianru, Zhang, Ruihao, Marinoni, Andrea, Zhang, Bing. Bilinear normal mixing model for spectral unmixing. IETIMAGEPROCESSING[J]. 2019, 13(2): 344-354, [78] Ren, Jinchang, Jia, Xiuping, Liao, Wenzhi, Gao, Lianru. Guest editorial: hyperspectral imaging and applications. IETIMAGEPROCESSING[J]. 2019, 13(2): 233-234, https://www.webofscience.com/wos/woscc/full-record/WOS:000459477400001.[79] Gao, Jianwei, Sun, Yi, Zhang, Bing, Chen, Zhengchao, Gao, Lianru, Zhang, Wenjuan. Multi-GPU based parallel design of the ant colony optimization algorithm for endmember extraction from hyperspectral images. SENSORS[J]. 2019, 19(3): https://doaj.org/article/1059b55120984ab2a330f562daad2fbb.[80] Yang, Xiaochen, Zhang, Lefei, Gao, Lianru, Xue, JingHao. MSDH: matched subspace detector with heterogeneous noise. PATTERN RECOGNITION LETTERS[J]. 2019, 125: 701-707, http://dx.doi.org/10.1016/j.patrec.2019.07.014.[81] Dong, Xiaoyu, Xi, Zhihong, Sun, Xu, Gao, Lianru. Transferred multi-perception attention networks for remote sensing image super-resolution. REMOTE SENSING[J]. 2019, 11(23): http://dx.doi.org/10.3390/rs11232857.[82] Li, Cong, Gao, Lianru, Plaza, Antonio, Zhang, Bing. FPGA implementation of a maximum simplex volume algorithm for endmember extraction from remotely sensed hyperspectral images. JOURNAL OF REAL-TIME IMAGE PROCESSING[J]. 2019, 16(5): 1681-1694, https://www.webofscience.com/wos/woscc/full-record/WOS:000489318600022.[83] Gao, Lianru, He, Yiqun, Sun, Xu, Jia, Xiuping, Zhang, Bing. Incorporating negative sample training for ship detection based on deep learning. SENSORS[J]. 2019, 19(3): [84] Zheng, Ke, Gao, Lianru, Ran, Qiong, Cui, Ximin, Zhang, Bing, Liao, Wenzhi, Jia, Sen. Separable-spectral convolution and inception network for hyperspectral image super-resolution. INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS[J]. 2019, 10(10): 2593-2607, http://dx.doi.org/10.1007/s13042-018-00911-4.[85] Shi, Qiaoqiao, Li, Wei, Tao, Ran, Sun, Xu, Gao, Lianru. Ship classification based on multifeature ensemble with convolutional neural network. REMOTE SENSING[J]. 2019, 11(4): https://doaj.org/article/a3a2ce5f64d04ca1b9da983069924874.[86] Cui, Ximin, Zheng, Ke, Gao, Lianru, Zhang, Bing, Yang, Dong, Ren, Jinchang. Multiscale spatial-spectral convolutional network with image-based framework for hyperspectral imagery classification. REMOTESENSING[J]. 2019, 11(19): http://dx.doi.org/10.3390/rs11192220.[87] Wu, Yuanfeng, Gao, Lianru, Liao, Wenzhi, Gamba, Paolo, Zhang, Bing. Potential analysis of feature extraction based quick response for environmental change with social media photos. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM. 2018, 1132-1135, [88] Zheng, Ke, Gao, Lianru, Zhang, Bing, Cui, Ximin. Multi-losses function based convolution neural network for single hyperspectral image super-resolution. 2018 FIFTH INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA). 2018, 472-475, [89] Zhao, Xuemei, Gao, Lianru, Chen, Zhengchao, Zhang, Bing, Liao, Wenzhi. CNN-based large scale Landsat image classification. 2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC). 2018, 611-617, [90] Wu, Jingjing, Jin, Yu, Li, Wei, Gao, Lianru, Zhang, Bing. FPGA implementation of collaborative representation algorithm for real-time hyperspectral target detection. JOURNAL OF REAL-TIME IMAGE PROCESSING[J]. 2018, 15(3): 673-685, https://www.webofscience.com/wos/woscc/full-record/WOS:000448821700017.[91] 冉琼, 于浩洋, 高连如, 李伟, 张兵. 结合超像元和子空间投影支持向量机的高光谱图像分类. 中国图象图形学报[J]. 2018, 23(1): 95-105, http://lib.cqvip.com/Qikan/Article/Detail?id=674291756.[92] Shi, Qiaoqiao, Li, Wei, Zhang, Fan, Hu, Wei, Sun, Xu, Gao, Lianru. Deep CNN with multi-scale rotation invariance features for ship classification. IEEE ACCESS[J]. 2018, 6: 38656-38668, https://doaj.org/article/a85978710e144a4a908a2d6979173a46.[93] Ma, Jianhang, Zhang, Wenjuan, Marinoni, Andrea, Gao, Lianru, Zhang, Bing. An improved spatial and temporal reflectance unmixing model to synthesize time series of Landsat-like images. REMOTE SENSING[J]. 2018, 10(9): https://doaj.org/article/e758d2a23dd9429a90211e72a613e6fc.[94] Yu, Haoyang, Gao, Lianru, Liao, Wenzhi, Gamba, Paolo, Zhang, Bing. Global spatial and local spectral similarity-based group sparse representation for hyperspectral imagery classification. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM. 2018, 3579-3582, [95] Yang, Peidi, Li, Wei, Li, Xuebin, Gao, Lianru. FPGA Optimization for hyperspectral target detection with collaborative representation. 10TH IAPR WORKSHOP ON PATTERN RECOGNITION IN REMOTE SENSING (PRRS)[J]. 2018, [96] Yu, Haoyang, Gao, Lianru, Zhang, Bing. Union of random subspace-based group sparse representation for hyperspectral imagery classification. REMOTE SENSING LETTERS[J]. 2018, 9(6): 534-540, [97] Pan, Xuran, Gao, Lianru, Marinoni, Andrea, Zhang, Bing, Yang, Fan, Gamba, Paolo. Semantic labeling of high resolution aerial imagery and LiDAR data with fine segmentation network. REMOTE SENSING[J]. 2018, 10(5): https://doaj.org/article/6c2b2794917d4ae08506e9f85e980d20.[98] Chen, Chen, Li, Wei, Gao, Lianru, Li, Hengchao, Plaza, Javier. Special issue on advances in real-time image processing for remote sensing. JOURNAL OF REAL-TIME IMAGE PROCESSING[J]. 2018, 15(3): 435-438, https://www.webofscience.com/wos/woscc/full-record/WOS:000448821700001.[99] Tang, Maofeng, Gao, Lianru, Marinoni, Andrea, Gamba, Paolo, Zhang, Bing. Integrating spatial information in the normalized P-linear algorithm for nonlinear hyperspectral unmixing. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2018, 11(4): 1179-1190, [100] Yu, Haoyang, Gao, Lianru, Liao, Wenzhi, Zhang, Bing. Group sparse representation based on nonlocal spatial and local spectral similarity for hyperspectral imagery classification. SENSORS[J]. 2018, 18(6): https://doaj.org/article/b21ef9c5cf4a42d58eb483cd2193f225.[101] Zhu, Changyu, Li, Jun, Zhang, Shaoquan, Wu, Changshan, Zhang, Bing, Gao, Lianru, Plaza, Antonio. Impervious surface extraction from multispectral images via morphological attribute profiles based on spectral analysis. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2018, 11(12): 4775-4790, https://www.webofscience.com/wos/woscc/full-record/WOS:000455462100021.[102] Pan, Xuran, Gao, Lianru, Zhang, Bing, Yang, Fan, Liao, Wenzhi. High-resolution aerial imagery semantic labeling with dense pyramid network. SENSORS[J]. 2018, 18(11): https://doaj.org/article/c2f436b159a24dc3adb145f49aee3275.[103] Sun, Xu, Peng, Qian, Zhang, Bing, Gao, Lianru, Yang, Lina. Constraint non-negative matrix factorization with sparseness and piecewise smoothness for hyperspectral unmixing. 2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING, EVOLUTION IN REMOTE SENSING (WHISPERS 2018). 2018, [104] Tang, Maofeng, Zhang, Bing, Marinoni, Andrea, Gao, Lianru, Gamba, Paolo. Multiharmonic postnonlinear mixing model for hyperspectral nonlinear unmixing. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2018, 15(11): 1765-1769, [105] Pan, Xuran, Gao, Lianru, Zhang, Bing, Yang, Fan, Liao, Wenzhi. Dense pyramid network for semantic segmentation of high resolution aerial imagery. 2018 International Conference on Brain Inspired Cognitive Systems (BICS 2018). 2018, [106] Li, Cong, Gao, Lianru, Wu, Yuanfeng, Zhang, Bing, Plaza, Javier, Plaza, Antonio. A real-time unsupervised background extraction-based target detection method for hyperspectral imagery. JOURNAL OF REAL-TIME IMAGE PROCESSING[J]. 2018, 15(3): 597-615, [107] He Yiqun, Sun Xu, Gao Lianru, Zhang Bing, IEEE. SHIP DETECTION WITHOUT SEA-LAND SEGMENTATION FOR LARGE- SCALE HIGH-RESOLUTION OPTICAL SATELLITE IMAGES. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM. 2018, 717-720, [108] Liao, Wenzhi, Van Coillie, Frieke, Gao, Lianru, Li, Liwei, Zhang, Bing, Chanussot, Jocelyn. Deep learning for fusion of APEX hyperspectral and full-waveform LiDAR remote sensing data for tree species mapping. IEEE ACCESS[J]. 2018, 6: 68716-68729, https://doaj.org/article/06a49a2c7a0e4252b45926f3df1ad8de.[109] Xu, Xiaodong, Li, Wei, Ran, Qiong, Du, Qian, Gao, Lianru, Zhang, Bing. Multisource remote sensing data classification based on convolutional neural network. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2018, 56(2): 937-949, http://dx.doi.org/10.1109/TGRS.2017.2756851.[110] Ma, Jianhang, Zhang, Wenjuan, Marinoni, Andrea, Gao, Lianru, Zhang, Bing. Performance assessment of ESTARFM with different similar-pixel identification schemes. JOURNAL OF APPLIED REMOTE SENSING[J]. 2018, 12(2): [111] Gao, Lianru, Zhao, Bin, Jia, Xiuping, Liao, Wenzhi, Zhang, Bing. Optimized kernel minimum noise fraction transformation for hyperspectral image classification. REMOTE SENSING[J]. 2017, 9(6): [112] Liao, Wenzhi, van Coillie, Frieke M. B., Li, Liwei, Zhao, Bin, Gao, Lianru. Fusion of multi-scale hyperspectral and Lidar features for tree species mapping. 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2017). 2017, [113] Zhuang, Lina, Gao, Lianru, Zhang, Bing, BioucasDias, Jose M. Hyperspectral image denoising and anomaly detection based on low-rank and sparse representations. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIII. 2017, 10427: [114] Yao, Dan, Zhuang, Lina, Gao, Lianru, Zhang, Bing, BioucasDias, Jose M. Hyperspectral image inpainting based on low-rank representation: a case study on Tiangong-1 data. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS). 2017, 3409-3412, [115] Tang, Maofeng, Gao, Lianru, Marinoni, Andrea, Zhang, Bing. Nonlinear hyperspectral unmixing based on normalized P-linear algorithm. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS). 2017, 1145-1148, [116] 彭倩, 张兵, 孙旭, 高连如, 于文博. 结合空间光谱预处理和约束非负矩阵分解的高光谱图像混合像元分解. 中国图象图形学报[J]. 2017, 22(4): 542-550, https://d.wanfangdata.com.cn/periodical/zgtxtxxb-a201704014.[117] Yu, Haoyang, Gao, Lianru, Liao, Wenzhi, Zhang, Bing, Pizurica, Aleksandra, Philips, Wilfried. Multiscale superpixel-level subspace-based support vector machines for hyperspectral image classification. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2017, 14(11): 2142-2146, [118] Gao, Lianru, Yao, Dan, Li, Qingting, Zhuang, Lina, Zhang, Bing, BioucasDias, Jos M. A new low-rank representation based hyperspectral image denoising method for mineral mapping. REMOTE SENSING[J]. 2017, 9(11): https://doaj.org/article/531caa9de3f24f3194b3b83960420bda.[119] Zhao, Bin, Gao, Lianru, Liao, Wenzhi, Zhang, Bing. A new kernel method for hyperspectral image feature extraction. GEO-SPATIAL INFORMATION SCIENCE[J]. 2017, 20(4): 309-318, http://lib.cqvip.com/Qikan/Article/Detail?id=WD688175748888758888664569504849554852484851.[120] Bin Zhao, Lianru Gao, Wenzhi Liao, Bing Zhang. A new kernel method for hyperspectral image feature extraction. 地球空间信息科学学报:英文版[J]. 2017, 309-318, http://lib.cqvip.com/Qikan/Article/Detail?id=WD688175748888758888664569504849554852484851.[121] Yu, Haoyang, Gao, Lianru, Li, Wei, Du, Qian, Zhang, Bing. Locality sensitive discriminant analysis for group sparse representation-based hyperspectral imagery classification. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2017, 14(8): 1358-1362, [122] 贾艳立, 裴亮, 孙旭, 高连如. 稀疏表达模型在高光谱遥感影像目标探测中的应用. 北京工业大学学报[J]. 2017, 43(5): 691-700, http://lib.cqvip.com/Qikan/Article/Detail?id=671994649.[123] Gao, Lianru, Yu, Haoyang, Zhang, Bing, Li, Qingting. Locality-preserving sparse representation-based classification in hyperspectral imagery. JOURNAL OF APPLIED REMOTE SENSING[J]. 2016, 10(4): http://www.irgrid.ac.cn/handle/1471x/1182983.[124] Zhao, Bin, Gao, Lianru, Zhang, Bing. An optimized method of kernel minimum noise fraction for dimensionality reduction of hyperspectral imagery. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS). 2016, 48-51, [125] Gao, Lianru, Zhuang, Lina, Zhang, Bing. Region-based estimate of endmember variances for hyperspectral image unmixing. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2016, 13(12): 1807-1811, http://dx.doi.org/10.1109/LGRS.2016.2614101.[126] Yu, Haoyang, Gao, Lianru, Li, Jun, Zhang, Bing. Spectral-spatial classification based on subspace support vector machine and Markov random field. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS). 2016, 2783-2786, [127] Gao, Lianru, Zhuang, Lina, Wu, Yuanfeng, Sun, Xu, Zhang, Bing. A quantitative and comparative analysis of different preprocessing implementations of DPSO: a robust endmember extraction algorithm. SOFT COMPUTING[J]. 2016, 20(12): 4669-4683, http://www.irgrid.ac.cn/handle/1471x/1182935.[128] Li, Liwei, Zhang, Bing, Li, Wei, Gao, Lianru. Orthogonal polynomial function fitting for hyperspectral data representation and discrimination. PATTERN RECOGNITION LETTERS[J]. 2016, 83: 160-168, http://dx.doi.org/10.1016/j.patrec.2016.01.015.[129] Li, Shanshan, Ni, Li, Jia, Xiuping, Gao, Lianru, Zhang, Bing, Peng, Man. Multi-scale superpixel spectral-spatial classification of hyperspectral images. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2016, 37(20): 4905-4922, http://www.irgrid.ac.cn/handle/1471x/1182931.[130] Wu, Yuanfeng, Yang, Xinghua, Plaza, Antonio, Qiao, Fei, Gao, Lianru, Zhang, Bing, Cui, Yabo. Approximate computing of remotely sensed data: SVM Hyperspectral image classification as a case study. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2016, 9(12): 5806-5818, http://ir.radi.ac.cn/handle/183411/39623.[131] Luo, Wenfei, Gao, Lianru, Plaza, Antonio, Marinoni, Andrea, Yang, Bin, Zhong, Liang, Gamba, Paolo, Zhang, Bing. A new algorithm for bilinear spectral unmixing of hyperspectral images using particle swarm optimization. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2016, 9(12): 5776-5790, http://ir.radi.ac.cn/handle/183411/39643.[132] Gao, Jianwei, Chen, Zhengchao, Gao, Lianru, Zhang, Bing. GPU implementation of ant colony optimization-based band selections for hyperspectral data classification. 20168THWORKSHOPONHYPERSPECTRALIMAGEANDSIGNALPROCESSINGEVOLUTIONINREMOTESENSINGWHISPERS. 2016, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000425944200065.[133] Su, Yuanchao, Sun, Xu, Gao, Lianru, Li, Jun, Zhang, Bing. Improved discrete swarm intelligence algorithms for endmember extraction in hyperspectral remote sensing image. 2016 8th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing (WHISPERS 2016). 2016, [134] Su, Yuanchao, Sun, Xu, Gao, Lianru, Li, Jun, Zhang, Bing. Improved discrete swarm intelligence algorithms for endmember extraction from hyperspectral remote sensing images. JOURNAL OF APPLIED REMOTE SENSING[J]. 2016, 10(4): http://ir.radi.ac.cn/handle/183411/39644.[135] Guo, Qiandong, Pu, Ruiliang, Gao, Lianru, Zhang, Bing. A novel anomaly detection method incorporating target information derived from hyperspectral imagery. REMOTE SENSING LETTERS[J]. 2016, 7(1): 11-20, http://www.irgrid.ac.cn/handle/1471x/1183068.[136] Zhong, Liang, Luo, Wenfei, Gao, Lianru. Particle swarm optimization for nonlinear spectral unmixing: a case study of generalized bilinear model. 016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery ( ICNC-FSKD 2016). 2016, [137] Zhong, Liang, Luo, Wenfei, Gao, Lianru. A particle swarm optimization algorithm for unmixing the polynomial post-nonlinear mixing model. 2016 9TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2016). 2016, 596-600, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000405706400108.[138] Yu, Haoyang, Gao, Lianru, Li, Jun, Li, Shanshan, Zhang, Bing, Benediktsson, Jn Atli. Spectral-spatial hyperspectral image classification using subspace-based support vector machines and adaptive Markov random fields. REMOTE SENSING[J]. 2016, 8(4): http://www.irgrid.ac.cn/handle/1471x/1182845.[139] Sun, Xiaoxia, Li, Liwei, Zhang, Bing, Chen, Dongmei, Gao, Lianru. Soft urban water cover extraction using mixed training samples and Support Vector Machines. INTERNATIONAL JOURNAL OF REMOTE SENSING[J]. 2015, 36(13): 3331-3344, http://www.irgrid.ac.cn/handle/1471x/1047426.[140] Wu, Yuanfeng, Li, Jun, Gao, Lianru, Tan, Xuemin, Zhang, Bing. Graphics processing unit-accelerated computation of the Markov random fields and loopy belief propagation algorithms for hyperspectral image classification. JOURNAL OF APPLIED REMOTE SENSING[J]. 2015, 9(1): http://www.irgrid.ac.cn/handle/1471x/1047366.[141] Zhang, Bing, Gao, Lianru, Sun, Xu, Zhuang, Lina. Swarm intelligence: a reliable solution for extracting endmembers from hyperspectral imagery. 2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING, EVOLUTION IN REMOTE SENSING (WHISPERS 2015). 2015, [142] Yang, Bin, Yang, Minhua, Plaza, Antonio, Gao, Lianru, Zhang, Bing. Dual-mode FPGA implementation of target and anomaly detection algorithms for real-time hyperspectral imaging. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2015, 8(6): 2950-2961, http://www.irgrid.ac.cn/handle/1471x/1047543.[143] Sun, Xu, Yang, Lina, Zhang, Bing, Gao, Lianru, Gao, Jianwei. An endmember extraction method based on artificial bee colony algorithms for hyperspectral remote sensing images. REMOTESENSING[J]. 2015, 7(12): 16363-16383, http://www.irgrid.ac.cn/handle/1471x/1047166.[144] Gao, Lianru, Yang, Bin, Du, Qian, Zhang, Bing. Adjusted spectral matched filter for target detection in hyperspectral imagery. REMOTE SENSING[J]. 2015, 7(6): 6611-6634, http://www.irgrid.ac.cn/handle/1471x/1047298.[145] Wu, Yuanfeng, Gao, Lianru, Zhang, Bing, Yang, Bin, Chen, Zhengchao. Embedded GPU implementation of Anomaly detection for hyperspectral images. SPIE High-Performance Computing in Remote Sensing. 2015, [146] Gao, Lianru, Li, Jun, Khodadadzadeh, Mahdi, Plaza, Antonio, Zhang, Bing, He, Zhijian, Yan, Huiming. Subspace-based support vector machines for hyperspectral image classification. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2015, 12(2): 349-353, http://www.irgrid.ac.cn/handle/1471x/1047409.[147] Li, Qingting, Gao, Lianru, Zhang, Wenjuan, Zhang, Bing. Requirements and optimization of sensor parameters for mineral extraction. 2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS). 2015, [148] Zhuang, Lina, Zhang, Bing, Gao, Lianru, Li, Jun, Plaza, Antonio. Normal endmember spectral unmixing method for hyperspectral imagery. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2015, 8(6): 2598-2606, http://www.irgrid.ac.cn/handle/1471x/923923.[149] Gao, Lianru, Gao, Jianwei, Li, Jun, Plaza, Antonio, Zhuang, Lina, Sun, Xu, Zhang, Bing. Multiple algorithm integration based on ant colony optimization for endmember extraction from hyperspectral imagery. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2015, 8(6): 2569-2582, http://www.irgrid.ac.cn/handle/1471x/1047293.[150] Li, Cong, Gao, Lianru, Plaza, Antonio, Zhang Bing. FPGA implementation of a maximum volume algorithm for endmember extraction from hyperspectral imagery. 2015 7th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing (WHISPERS 2015). 2015, [151] 苏远超, 孙旭, 高连如, 陈晓宁. 高光谱影像端元提取算法的进展分析与比较. 遥感技术与应用[J]. 2015, 30(6): 1195-1205,1214, [152] Li, Liwei, Zhang, Bing, Gao, Lianru. An empirical study of urban mapping in a chain approach. 2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS). 2015, [153] 梁晓莉, 李利伟, 程钢, 高连如. 灰度共生矩阵和模糊分类的高分辨率光学影像欠发达村落提取. 测绘通报[J]. 2015, 25-29,45, https://d.wanfangdata.com.cn/periodical/chtb201508008.[154] 张飞飞, 孙旭, 薛良勇, 高连如, 刘长星. 融合简单线性迭代聚类的高光谱混合像元分解策略. 农业工程学报[J]. 2015, 31(17): 199-206, http://lib.cqvip.com/Qikan/Article/Detail?id=666244769.[155] Sun, Xu, Zhang, Feifei, Yang, Lina, Zhang, Bing, Gao, Lianru. A hyperspectral image spectral unmixing method integrating SLIC superpixel segmentation. 2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS). 2015, [156] Sun, Xu, Yang, Lina, Gao, Lianru, Zhang, Bing, Li, Shanshan, Li, Jun. Hyperspectral image clustering method based on artificial bee colony algorithm and Markov random fields. JOURNAL OF APPLIED REMOTE SENSING[J]. 2015, 9(1): http://www.irgrid.ac.cn/handle/1471x/1047195.[157] Ni, Li, Zhang Bing, Shen, Qian, Gao, Lianru, Sun, Xu, Li, Shanshan, Wu, Hua. Edge constrained MRF method for classification of hyperspectral imagery. 2014 6th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing (WHISPERS 2014). 2014, [158] Ran, Qiong, Wang, Zhiyong, Wen, Qiang, Li, Wei, Gao, Lianru. Study on mosaic method for new mode satellite images with high spatial resolution covering urban areas. MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS V. 2014, 9263: [159] Guo, Qiandong, Zhang, Bing, Ran, Qiong, Gao, Lianru, Li, Jun, Plaza, Antonio. Weighted-RXD and linear filter-based RXD: improving background statistics estimation for anomaly detection in hyperspectral imagery. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2014, 7(6): 2351-2366, [160] Li, Liwei, Zhang, Bing, Gao, Lianru, Wu, Yuanfeng. Spectral feature extraction based on orthogonal polynomial function fitting. 2014 8th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2014). 2014, [161] Su, Yuanchao, Yu, Haoyang, Sun, Xu, Gao, Lianru, Chen, Xiaoning. A target detection method with morphological knowledge for high-spatial resolution remote sensing image applying for search and rescue in aviation disaster. LAND SURFACE REMOTE SENSING II. 2014, 9260: [162] Yang, Bin, Yang, Minhua, Gao, Lianru, Zhang, Bing. A dual mode FPGA implementation of real-time target detection for hyperspectral imagery. 2014 THIRD INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA 2014). 2014, [163] Ni, Li, Gao, Lianru, Li, Shanshan, Li, Jun, Zhang, Bing. Edge-constrained Markov random field classification by integrating hyperspectral image with LiDAR data over urban areas. JOURNALOFAPPLIEDREMOTESENSING[J]. 2014, 8(1): http://dx.doi.org/10.1117/1.JRS.8.085089.[164] Wu, Yuanfeng, Gao, Lianru, Zhang, Bing, Zhao, Haina, Li, Jun. Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images. JOURNAL OF APPLIED REMOTE SENSING[J]. 2014, 8(1): [165] Liang, Xiaoli, Li, Liwei, Cheng, Gang, Gao, Lianru. Underdeveloped village extraction from high spatial resolution optical image based on GLCM textures and fuzzy classification. 2014 THIRD INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA 2014). 2014, [166] Gao, Lianru, Guo, Qiandong, Plaza, Antonio, Li, Jun, Zhang, Bing. Probabilistic anomaly detector for remotely sensed hyperspectral data. JOURNAL OF APPLIED REMOTE SENSING[J]. 2014, 8(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000348675700006.[167] Luo, Dan, Li, Liwei, Mu, Fengyun, Gao, Lianru. Fusion of high spatial resolution optical and polarimetric SAR images for urban land cover classification. 2014 THIRD INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA 2014). 2014, [168] 孙晓霞, 李利伟, 杨玲, 高连如. 有限样本类别城市高光谱数据SVM分类应用分析. 测绘通报[J]. 2014, 33-36,49, http://lib.cqvip.com/Qikan/Article/Detail?id=67728466504849524949484857.[169] Zhang, Bing, Liu, Yao, Zhang, Wenjuan, Gao, Lianru, Li, Jun, Wang, Jun, Li, Xia. Analysis of the proportion of surface reflected radiance in mid-infrared absorption bands. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2014, 7(6): 2639-2646, [170] Li, Qingting, Zhang, Bing, Gao, Lianru, Lu, Linlin, Jiao, Quanjun. The identification of altered rock in vegetation-covered area using hyperspectral remote sensing. 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2014). 2014, [171] Ni, Li, Wu, Hua, Zhang, Bing, Zhang, Wenjuan, Gao, Lianru. Improvement of linear spectral emissivity constraint method for temperature and emissivity separation of hyperspectral thermal infrared data. 015 7th Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing (WHISPERS 2015). 2014, [172] Zhang, Bing, Zhuang, Lina, Gao, Lianru, Luo, Wenfei, Ran, Qiong, Du, Qian. PSO-EM: A hyperspectral unmixing algorithm based on normal compositional model. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2014, 52(12): 7782-7792, http://ir.ceode.ac.cn/handle/183411/37503.[173] Gao, Jianwei, Du, Qian, Gao, Lianru, Sun, Xu, Zhang, Bing. Ant colony optimization-based supervised and unsupervised band selections for hyperspectral urban data classification. JOURNAL OF APPLIED REMOTE SENSING[J]. 2014, 8(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000344479600001.[174] Shen Qian, Ni Li, Sun Xu, Gao Lianru, Zhang Bing. OPTICAL CLASSIFICATION OF OPTICALLY COMPLEX WATERS AROUND CHINA. 2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS)[J]. 2014, [175] Zhang, Bing, Li, Shanshan, Wu, Changshan, Gao, Lianru, Zhang, Wenjuan, Peng, Man. A neighborhood constrained k-means approach to classify very high spatial resolution hyperspectral imagery. Remote Sensing Letters[J]. 2013, 4(2): 161-170, [176] Zhuang, Lina, Gao, Lianru, Ni, Li, Zhang, Bing. An improved expectation maximization algorithm for hyperspectral image classification. 2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS). 2013, [177] Li, Shanshan, Zhang, Bing, Li, An, Jia, Xiuping, Gao, Lianru, Peng, Man. Hyperspectral imagery clustering with neighborhood constraints. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2013, 10(3): 588-592, http://ir.ceode.ac.cn/handle/183411/28765.[178] Sun, Xu, Yang, Lina, Zhang, Bing, Gao, Lianru, Zhang, Liang. Hyperspectral image clustering method based on artificial bee colony algorithm. 2013 6th International Conference on Advanced Computational Intelligence (ICACI 2013). 2013, 106-109, http://ir.ceode.ac.cn/handle/183411/31085.[179] Zhang, Liang, Gao, Lianru, Zhang, Bing. Hyperspectral image classifier based on beach spectral feature. 35TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT (ISRSE35). 2013, 17: [180] Gao, Jianwei, Du, Qian, Gao, Lianru, Sun, Xu, Wu, Yuanfeng, Zhang, Bing. Ant colony optimization for supervised and unsupervised hyperspectral band selection. 2013 5TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS). 2013, [181] Gao, Lianru, Zhang, Bing, Sun, Xu, Li, Shanshan, Du, Qian, Wu, Changshan. Optimized maximum noise fraction for dimensionality reduction of Chinese HJ-1A hyperspectral data. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING[J]. 2013, 2013: 65, http://ir.ceode.ac.cn/handle/183411/28492.[182] Zhang, Bing, Gao, Jianwei, Gao, Lianru, Sun, Xu. Improvements in the ant colony optimization algorithm for endmember extraction from hyperspectral images. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2013, 6(2): 522-530, http://ir.ceode.ac.cn/handle/183411/29547.[183] Gao, Lianru, Du, Qian, Zhang, Bing, Yang, Wei, Wu, Yuanfeng. A comparative study on linear regression-based noise estimation for hyperspectral imagery. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING[J]. 2013, 6(2): 488-498, http://ir.ceode.ac.cn/handle/183411/28488.[184] Ni, Li, Zhang, Bing, Gao, Lianru, Li, Shanshan, Wu, Yuanfeng. Optimising the use of hyperspectral and multispectral data for regional crop classification. Proceedings of SPIE-The International Society for Optical Engineering. 2013, 7, http://ir.ceode.ac.cn/handle/183411/23761.[185] Zhang, Bing, Sha, Jianjun, Wang, Xiangwei, Gao, Lianru. Impact analysis of atmospheric state for target detection in hyperspectral radiance image. SPECTROSCOPY AND SPECTRAL ANALYSIS[J]. 2012, 32(8): 2043-2049, http://ir.ceode.ac.cn/handle/183411/29924.[186] Yang, Wei, Zhang, Bing, Gao, Lianru, Wu, Yuanfeng. DSP design for real-time hyperspectral target detection based on spatial-spectral information extraction. Proceedings of SPIE-The International Society for Optical Engineering. 2012, http://ir.ceode.ac.cn/handle/183411/23430.[187] Guo, Qiandong, Zhang, Bing, Gao, Lianru, Sun, Xu, Zhang, Wenjuan. A target segmentation algorithm based on multivariate statistics and RX anomaly detection. Proceedings of SPIE-The International Society for Optical Engineering. 2012, http://ir.ceode.ac.cn/handle/183411/22589.[188] Sun, Xu, Zhang, Bing, Gao, Lianru, Yang, Lina. An Innovative Method Of Endmember Extraction Of Hyperspectral Remote Sensing Image Using Elitist Ant System (EAS). Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE 2012). 2012, 1625-1627, http://ir.ceode.ac.cn/handle/183411/23780.[189] Zhang, Bing, Yang, Wei, Gao, Lianru, Chen, Dongmei. Real-time target detection in hyperspectral images based on spatial-spectral information extraction. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING[J]. 2012, 2012: 142, http://ir.ceode.ac.cn/handle/183411/29529.[190] Gao, Jianwei, Gao, Lianru, Sun, Xu, Wu, Yuanfeng, Zhang, Bing. GPU implementation of ant colony optimization algorithm for endmember extraction from hyperspectral image. 2012 4th Workshop on Hyperspectral Image and Signal Processing (WHISPERS). 2012, [191] Gao, Lianru, Du, Qian, Yang, Wei, Zhang, Bing. A comparative study on noise estimation for hyperspectral imagery. 2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING, EVOLUTION IN REMOTE SENSING (WHISPERS 2012). 2012, [192] Sun, Xu, Zhang, Bing, Yang, Lina, Gao, Lianru, Zhang, Wenjuan. Feature-level fusion of multiple target detection results in hyperspectral image based on RX detector. Proceedings of SPIE-The International Society for Optical Engineering. 2012, http://ir.ceode.ac.cn/handle/183411/23114.[193] Zhang, Bing, Sun, Xun, Gao, Lianru, Yang, Lina. Endmember extraction of hyperspectral remote sensing images based on the discrete particle swarm optimization algorithm. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2011, 49(11): 4173-4176, http://ir.ceode.ac.cn/handle/183411/29504.[194] 刘翔, 李万茂, 高连如, 向冬梅, 倪金生. 基于变化检测的投资项目搜索技术研究. 微计算机信息[J]. 2011, 27(11): 25-27, http://lib.cqvip.com/Qikan/Article/Detail?id=39920836.[195] Gao, Lianru, Zhang, Bing, Chen, Zhengchao, Lei, Liping. Study on the issue of noise estimation in dimension reduction of hyperspectral images. 2011 3rd Workshop on Hyperspectral Image and Signal Processing, Evolution in Remote Sensing (WHISPERS 2011). 2011, http://ir.ceode.ac.cn/handle/183411/31636.[196] Zhang, Bing, Sun, Xun, Gao, Lianru, Yang, Lina. Endmember extraction of hyperspectral remote sensing images based on the ant colony optimization (ACO) algorithm. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING[J]. 2011, 49(7): 2635-2646, http://ir.ceode.ac.cn/handle/183411/29503.[197] Zhang, Bing, Sun, Xu, Gao, Lianru, Yang, Lina. A method of endmember extraction in hyperspectral remote sensing images based on Discrete Particle Swarm Optimization (D-PSO). SPECTROSCOPY AND SPECTRAL ANALYSIS[J]. 2011, 31(9): 2455-2461, http://ir.ceode.ac.cn/handle/183411/29923.[198] Zhang, Bing, Li, Shanshan, Jia, Xiuping, Gao, Lianru, Peng, Man. Adaptive markov random field approach for classification of hyperspectral imagery. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2011, 8(5): 973-977, http://ir.ceode.ac.cn/handle/183411/29499.[199] 罗文斐, 高连如. 二级并行独立成分分析端元提取算法. 遥感学报[J]. 2011, 15(6): 1202-1214, http://ir.ceode.ac.cn/handle/183411/33162.[200] Li, Shanshan, Zhang, Bing, Chen, Dongmei, Gao, Lianru, Peng, Man. Adaptive support vector machine and Markov random field model for classifying hyperspectral imagery. JOURNAL OF APPLIED REMOTE SENSING[J]. 2011, 5(1): 053538, http://ir.ceode.ac.cn/handle/183411/28725.[201] Luo, Wenfei, Zhong, Liang, Zhang, Bing, Gao, Lianru. Null space spectral projection algorithm for hyperspectral image endmember extraction. JOURNAL OF INFRARED AND MILLIMETER WAVES[J]. 2010, 29(4): 307-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000281784200016.[202] Sun, Xu, Zhang, Bing, Yang, Lina, Li, Shanshan, Gao, Lianru. Hyperspectal image clustering using ant colony optimization(ACO) improved by K-means algorithm. 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE 2010). 2010, V2474-V2478, http://ir.ceode.ac.cn/handle/183411/31084.[203] Zhang, Wenjuan, Zhang, Bing, Gao, Lianru, Zhang, Wei. Image simulator for spatially imaging Fourier transform spectrometer ‘HJ1A-HSI’. Proceedings of SPIE-The International Society for Optical Engineering. 2010, http://ir.ceode.ac.cn/handle/183411/23559.[204] Luo, Wenfei, Zhong, Liang, Zhang, Bing, Gao, Lianru. Independent component analysis for spectral unmixing in hyperspectral remote sensing image. SPECTROSCOPY AND SPECTRAL ANALYSIS[J]. 2010, 30(6): 1628-1633, http://ir.ceode.ac.cn/handle/183411/29974.[205] Li, Shanshan, Zhang, Bing, Gao, Lianru, Peng, Man. Research of hyperspectral target detection algorithms based on variance minimum. GUANGXUE XUEBAO[J]. 2010, 30(7): 2116-2122, http://ir.ceode.ac.cn/handle/183411/30387.[206] Li, Shanshan, Zhang, Bing, Gao, Lianru, Zhang, Liang. Classification of coastal zone based on decision tree and PPI. International Geoscience and Remote Sensing Symposium (IGARSS 2009). 2009, 2568-2571, http://ir.ceode.ac.cn/handle/183411/22768.[207] Li, Shanshan, Zhang, Bing, Gao, Lianru, Sun, Xu. Small objects detection of hyperspectral image in urban areas. 2009 Joint Urban Remote Sensing Event. 2009, 932-936, http://ir.ceode.ac.cn/handle/183411/22767.[208] Zhang, Bing, Chen, Zhengchao, Li, Junsheng, Gao, Lianru. Image quality evaluation on Chinese first earth observation hyperspectral satellite. International Geoscience and Remote Sensing Symposium (IGARSS 2009). 2009, 188-191, http://ir.ceode.ac.cn/handle/183411/23485.[209] Gao, Lianru, Zhang, Bing, Zhang, Wenjuan, Ran, Qiong. Image simulation based analysis for hyperspectral target detection. Proceedings of SPIE-The International Society for Optical Engineering (MIPPR 2009). 2009, Natl. Lab. Multi-spectral Inf. Process. Technol.; Huazhong University of Science and Technology; National Natural Science Foundation of China; China Three Gorges University, http://ir.ceode.ac.cn/handle/183411/31634.[210] Gao, Lianru, Ran, Qiong, Zhang, Bing, Chi, Yaobin, Wang, Zhiyong. New thoughts for onboard compression of satellite images. International Geoscience and Remote Sensing Symposium (IGARSS 2009). 2009, 2858-2861, http://ir.ceode.ac.cn/handle/183411/22538.[211] Ran, Qiong, Chi, Yaobin, Wang, Zhiyong, Gao, Lianru. Pre-processing of Beijing-1 small satellite images. Proceedings of SPIE-The International Society for Optical Engineering (MIPPR 2009). 2009, Natl. Lab. Multi-spectral Inf. Process. Technol.; Huazhong University of Science and Technology; National Natural Science Foundation of China; China Three Gorges University, http://ir.ceode.ac.cn/handle/183411/31156.[212] Sun, Xu, Zhang, Bing, Gao, Lianru, Yang, Lina. A study on spectral characteristics extraction using Fourier approximation theory. International Geoscience and Remote Sensing Symposium (IGARSS 2009). 2009, 2007-2010, http://ir.ceode.ac.cn/handle/183411/23113.[213] Liu, Xiang, Zhang, Bing, Gao, Lianru, Chen, Dongmei. A maximum noise fraction transform with improved noise estimation for hyperspectral images. SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES[J]. 2009, 52(9): 1578-1587, http://lib.cqvip.com/Qikan/Article/Detail?id=31573706.[214] Ran, Qiong, Chi, Yaobin, Wang, Zhiyong, Gao, Lianru. Exposure adjustment of satellite cameras. International Geoscience and Remote Sensing Symposium (IGARSS 2009). 2009, 2159-2162, http://ir.ceode.ac.cn/handle/183411/23049.[215] Zhang, Wenjuan, Zhang, Bing, Zhang, Xia, Gao, Lianru, Zhang, Wei. Effects of apodization functions of imaging Fourier transform spectrometer on reconstructed spectrum. JOURNAL OF INFRARED AND MILLIMETER WAVES[J]. 2008, 27(3): 227-+, http://www.corc.org.cn/handle/1471x/2389797.[216] Gao, Lianru, Zhang, Bing, Zhang, Xia, Zhang, Wenjuan, Tong, Qingxi. A new operational method for estimating noise in hyperspectral images. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2008, 5(1): 83-87, http://ir.ceode.ac.cn/handle/183411/28483.[217] 罗文斐, 钟亮, 张兵, 高连如. 基于子空间距离的高光谱图像光谱解混算法. 自然科学进展[J]. 2008, 18(10): 1175-1180, http://lib.cqvip.com/Qikan/Article/Detail?id=28334701.[218] Liu, Xiang, Gao, Lianru, Zhang, Bing, Zhang, Xia, Luo, Wenfei. An improved MNF transform algorithm on hyperspectral images with complex mixing ground objects. 1st International Congress on Image and Signal Processing (CISP 2008). 2008, 479-483, http://ir.ceode.ac.cn/handle/183411/22901.[219] 高连如, 张兵, 张霞, 申茜. 基于局部标准差的遥感图像噪声评估方法研究. 遥感学报[J]. 2007, 11(2): 201-208, http://lib.cqvip.com/Qikan/Article/Detail?id=24844533.[220] 李海涛, 顾海燕, 张兵, 高连如. 基于MNF和SVM的高光谱遥感影像分类研究. 遥感信息[J]. 2007, 12-15, http://lib.cqvip.com/Qikan/Article/Detail?id=25776798.[221] Gao, Lianru, Zhang, Bing, Wen, Jianting, Ran, Qiong. Residual-scaled local standard deviations method for estimating noise in hyperspectral images. Proceedings of SPIE-The International Society for Optical Engineering (MIPPR 2007). 2007, State Key Lab. Multi-spectral Information Processing Technol.; Chinese Educ. Minist. Key Lab. Image Process. Intell. Control; Huazhong University of Science and Technology; The International Society for Optical Engineering (SPIE), http://ir.ceode.ac.cn/handle/183411/31635.[222] Zhang, Xia, Jiao, Quanjun, Wu, Di, Zhang, Bing, Gao, Lianru. Estimating foliar water content of winter wheat with hyperspectral image. Proceedings of SPIE-The International Society for Optical Engineering (MIPPR 2007). 2007, State Key Lab. Multi-spectral Information Processing Technol.; Chinese Educ. Minist. Key Lab. Image Process. Intell. Control; Huazhong University of Science and Technology; The International Society for Optical Engineering (SPIE), http://ir.ceode.ac.cn/handle/183411/30870.[223] Gao, Lianru, Zhang, Bing, Zhang, Xia, Li, Junsheng. Infrared spectral analysis of architectural materials covered by different paints. JOURNAL OF INFRARED AND MILLIMETER WAVES[J]. 2006, 25(6): 411-416, http://ir.ceode.ac.cn/handle/183411/30013.[224] Gao, Lianru, Zhang, Bing, Zhang, Xia, Li, Junsheng. Study on the spectral characteristics of building materials covered by different paint. International Geoscience and Remote Sensing Symposium (IGARSS 2005). 2005, 3208-3211, http://ir.ceode.ac.cn/handle/183411/22540.[225] Wang, Xingling, Wang, Gang, Guan, Yan, Chen, Quan, Gao, Lianru. Small satellite constellation for disaster monitoring in China. International Geoscience and Remote Sensing Symposium (IGARSS 2005). 2005, 467-469, http://ir.ceode.ac.cn/handle/183411/30959.[226] Li, Junsheng, Zhang, Bing, Zhang, Xia, Gao, Lianru. Preliminary study on the potential of short-wave infrared remote sensing data on inland water quality monitoring. International Geoscience and Remote Sensing Symposium (IGARSS 2005). 2005, 4541-4544, http://ir.ceode.ac.cn/handle/183411/22741.[227] Li, Xuan, Guo, Zhifeng, Gao, Lianru. Cross-calibration of EO-1 MODIS to SZ-3 CMODIS using Dunhuang test site. International Geoscience and Remote Sensing Symposium (IGARSS 2005). 2005, 637-639, http://ir.ceode.ac.cn/handle/183411/31388.
发表著作
(1) 高光谱图像分类与目标探测, 科学出版社, 2011-05, 第 2 作者(2) 高光谱图像信息提取, 科学出版社, 2020-10, 第 1 作者(3) 高光谱卫星图像协同处理理论与方法, 人民邮电出版社, 2020-10, 第 其他 作者