姜小明 男 研究员 博士生导师 中国科学院福建物质结构研究所
电子邮件: xmjiang@fjirsm.ac.cn
通信地址: 福建福州闽侯县上街镇海西高新区科技园高新大道8号
邮政编码: 350108
研究领域
(1) 材料电子结构(电荷密度和电子波函数)的实验测试与重构技术研究。
材料的功能本质上源于材料中电子对外场的响应,揭示材料构效关系的关键是获得准确的电子结构。材料的电子结构通常由第一性原理计算获得,由于假设和近似太多,导致计算结果难以用于指导实验。
本研究方向的任务与目标:通过发展材料电子结构的实验测试与重构技术,从实验上获得材料高精度电荷密度和电子波函数,揭示功能材料的结构本质。
(2) 光功能材料、生物医药分子的功能起源与作用机制研究。
招生信息
招生专业
招生方向
教育背景
工作经历
工作简历
专利
(1) Optical Parametric Oscillator and Second Harmonic Generator Using Monoclini Phase Ga2S3 Crystal 专利号: US9513532B2 发明专利 第 4 作者 2017-9-19 美国
(2) Optical Parametric Oscillator and Second Harmonic Generator Using Monoclini Phase Ga2S3 Crystal 专利号: US9766529B2 发明专利 第 4 作者 2017-9-19 美国
(3) 单斜相Ga2S3晶体的制备方法及其在光学上的应用 专利号: ZL201210526093.2 发明专利 第 4 作者 2017-2-22 中国
(4) 一种晶体材料、其制备方法及包含其的非线性光学晶体 专利号: ZL201811624256.4 发明专利 第 3 作者 2020-6-26 中国
(5) 一种晶体材料、其制备方法及包含其的非线性光学晶体 专利号: ZL201611108475.8 发明专利 第 3 作者 2019-7-30 中国
(6) 一种晶体材料、其制备方法及作为非线性光学晶体的应用 专利号: ZL201610316492.4 发明专利 第 4 作者 2019-3-8 中国
(7) 一种晶体材料、制备方法及作为红外非线性光学材料的应用 专利号: ZL201610331499.3 发明专利 第 3 作者 2019-3-26 中国
(8) 一种二阶非线性光学材料、其制备方法及应用 专利号: ZL201810338698.6 发明专利 第 3 作者 2018-4-16 中国
(9) Ga2S3单晶的制备方法以及该单晶在铁电材料、压电器件及热电器件中的应用 专利号: ZL201810338037.3 发明专利 第 4 作者 2018-4-16 中国
(10) 一种含锂晶体材料及其制备方法和应用 专利号: ZL201910671325.5 发明专利 第 3 作者 2019-7-24 中国
论文
(1) Jiang, X.-M.; Deng, S.; Whangbo, M.-H.; Guo, G.-C.* Material Research from the Viewpoint of Functional Motifs. Natl. Sci. Rev. 2022, DOI: 10.1093/nsr/nwac017.
(2) Liu, B.-W.; Pei, S.-M.; Jiang, X.-M.* and Guo, G.-C.* Broad Transparency and Wide Band Gap Achieved in Magnetic Infrared Nonlinear Optical Chalcogenide by Suppressing d-d Transitions. Mater. Horiz. 2022, DOI: 10.1039/D2MH00060A.
(3) Jiang, X.-M.; Lin, S.-J.; He, C.; Liu, B.-W.; Guo, G.-C.* Uncovering Functional Motif of Nonlinear Optical Material by In Situ Electron Density and Wavefunction Studies Under Laser Irradiation. Angew. Chem. Int. Ed. 2021, 60, 11799-11803.
(4) Liu, B.-W.; Jiang, X.-M.*; Pei, S.-M.; Chen, W.-F.; Yang L.-Q. and Guo, G.-C.* Balanced infrared nonlinear optical performance achieved by modulating the covalency and ionicity distributions in the electron localization function map. Mater. Horiz. 2021, 8, 3394 – 3398.
(5) Liu, B.-W.; Jiang, X.-M.*; Li, B.-X.; Zeng, H.-Y. and Guo, G.-C.* Li[LiCs2Cl][Ga3S6]: A Nanoporous Framework of GaS4 Tetrahedra with Excellent Nonlinear Optical Performance, Angew. Chem. Int. Ed. 2020, 59, 4856-4859.
(6) Liu, B.-W.; Jiang, X.-M.*; Zeng, H.-Y.; and Guo, G.-C.* [ABa2Cl][Ga4S8] (A = Rb, Cs): Wide-Spectrum Nonlinear Optical Materials Obtained by Polycation-Substitution-Induced Nonlinear Optical (NLO)-Functional Motif Ordering. J. Am. Chem. Soc. 2020, 142, 10641.
(7) Jiang, X.-M.; Zhang, M.-J.; Zeng, H.-Y.; Guo, G.-C. and Huang, J.-S. Inorganic Supramolecular Compounds with 3-D Chiral Frameworks Show Potential as both Mid-IR Second-Order Nonlinear Optical and Piezoelectric Materials. J. Am. Chem. Soc. 2011, 133, 3410–3418.
(8) Liu, B.-W.; Hu, C.-L.; Zeng, H.-Y.; Jiang, X.-M.* and Guo, G.-C.* Creating Strong SHG Responses by Strengthening both Static and Induced Contributions via the High Orientation of Tetrahedral Functional Motifs in Polyselenide A2Ge4Se10 (A = Rb, Cs), Adv. Optical. Mater, 2018, 1800156.
(9) Liu, B.-W.; Jiang, X.-M.*; Zeng, H.-Y.; and Guo, G.-C.* Phase Matching Achieved by Bandgap Widening in Infrared Nonlinear Optical Materials [ABa3Cl2][Ga5S10] (A = K, Rb, and Cs). CCS Chem. 2020, 2, 964-973.
(10) Chen, W.-F.; Liu, B.-W.; Pei, S.-M.; Yan, Q.-N.; Jiang, X.-M.* and Guo, G.-C.* ASb5S8 (A = K, Rb, and Cs): Thermal Switching of Infrared Nonlinear Optical Properties across the Crystal/Glass Transformation. Chem. Mater. 2021, 33, 10, 3729–3735.
(11) Pei, S.-M.; Liu, B.-W.; Jiang, X.-M.*; Zou, Y.-Q.; Chen, W.-F.; Yan, Q.-N. and Guo, G.-C.* Superior Infrared Nonlinear Optical Performance Achieved by Synergetic Functional Motif and Vacancy Site Modulations. Chem. Mater. 2021, 33, 8831–8837.
(12) Ye, R.; Liu, B.-W.; Jiang, X.-M.*; Lu, J.; Zeng, H.-Y. and Guo, G.-C.* AMnAs3S6 (A = Cs, Rb): Phase-Matchable Infrared Nonlinear Optical Functional Motif [As3S6]3- Obtained via Surfactant-Thermal Method. ACS Appl. Mater. Interfaces. 2020. 12, 53950-53956.
(13) Li, S.-F.; Jiang, X.-M.*; Fan, Y.-H.; Liu, B.-W.; Zeng, H.-Y. and Guo, G.-C.* New Strategy for Designing Promising Mid-infrared Nonlinear Optical Materials: Narrowing Band Gap for Large Nonlinear Optical Efficiency and Reducing Thermal Effect for High Laser-induced Damage Threshold, Chemical Science, 2018, 9, 5700-5708.
(14) Li, S.-F.; Jiang, X.-M.*; Liu, B.-W.; Yan, D.; Lin, C.-S.; Zeng, H.-Y. and Guo, G.-C.* Super-Polyhedra-built SHG Materials Exhibit Large Mid-Infrared Conversion Efficiencies and High Laser-induced Damage Thresholds, Chem. Mater., 2017, 29, 1796–1804.
(15) Liu, B.-W.; Zhang, M.-Y.; Jiang, X.-M.*; Li, S.-F.; Zeng, H.-Y.; Wang, G.-Q.; Fan, Y.-H.; Su, Y.-F.; Li, C.; Guo, G.-C.* and Huang, J.-S. Large Second-Harmonic Generation Responses Achieved by the Dimeric [Ge2Se4(μ-Se2)]4− Functional Motif in Polar Polyselenides A4Ge4Se12 (A = Rb, Cs), Chem. Mater. 2017, 29, 9200−9207.
(16) Liu, B.-W.; Zeng, H.-Y.; Jiang, X.-M.; Wang, G.-E; Li, S.-F.; Xu L. and Guo, G.-C.* [A3X][Ga3PS8] (A = K, Rb; X = Cl, Br): Promising IR Nonlinear Optical Materials Exhibiting Concurrently Strong Second-Harmonic Generation and High Laser Induced Damage Thresholds. Chem, Sci. 2016, 7, 6273–6277.
(17) Jiang, X.-M.; Guo, S.-P.; Zeng, H.-Y.; Zhang, M.-J. and Guo, G.-C.* Large Crystal Growth and New Crystal Exploration of Mid-Infrared Second-Order Nonlinear Optical Materials, Struct. Bond. 2012, 145, 1–44.
发表著作
项目
( 1 ) 材料功能态电子结构的X射线单晶衍射系统, 子课题负责人, 国家任务, 2019-01--2023-12
( 2 ) 电子结构晶体学, 负责人, 中国科学院计划, 2020-01--2023-12
( 3 ) 原位电子结构研究非线性光学晶体功能基元, 负责人, 国家任务, 2022-01--2025-12
( 4 ) 第三批福建省“xx计划”青年拔尖人才, 负责人, 地方任务, 2023-01--2027-12
( 5 ) 晶体材料的功能基元与实验电子结构研究, 负责人, 国家任务, 2022-12--2025-12