基本信息

范文慧  男  博导  中国科学院西安光学精密机械研究所
电子邮件: fanwh@opt.ac.cn
通信地址: 西安市高新区新型工业园信息大道17号瞬态室
邮政编码: 710119

研究领域

太赫兹波技术与应用
超快光子技术及应用 
光电材料与器件

招生信息

2022年计划招收:
硕士研究生:1-2 人;
博士研究生:1-2人;

招生专业
070207-光学
080901-物理电子学
招生方向
超快相干太赫兹波产生与探测,超快现象与超快动力学
太赫兹技术与应用
光电器件与材料

教育背景

1995-02--1998-12   中国科学院西安光学精密机械研究所   理学博士(光学)
1991-09--1994-06   西安交通大学   工学硕士(物理电子学与光电子学)
1987-09--1991-07   西安交通大学   工学学士(半导体物理与微电子学)

研 究 生

   
毕业研究生

薛冰  硕士研究生  070207-光学

杨坚  硕士研究生  080300-光学工程  

刘佳  博士研究生  070207-光学  

郑转平  博士研究生  070207-光学  

陈龙超  硕士研究生  070207-光学  

闫慧  硕士研究生  070207-光学  

梁玉庆  硕士研究生  080300-光学工程  

徐利民  硕士研究生  080901-物理电子学  

李慧  硕士研究生  080901-物理电子学  

谢军  硕士研究生  080901-物理电子学  

陈徐  博士研究生  070207-光学  

丁玲  硕士研究生  070207-光学  

陈泽优  硕士研究生  080903-微电子学与固体电子学  

宋超  硕士研究生  080300-光学工程  

王开  硕士研究生  070207-光学  

在读研究生

杨勇  博士研究生  070207-光学  

高卫  博士研究生  070207-光学  

王汉奇  博士研究生  070207-光学  

秦冲  博士研究生  070207-光学  

闫慧  博士研究生  070207-光学  

江晓强  博士研究生  080901-物理电子学  

张智  博士研究生  070207-光学  

蔡昭涵  硕士研究生  070207-光学  

张育铭  硕士研究生  070207-光学  

吴奇  博士研究生  070207-光学  

戴宏  硕士研究生  085400-电子信息

博 士 后

博士后:

            陈徐(2018)


联合培养博士后:

            赵小侠(2009)、沈泽南(2014)、张昊宇(2016)、姚震(2018)、柏财勋(2019)、沈阳(2019)

         解晓蓬(2020)、刘   罡(2020)

发表论文

127.Terahertz Photoconductive Antenna Based on Anti-reflection Dielectric Metasurfaces with Embedded Plasmonic Nanodisks. Applied Optics, 2021, 60(26): 7921-7928.
126.Investigation of the size of nanoparticles formed during femto- and nanosecond laser ablation of zircon. Optical Engineering, 2021, 60(8): 086108.
125.Solving, analyzing, manufacturing, and experimental testing of thickness distribution for a cycloid-like variable curvature mirror. Optics Express, 2021, 29(12): 18010-18025.
124.Effective suppression of transverse mode instability induced by the stimulated Raman scattering in high-power fiber amplifiers. High Power Laser Science and Engineering, 2021, 9(2): 20.
123.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 258: 119825(1-6).
122.High power, tunable, ultra-narrowband Yb-doped superfluorescent fiber source operating at wavelength less than 1055 nm with 20 nm tuning range. Infrared Physics and Technology, 2020, 111: 103530.
121.Toroidal dipole bound states in the continuum metasurfaces for terahertz nanofilm sensing.  Optics Express, 2020, 28(11): 17102-17112.
120.Tunable bound states in the continuum on terahertz all-dielectric metasurfaces.  Nanomaterials, 2020, 10(4): 623.
119.High-power tunable sub-nm narrowband near-diffraction-limited superfluorescent fiber source based on a single-lens spectral filter. Optics Communications, 2020, 463: 125359.
118.Polarization tunable terahertz plasmon induced transparency in graphene ring-rod metamaterial. Proc. of SPIE, 2019, 11209: 112095A-1-8.
117.Intense terahertz waves generated by three-color laser with different frequency ratios. Proc. of SPIE, 2019, 11209: 1120951-1-7.
116.Ultrahigh-Q toroidal dipole resonance in all-dielectric meta- materials for terahertz sensing. Optics Letters, 2019, 44(23): 5876-5879.
115.Influence of energy fluence and overlapping rate of femtosecond laser on surface roughness of Ti-6Al-4V. Optical Engineering, 2019, 58(10): 106107.
114.Toroidal metasurfaces integrated with microfluidic for terahertz refractive index sensing. J. Phys. D: Appl. Phys., 2019, 52(48): 485104.
113.Instability transverse mode phase transition of fiber oscillator for extreme power lasers.  Optics Express, 2019, 27(16): 22393-22407.
112.Graphene-based tunable terahertz nanoscale sensing with Fano resonance. Optics Communications, 2019, 439: 61-65.
111.Terahertz spectroscopic investigation of salicylic acid and sodium salicylate. Journal of Applied Spectroscopy, 2019, 85(6): 1143-1150.
110.固相果糖的太赫兹及红外特征吸收谱研究. 光谱学与光谱分析(Spectroscopy and Spectral Analysis),2018,38(9):2700-2705.
109.Terahertz and infrared characteristic absorption spectra of aqueous glucose and fructose solutions. Scientific Reports, 2018, 8(1): 8964.
108.Multiple plasmonic resonance modes excitation on graphene metamaterials for ultrasensitive terahertz sensing. Carbon, 2018, 133(7): 416-422.
107.激光波长对双色激光等离子体产生太赫兹波的影响. 光子学报,2017,46(12):1214003-1-6.
106.Study of the interaction between graphene and planar terahertz metamaterial with toroidal dipolar resonance. Optics Letters, 2017, 42(10): 2034-2037.
105.Ultrasensitive terahertz metamaterial sensor based on spoof surface plasmon. Scientific Reports, 2017, 7: 2092.
104.Terahertz spectroscopy and solid-state density functional theory calculations of structural isomers: nicotinic acid, isonicotinic acid and 2-picolinic acid. Modern Physics Letters B, 2017, 31(13): 1750149.
103.Investigation on high-efficient terahertz source based on two-color femtosecond laser-induced air plasma. International Symposium on Ultrafast Phenomena and Terahertz Waves 2016 (ISUPTW 2016), 2016, 10–12 October, Chongqing, China.
102.Polarization-insensitive tunable multiple electromagnetically induced transparencies analogue in terahertz graphene metamaterial. Optical Materials Express, 2016, 6(8):2607-2615.
101.Terahertz Emission Dependence on the Polarization Angle between Two-color Lasers. ACTA PHOTONICA SINICA, 2016, 45(10):1030002.
100.Systematic experimental study on a highly efficient terahertz source based on two-color laser-induced air plasma. Laser Physics, 2016, 26:055002.
99. Identification of high explosive RDX using terahertz imaging and spectral fingerprints. Journal of Physics:Conference Series, 2016, 680(1): 012030.
98. Plasmon-induced transparency in terahertz planar metamaterials. Optics Communications, 2015, 356: 84-89.
97. Study on an ultrathin terahertz multiband metamaterial absorber. Int. Symp. on Ultrafast Phenom. and Terahertz Waves (ISUPTW 2014), 2014, October 13, Shanghai, China.
96. Investigation on the factors to influence terahertz absorption spectrum. Int. Symp. on Ultrafast Phenom. and Terahertz Waves (ISUPTW 2014), 2014, October 13, Shanghai, China.
95. A multiband THz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Materials Research Express. 2015, 2: 055801.
94. Investigation on terahertz generation by controlling the laser spot size on photoconductive antenna. Infrared and Laser Engineering. 2015, 44(2): 528-533.
93. Ultra-flexible polarization-insensitive multiband THz meta- material absorber. Applied Optics, 2015, 54(9): 2376-2382.
92. Ionic Liquids:not only Structurally but also Dynamically Heterogeneous. Angewandte Chemie - International Edition, 2015, 54(2): 687-690. (hot paper)
91. High Resolution Reconstruction for Terahertz Imaging.  Applied Optics, 2014, 53(33): 7891-7897.
90. Terahertz spectral investigation of anhydrous and monohydrated glucose using terahertz spectroscopy and solid-state theory. Journal of Molecular Spectroscopy, 2014, 296: 9-13.
89. 太赫兹图像的降噪和增强.  红外与激光工程,2013,42(10):2865-2870.
88. DNA碱基分子胞嘧啶和胸腺嘧啶的太赫兹光谱研究. 光谱学与光谱分析,2013,33(10):2612-2616.
87. Analysis of terahertz generation characteristic affected by injured photoconductive antenna. Proc. of SPIE, 2013, 8909:89090I-1-6.
86. 常见服装面料的太赫兹光谱研究.  红外与激光工程,2013,42(6):1537-1541.
85. 环烯烃共聚物太赫兹透镜的设计、制备及特性分析. 红外与激光工程,2013,42(5):1212-1217.
84. Suppression of the fluctuation effect in terahertz imaging using homomorphic filtering. Chinese Optics Letters, 2013, 11(8):081201-1-5.
83. Experimental study on high efficiency of Ti:sapphire laser to single-mode fiber coupling. Chinese Optics Letters, 2013, 11(5):050605-1-3.
82. 苯甲酸与苯甲酸钠的太赫兹光谱和振动模式分析.  光谱学与光谱分析,2013,33(3):582-585.
81. Terahertz and mid-infrared spectroscopy of benzene-1,2-diol. Journal of Molecular Spectroscopy, 2012, 281: 13-17.
80. Route of delivering 40-fs ultra-short laser pulses for gating photoconductive antenna in fiber-coupled terahertz time-domain spectroscopy. Optical Engineering, 2012, 51(8): 085001-1-5.
79. Finger capacitance of a terahertz photomixer in low- temperature-grown GaAs using the finite element method. Chinese Physics B, 2012, 21(10): 104101-1-7.
78. 高灵敏度低噪声太赫兹电光探测器研究. 电子学报, 2012,40(9): 1705-1709.
77. First principles investigation of L-alanine in terahertz region. Journal of Biological Physics, 2012, 38(3): 405-413.
76. Terahertz absorption spectra of benzene-1,2- diol, benzene-1,3-diol and benzene-1,4-diol. Chemical Physics Letters, 2012, 525-526: 140-143.
75. Application of terahertz spectroscopy and molecular modeling in isomers investigation: Glucose and fructose. Optics Communications, 2012, 285: 1868-1871. 
74. Investigation on terahertz vibrational modes of crystalline benzoic acid. Optics Communications, 2012, 285: 1593-1598.
73. Dispersion control in fiber-coupled THz-TDS. Optik, 2012, 123(24): 2230-2232.
72. Low-frequency vibrational modes of benzoic acid investigated by terahertz time-domain spectroscopy and theoretical simulations. Proc. of SPIE, 2011, 8195: 81950L-1-8.
71. Numerical Simulation of Terahertz Generation and Detection Based on Ultrafast Photoconductive Antennas. Proc. of SPIE, 2011, 8195: 81950K-1-7.
70. Image enhancement techniques used for THz imaging. Proc. of SPIE, 2011, 8195: 819515-1-6.
69. Rapid Data Acquisition in Terahertz Imaging. Chinese Optics Letters, 2011, 9(S1): S10501-1-2.
68. Study on benzoic acid by THz time-domain spectroscopy and density functional theory. Chinese Optics Letters, 2011, 9(S1): S10506-1-3.
67. Study on the transmission characteristic of terahertz pulse through glass material. Chinese Optics Letters, 2011, 9(S1): S10202-1-2.
66. Terahertz TDS signal de-noising using wavelet shrinkage.  Chinese Optics Letters, 2011, 9(S1): S10504-1-2.
65. Broadband terahertz spectroscopy. Chinese Optics Letters, 2011, 9(11): 110008-1-6. (Invited paper).
64. Biased electric field analysis of photoconductive antenna for terahertz generation. Nuclear Instruments & Methods in Physics Research A, 2011, 637(1): S165-167.
63. The effect of the laser interference lithography patterns when substrate tilted. 2010 Symposium on Photonics and Optoelectronics, SOPO 2010 – Proceedings, DOI: 10.1109/SOPO.2010.5504313.
62. Simulation analysis of the antenna structure for terahertz generation. Proc. of SPIE, 2009, 7385: 73851X.
61. Characteristic research of photoconductive antenna for broadband THz generation. Proc. of SPIE, 2009, 7385: 73851U.
60. 太赫兹场驱动半导体超晶格的极化波包运动与光吸收谱. 光学学报,2009,29(S1): 125-129.
59. 3D FDTD simulation of spatiotemporal shaping and filtering of terahertz pulses through metal slits with finite thickness. Proc. of SPIE, 2009, 7277: 72770U-1-8. 
58. Broadband terahertz time-domain spectroscopy of drugs-of-abuse and the use of principal component analysis. Analyst, 2009, 134(8): 1658-1668.
57. 有限厚度金属狭缝对THz脉冲的整形和滤波.物理学报,2009,58(6): 3658-3664.
56. 基于超快飞秒激光技术的太赫兹波产生与探测.   光子学报,2008,37(S2): 1-5.
55. Broadband terahertz time-domain spectroscopy of drugs-of-abuse mixtures and 'street' samples. 33rd International Conference on Infrared and Millimeter Waves and the 16th International Conference on Terahertz Electronics (IRMMW-THz 2008), 2008, Vol.1&2: 280-281.
54. Inscription high fringe-visibility Fabry–Perot etalon in fiber with high numerical aperture objective and femtosecond laser.  Laser Physics, 2008, 18(8):  988-991. 
53. Terahertz spectroscopy of explosives and drugs.  Materials Today, 2008, 11(3): 18-26.
52. Time-domain terahertz spectroscopy and applications on drugs and explosives. SPIE – The International Society for Optical Engineering, 2008, 6840: 68400T-1-8.
51. Design of an intracavity photoconductive terahertz generator. Acta Photonica Sinica, 2008, 37(2): 219-224.
50. Ultrafast optical response of InAs quantum dots for photoconductive applications. 2007 CONFERENCE ON LASERS & ELECTRO-OPTICS/QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2007), 2007, VOLS 1-5: 977-978.
49. Temperature dependent and magnetic field dependent terahertz spectroscopy of In1-xMnxAs. 2007 CONFERENCE ON LASERS & ELECTRO-OPTICS/QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE(CLEO/QELS 2007), 2007, VOLS 1-5: 2741-2742.
48. Terahertz time domain spectroscopy - Present and future modalities. IEEE MTT-S International Microwave Symposium Digest, 2007 IEEE MTT-S International Microwave Symposium Digest, 2007, VOLS 1-6: 1691-1693.
47. Excitation density dependent generation of broadband terahertz radiation in an asymmetrically-excited photoconductive antenna. Optics Letters, 2007, 32(16): 2297-2299.
46. Far-infrared spectroscopic characterization of explosives for security applications using broadband terahertz time-domain spectroscopy. Applied Spectroscopy, 2007, 61(6): 638-643.
45. Broadband terahertz time-domain and Raman spectroscopy of explosives. SPIE – The International Society for Optical Engineering, 2007, 6549: 654905.
44. Phonon satellites and time-resolved studies of carrier recombination dynamics in InGaN quantum wells.  Superlattices and Microstructures, 2007, 41(5&6): 419-424.
43. Temperature-dependent far-infrared spectra of explosives and drugs measured by terahertz time-domain spectroscopy. Conference Digest of the 2006 Joint 31st International Conference on Infrared and Millimeter Waves and 14th International Conference on Terahertz Electronics, 2006, 232-232.
42. Complementary spectroscopic studies of materials of security interest.  SPIE – The International Society for Optical Engineering, 2006, 6402: B4020-B4020.
41. Time-resolved photoluminescence studies of carrier diffusion in GaN.  Applied Physics Letters, 2006, 89(7): 072107-1-3.
40. Analysis of drugs of abuse and explosives using terahertz time-domain and Raman spectroscopy. SPIE – The International Society for Optical Engineering, 2006, 6120: M1200-M1200.
39. Ultra-broadband coherent terahertz spectroscopy using asymmetric excitation of photoconductive structures.  IRMMW-THz 2005: The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 2005, 1&2: 451-452.
38. Electron capture time in InGaN/GaN multiple quantum wells.  Proceeding of Conference on Lasers and Electro-Optics (CLEO), 2004, 2: 2.
37. Femtosecond studies of electron capture times in InGaN/GaN multiple quantum wells.  Applied Physics Letters, 2004, 84(16): 3052-3054.
36. Optical Investigation of InGaN/GaN multiple- quantum wells under high excitation. Applied Physics Letters, 2004, 84(25): 5159-5161.
35. Study of stimulated emission from InGaN/GaN multiple quantum well structures. Journal of Crystal Growth, 2004, 273(1-2): 48-53.
34. Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal waveguides. Applied Physics Letters, 2003, 83(5): 851-853.
33. Carrier capture times in InGaN/GaN multiple quantum wells. Physica Status Solidi B – Basic Solid State Physics, 2003, 240(2): 364-367.
32. Ultrafast vibrational and thermal relaxation of dye molecules in solutions. Journal of Physical Chemistry A, 2003, 107 (50): 10857-10861.
31. Ultrafast dynamics of dye molecules in solution as a function of temperature. Journal of Physical Chemistry A, 2003, 107(12): 1914-1917.
30. 飞秒荧光亏蚀光谱技术研究液相体系取向弛豫.  化学物理学报(快报), 2003, 16 (3): 161-162.
29. Effect of the growth conditions on infrared upconversion efficiency of CaS: Eu,Sm thin films. Applied Physics A – Materials Science & Processing, 2001, 73(1): 115-119.
28. CaS:Eu,Sm films prepared by pulsed laser deposition. SPIE – The International Society for Optical Engineering, 2000, 3885: 331-336.
27. Picosecond infrared laser stimulation of luminescence in CaS: Eu,Sm. Journal of Applied Physics, 1999, 85(1): 451-454.
26. Electron trapping materials for use in a ps infrared streak camera. Review of Scientific Instruments, 1999, 70(12): 4482-4486.
25. A ps infrared streak camera with an up-converting material.  SPIE – The International Society for Optical Engineering, 1999, 3516: 160-166.
24. 电子俘获材料在光存储技术中的应用.  半导体光电, 2001, 22(3): 161-165.
23. CaS:Eu,Sm及其在农用转光膜上的应用原理.  光子学报, 2001, 30(4): 487-491.
22. 一种高效便捷的红外探测卡.  化学研究与应用, 2001, 2001, 13(6): 695-698.
21. CaS: Eu,Sm薄膜的红外上转换发光效率.  中国激光, 2000, A27(3): 257-263.
20. 电子俘获材料的红外最小可激发阈值.  中国激光, 1999, A26(3): 257-262.
19. 电子俘获材料的皮秒红外脉冲激励发光. 中国激光, 1999, A26(2): 181-185.
18. 电子俘获材料的红外上转换效率. 光子学报, 1999, 28(2): 188-192.
17. 电子俘获材料的浓度猝灭.  半导体光电, 1999, 20(3): 171-174.
16. 电子俘获型薄膜材料的结构与光学性能. 光学学报, 1998, 18(5): 591-595.
15. 一类电子俘获型红外可激发材料光学性能研究.  光学学报, 1998, 18(6): 813-817.
14. 一种适于条纹相机的新型组合红外阴极.  红外与毫米波学报, 1998, 17(6): 405-410.
13. 电子俘获型红外上转换屏.   发光学报, 1998, 19(4): 317-321.
12. 制备工艺对电子俘获材料性能的影响.  光子学报, 1998, 27(9): 855-859.
11. CaS:Eu,Sm的皮秒光致发光.  中国稀土学报, 1998, 16: 989-991.
10. 一种新颖的组合红外阴极.  中国稀土学报, 1998, 16: 980-982.
9.  CaS:Eu,Sm薄膜的电子俘获机理. 原子与分子物理学报, 1998, 15: 321-322.
8.  CaS:Eu2+,Sm3+中Eu2+的辐射寿命.  原子与分子物理学报, 1998, 15: 42.
7.  一类电子俘获型红外可激发材料的制备和光学性质.  光子学报, 1997, 26(9): 803-808.
6.  一种反光发光复合标牌材料的研究.  光子学报, 1997, 26(3): 252-255.
5.  高精度频率型集成化温度传感器的研制.  西安交通大学学报, 1996, 30(1): 19-26.
4.  复合泵浦类锂钙离子软X射线激光增益计算.   西安交通大学学报, 1996, 30(2): 117-122.
3.  类锂硅离子软X射线激光研究.  光学学报, 1995, 15(2): 161-165.
2.  三电子原子体系基态能量的关联变分计算.  西安交通大学学报, 1995, 29(2): 107-111.
1.  改进的两电子原子径向关联波函数.  原子与分子物理学报, 1993, 10(2): 2762-2766.

专利成果

( 1 ) 一种太赫兹脉冲快速成像的方法, 发明, 2013, 第 1 作者, 专利号: ZL 2011 1 0126142.9
( 2 ) 物质在太赫兹波段吸收系数及折射率的获取装置及方法, 发明, 2013, 第 2 作者, 专利号: 2013 1 0269905.4
( 3 ) 一种太赫兹波发射/接收集成模块, 发明, 2014, 第 2 作者, 专利号: ZL 2013 1 0210840.6
( 4 ) 物质在太赫兹波段吸收系数及折射率的获取装置, 实用新型, 2013, 第 2 作者, 专利号: ZL 2013 2 0383973.9
( 5 ) 一种基于频率选择表面结构的多通带太赫兹带通滤波器, 发明, 2015, 第 1 作者, 专利号: 2015 1 0057310.1
( 6 ) 基于频率选择表面结构的多通带太赫兹带通滤波器, 实用新型, 2015, 第 1 作者, 专利号: ZL 2015 2 0079341.2
( 7 ) 一种高功率光纤激光泵浦耦合系统, 实用新型, 2021, 第 2 作者, 专利号: ZL 2020 2 1069760.5
( 8 ) 基于光程差指示的双折射干涉器装调装置及装调方法, 发明, 2020, 第 3 作者, 专利号: ZL 2019 1 1150499.3
( 9 ) 基于双谱段叠层干涉的高光谱成像装置, 发明, 2019, 第 2 作者, 专利号: 2019 1 1150506.X
( 10 ) 窗扫型干涉高光谱成像系统的光程差在线定标方法, 发明, 2019, 第 3 作者, 专利号: 2019 1 1149342.9
( 11 ) 基于微干涉阵列的紧凑型快照式光谱成像装置及方法, 发明, 2019, 第 4 作者, 专利号: 2019 1 1377305.3
( 12 ) 基于微干涉阵列的紧凑型快照式光谱成像装置, 实用新型, 2019, 第 4 作者, 专利号: ZL 2019 2 2419632.2
( 13 ) 基于泵浦缓存增益光纤的光纤激光泵浦耦合系统及方法, 发明, 2020, 第 2 作者, 专利号: 2020 1 0531148.3
( 14 ) 一种基于共轴测距和焦距实时可调的激光清洗方法及装置, 发明, 2020, 第 2 作者, 专利号: 2020 1 0680608.9
( 15 ) 基于嵌入金属纳米结构的全介质超表面太赫兹光电导天线, 发明, 2020, 第 1 作者, 专利号: 2020 1 1431479.6
( 16 ) 基于嵌入金属纳米结构的全介质超表面太赫兹光电导天线, 实用新型, 2020, 第 1 作者, 专利号: 2020 2 2386247.5
( 17 ) 基于环形偶极共振的太赫兹超表面传感器, 实用新型, 2020, 第 2 作者, 专利号: 2021 2 1161612.0

出版专著

《宽频带太赫兹波谱技术及其应用》

《 Broadband Terahertz Spectroscopy and Application 》

范文慧 编著

华东理工大学出版社

2020-10出版