发表论文
[1] Qixiang Liu, Yihai Wu, He Zhu, Lei Zheng, Jiong Li, Yu Fu, Jun Zhang, Yuhan Sun. Propane dehydrogenation over Zinc-on-Zirconia catalyst via atom trapping. International Journal of Hydrogen Energy[J]. 2024, 66(13): 562-570, [2] Ning Zhang, Yu Fu, Wenbo Kong, Bingrong Pan, Changkun Yuan, Shuqing Li, He Zhu, Jun Zhang. Defects influence photocatalytic NOCM product selectivity by controlling photogenerative carriers. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING. 2023, 11(5): http://dx.doi.org/10.1016/j.jece.2023.110665.[3] Shuqing Li, Yu Fu, Wenbo Kong, Jiyang Wang, Changkun Yuan, Bingrong Pan, He Zhu, Xia Chen, Yidan Zhang, Jun Zhang, Yuhan Sun. Tuning strong metal-support interactions to boost activity and stability of aluminium nitride supported nickel catalysts for dry reforming of methane. FUEL. 2023, 343: http://dx.doi.org/10.1016/j.fuel.2023.127918.[4] 王济阳, 张军, 付彧. Investigation of Atom-Level Reaction Kinetics of Carbon-Resistant Bimetallic NiCo-Reforming Catalysts: Combining Microkinetic Modeling and Density Functional Theory. Acs Catalysis[J]. 2022, [5] Fu, Yu, Kong, Wenbo, Pan, Bingrong, Yuan, Changkun, Li, Shuqing, Zhu, He, Zhang, Jun. Boron-promoted Ni/MgO catalysts for enhanced activity and coke suppression during dry reforming of methane. JOURNAL OF THE ENERGY INSTITUTE[J]. 2022, 105: 214-220, http://dx.doi.org/10.1016/j.joei.2022.09.005.[6] Kong, Wenbo, Fu, Yu, Shi, Lei, Li, Shenggang, Vovk, Evgeny, Zhou, Xiaohong, Si, Rui, Pan, Bingrong, Yuan, Changkun, Li, Shuqing, Cai, Fufeng, Zhu, He, Zhang, Jun, Yang, Yong, Sun, Yuhan. Nickel nanoparticles with interfacial confinement mimic noble metal catalyst in methane dry reforming. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2021, 285: http://dx.doi.org/10.1016/j.apcatb.2020.119837.[7] Wang, Jiyang, Fu, Yu, Kong, Wenbo, Jin, Feikai, Bai, Jieru, Zhang, Jun, Sun, Yuhan. Design of a carbon-resistant Ni@S-2 reforming catalyst: Controllable Ni nanoparticles sandwiched in a peasecod-like structure. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2021, 282: http://dx.doi.org/10.1016/j.apcatb.2020.119546.[8] Huang, Jincheng, Fu, Yu, Zhao, Yonghui, Zhang, Jun, Li, Shuqing, Li, Shenggang, Li, Guijun, Chen, Zhenpan, Sun, Yuhan. Anti-sintering non-stoichiometric nickel ferrite for highly efficient and thermal-stable thermochemical CO2 splitting. CHEMICAL ENGINEERING JOURNAL[J]. 2021, 404: http://dx.doi.org/10.1016/j.cej.2020.127067.[9] Fu, Yu, Kong, Wenbo, Pan, Bingrong, Yuan, Changkun, Li, Shuqing, Zhu, He, Zhang, Jun. In situ redispersion of rhodium nanocatalyst for CO2 reforming of CH4. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING[J]. 2021, 9(4): http://dx.doi.org/10.1016/j.jece.2021.105790.[10] Hao, Jie, Cai, Fufeng, Wang, Jiyang, Fu, Yu, Zhang, Jun, Sun, Yuhan. The effect of oxygen vacancy of alkaline-earth metal Sr doped Sm2Zr2O7 catalysts in the oxidative coupling of methane. CHEMICAL PHYSICS LETTERS[J]. 2021, 771: http://dx.doi.org/10.1016/j.cplett.2021.138562.[11] Kong, Wenbo, Fu, Yu, Zhang, Jun, Sun, Yuhan. Stabilized Ni nanoparticles derived from silicate via hydrothermal method for carbon dioxide reforming of methane. CHEMICAL PHYSICS LETTERS[J]. 2020, 739: http://dx.doi.org/10.1016/j.cplett.2019.137027.[12] 付彧, 孙予罕. CH4-CO2重整技术的挑战与展望. 中国科学:化学[J]. 2020, 50(7): 816-831, http://lib.cqvip.com/Qikan/Article/Detail?id=7102392140.[13] Cai, Fufeng, Ibrahim, Jessica Juweriah, Fu, Yu, Kong, Wenbo, Li, Shuqing, Zhang, Jun, Sun, Yuhan. Methanol Steam Reforming over ZnPt/MoC Catalysts: Effects of Hydrogen Treatment. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2020, 59(42): 18756-18770, http://dx.doi.org/10.1021/acs.iecr.0c03311.[14] Cai, Fufeng, Ibrahim, Jessica Juweriah, Fu, Yu, Kong, Wenbo, Zhang, Jun, Sun, Yuhan. Low-temperature hydrogen production from methanol steam reforming on Zn-modified Pt/MoC catalysts. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2020, 264: http://dx.doi.org/10.1016/j.apcatb.2019.118500.[15] Li, Shuqing, Fu, Yu, Kong, Wenbo, Pan, Bingrong, Yuan, Changkun, Cai, Fufeng, Zhu, He, Zhang, Jun, Sun, Yuhan. Dually confined Ni nanoparticles by room-temperature degradation of AlN for dry reforming of methane. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2020, 277: http://dx.doi.org/10.1016/j.apcatb.2020.118921.[16] Cai, Fufeng, Lu, Peijing, Ibrahim, Jessica Juweriah, Fu, Yu, Zhang, Jun, Sun, Yuhan. Investigation of the role of Nb on Pd-Zr-Zn catalyst in methanol steam reforming for hydrogen. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2019, 44(23): 11717-11733, https://www.webofscience.com/wos/woscc/full-record/WOS:000468710100033.[17] Fufeng Cai, Peijing Lu, Jessica Juweriah Ibrahim, Yu Fu, Jun Zhang, Yuhan Sun. Investigation of the role of Nb on Pd−Zr−Zn catalyst in methanol steam reforming for hydrogen production. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY. 2019, 44(23): 11717-11733, http://dx.doi.org/10.1016/j.ijhydene.2019.03.125.[18] Kong, Wenbo, Fu, Yu, Guan, Cairu, Pan, Bingrong, Yuan, Changkun, Li, Shuqing, Cai, Fufeng, Zhang, Jun, Sun, Yuhan. Facile Synthesis of Highly Coking-Resistant and Active Nickel-Based Catalyst for Low-Temperature CO2 Reforming of Methane. ENERGY TECHNOLOGY[J]. 2019, 7(9): http://dx.doi.org/10.1002/ente.201900521.[19] Huang, Jincheng, Fu, Yu, Li, Shuqing, Kong, Wenbo, Zhang, Jun, Sun, Yuhan. Cobalt-based ferrites as efficient redox materials for thermochemical two-step CO2-splitting: enhanced performance due to cation diffusion. SUSTAINABLE ENERGY & FUELS[J]. 2019, 3(4): 975-984, http://dx.doi.org/10.1039/c8se00611c.[20] Huang, Jincheng, Fu, Yu, Kong, Wenbo, Zhang, Jun, Sun, Yuhan. Differences in the Nature of Reaction Process for Thermochemical CO2 Splitting over NiFe2O4-Based Materials. ENERGY TECHNOLOGY[J]. 2019, 7(5): http://dx.doi.org/10.1002/ente.201800523.[21] Huang, Jincheng, Fu, Yu, Li, Shenggang, Kong, Wenbo, Zhang, Jun, Sun, Yuhan. Enhanced activity of Mg-Fe-O ferrites for two-step thermochemical CO2 splitting. JOURNAL OF CO2 UTILIZATION[J]. 2018, 27: 450-458, http://dx.doi.org/10.1016/j.jcou.2018.06.014.[22] Fu, Yu, Li, Shenggang, Zhang, Jun, Sun, Yuhan. Effective Macroporous Core-Shell Structure of Alumina-Supported Spinel Ferrite for Carbon Dioxide Splitting Based on Chemical Looping. ENERGY TECHNOLOGY[J]. 2016, 4(11): 1349-1357, [23] Fu, Yu, Zhang, Jun, Li, Shenggang, Huang, Jincheng, Sun, Yuhan. Self-regeneration of ferrites incorporated into matched matrices for thermochemical CO2 splitting. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2016, 4(14): 5026-5031, https://www.webofscience.com/wos/woscc/full-record/WOS:000373119500003.