基本信息
时东霞 女 汉族 博导 物理研究所
电子邮件:dxshi@aphy.iphy.ac.cn
联系电话:010-82649421
通信地址:北京市海淀区中关村南三街8号
邮政编码:100190
电子邮件:dxshi@aphy.iphy.ac.cn
联系电话:010-82649421
通信地址:北京市海淀区中关村南三街8号
邮政编码:100190
研究领域
主要从事纳米体系的可控生长、结构特性及其在纳米器件应用中的研究。在合成的一系列有机功能薄膜上得到了稳定、重复的纳米信息存储,入选“2001年中国基础科学研究十大新闻”。对有机功能纳米体系的组装、相互作用机制和生长特性进行了系统研究,在纳米结构的可控生长方面取得了突破性进展,入选“中国科学院2006年十大重大创新成果”。和合作者在钌单晶基底上得到了厘米级、连续和高度有序的单层石墨烯,为石墨烯的深入研究及在器件方面的应用提供了基础。采用光吸收谱和STM结合,研究了单壁碳纳米管的单分子激光吸收,加强了对分子的光电特性及表面能量传输特性的认识。
究方向包括:
1、低维纳米体系的可控制备与表征;
2、纳米器件的构造及相关物理问题。
究方向包括:
1、低维纳米体系的可控制备与表征;
2、纳米器件的构造及相关物理问题。
招生信息
招生专业
070205-凝聚态物理
招生方向
低维纳米体系、纳米器件与物理。
教育背景
学位
1991年,武汉工业大学,学士;
1994年,武汉工业大学,硕士;
2002年,东北大学,博士。
1994年,武汉工业大学,硕士;
2002年,东北大学,博士。
出国学习工作
2002年,德国明斯特大学物理所,访问学者;
2003-2004年,美国伊利诺依大学(UIUC) Beckman 研究所,博士后。
2003-2004年,美国伊利诺依大学(UIUC) Beckman 研究所,博士后。
工作经历
工作简历
1995.7-2001.7 中科院物理研究所纳米物理与器件实验室(中科院北京真空物理实验室),助理研究员;
2001.8-2008.6 中科院物理研究所纳米物理与器件实验室,副研究员;
2008.7- 中科院物理研究所纳米物理与器件实验室,研究员。
专利与奖励
奖励信息
2008年度国家自然科学二等奖“原子分子操纵、组装及其特性的STM研究”
出版信息
发表论文
[1] 李璐, 张养坤, 时东霞, 张广宇. 单层二硫化钼的制备及在器件应用方面的研究. 物理学报. 2022, 71(10): 45-70, https://d.wanfangdata.com.cn/periodical/wlxb202210003.[2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报. 2022, 71(21): 359-364, http://lib.cqvip.com/Qikan/Article/Detail?id=7108318343.[3] Liao, Mengzhou, Nicolini, Paolo, Du, Luojun, Yuan, Jiahao, Wang, Shuopei, Yu, Hua, Tang, Jian, Cheng, Peng, Watanabe, Kenji, Taniguchi, Takashi, Gu, Lin, Claerbout, Victor E P, Silva, Andrea, Kramer, Denis, Polcar, Tomas, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. NATURE MATERIALS[J]. 2022, 21(1): 47-+, http://dx.doi.org/10.1038/s41563-021-01058-4.[4] Zhao, Yanchong, Du, Luojun, Yang, Shiqi, Tian, Jinpeng, Li, Xiaomei, Shen, Cheng, Tang, Jian, Chu, Yanbang, Watanabe, Kenji, Taniguchi, Takashi, Yang, Rong, Shi, Dongxia, Sun, Zhipei, Ye, Yu, Yang, Wei, Zhang, Guangyu. Interlayer exciton complexes in bilayer MoS2. PHYSICAL REVIEW B[J]. 2022, 105(4): http://dx.doi.org/10.1103/PhysRevB.105.L041411.[5] Li, Jiawei, Li, Na, Wang, Qinqin, Wei, Zheng, He, Congli, Shang, Dashan, Guo, Yutuo, Zhang, Woyu, Tang, Jian, Liu, Jieying, Wang, Shuopei, Yang, Wei, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Highly Stretchable MoS2-Based Transistors with Opto-Synaptic Functionalities. ADVANCED ELECTRONIC MATERIALS[J]. 2022, 8(9): http://dx.doi.org/10.1002/aelm.202200238.[6] 赵岩翀, 薄涛, 杜罗军, 田金朋, 李晓梅, Kenji, Watanabe, Takashi, Taniguchi, 杨蓉, 时东霞, 孟胜, 杨威, 张广宇. Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure*. CHINESE PHYSICS B[J]. 2021, 30(5): 170-175, https://www.webofscience.com/wos/woscc/full-record/WOS:000647653900001.[7] Shen, Cheng, Ying, Jianghua, Liu, Le, Liu, Jianpeng, Li, Na, Wang, Shuopei, Tang, Jian, Zhao, Yanchong, Chu, Yanbang, Watanabe, Kenji, Taniguchi, Takashi, Yang, Rong, Shi, Dongxia, Qu, Fanming, Lu, Li, Yang, Wei, Zhang, Guangyu. Emergence of Chern Insulating States in Non-Magic Angle Twisted Bilayer Graphene. CHINESE PHYSICS LETTERS[J]. 2021, 38(4): 96-102, http://dx.doi.org/10.1088/0256-307X/38/4/047301.[8] Shen, Cheng, Ying, Jianghua, Liu, Le, Liu, Jianpeng, Li, Na, Wang, Shuopei, Tang, Jian, Zhao, Yanchong, Chu, Yanbang, Watanabe, Kenji, Taniguchi, Takashi, Yang, Rong, Shi, Dongxia, Qu, Fanming, Lu, Li, Yang, Wei, Zhang, Guangyu. Emergence of Chern insulating states in non-Magic angle twisted bilayer graphene. 2021, http://arxiv.org/abs/2010.03999.[9] Wei, Zheng, Tang, Jian, Li, Xuanyi, Chi, Zhen, Wang, Yu, Wang, Qinqin, Han, Bo, Li, Na, Huang, Biying, Li, Jiawei, Yu, Hua, Yuan, Jiahao, Chen, Hailong, Sun, Jiatao, Chen, Lan, Wu, Kehui, Gao, Peng, He, Congli, Yang, Wei, Shi, Dongxia, Yang, Rong, Zhang, Guangyu. Wafer-Scale Oxygen-Doped MoS2 Monolayer. SMALL METHODS[J]. 2021, 5(6): http://dx.doi.org/10.1002/smtd.202100091.[10] Li, Na, Wang, Qinqin, Shen, Cheng, Wei, Zheng, Yu, Hua, Zhao, Jing, Lu, Xiaobo, Wang, Guole, He, Congli, Xie, Li, Zhu, Jianqi, Du, Luojun, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. NATURE ELECTRONICS[J]. 2020, 3(11): 711-717, [11] 褚衍邦, 刘乐, 袁亚龙, 沈成, 杨蓉, 时东霞, 杨威, 张广宇. A review of experimental advances in twisted graphene moiré superlattice. 中国物理B:英文版[J]. 2020, 29(12): 17-23, http://lib.cqvip.com/Qikan/Article/Detail?id=7103588629.[12] Shen, Cheng, Chu, Yanbang, Wu, QuanSheng, Li, Na, Wang, Shuopei, Zhao, Yanchong, Tang, Jian, Liu, Jieying, Tian, Jinpeng, Watanabe, Kenji, Taniguchi, Takashi, Yang, Rong, Meng, Zi Yang, Shi, Dongxia, Yazyev, Oleg, V, Zhang, Guangyu. Correlated states in twisted double bilayer graphene. NATURE PHYSICS[J]. 2020, 16(5): 520-+, [13] Liao, Mengzhou, Wei, Zheng, Du, Luojun, Wang, Qinqin, Tang, Jian, Yu, Hua, Wu, Fanfan, Zhao, Jiaojiao, Xu, Xiaozhi, Han, Bo, Liu, Kaihui, Gao, Peng, Polcar, Tomas, Sun, Zhipei, Shi, Dongxia, Yang, Rong, Zhang, Guangyu. Precise control of the interlayer twist angle in large scale MoS2 homostructures. NATURE COMMUNICATIONS[J]. 2020, 11(1): [14] Wang, Qinqin, Li, Na, Tang, Jian, Zhu, Jianqi, Zhang, Qinghua, Jia, Qi, Lu, Ying, Wei, Zheng, Yu, Hua, Zhao, Yanchong, Guo, Yutuo, Gu, Lin, Sun, Gang, Yang, Wei, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Wafer-Scale Highly Oriented Monolayer MoS2 with Large Domain Sizes. NANOLETTERS[J]. 2020, 20(10): 7193-7199, https://www.webofscience.com/wos/woscc/full-record/WOS:000598727300034.[15] Wei, Zheng, Liao, Mengzhou, Guo, Yutuo, Tang, Jian, Cai, Yongqing, Chen, Hanyang, Wang, Qinqin, Jia, Qi, Lu, Ying, Zhao, Yanchong, Liu, Jieying, Chu, Yanbang, Yu, Hua, Li, Na, Yuan, Jiahao, Huang, Biying, Shen, Cheng, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Scratching lithography for wafer-scale MoS(2)monolayers. 2D MATERIALS[J]. 2020, 7(4): http://dx.doi.org/10.1088/2053-1583/aba99f.[16] Chu, Yanbang, Liu, Le, Yuan, Yalong, Shen, Cheng, Yang, Rong, Shi, Dongxia, Yang, Wei, Zhang, Guangyu. A review of experimental advances in twisted graphene moire superlattice*. CHINESE PHYSICS B[J]. 2020, 29(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000600802000001.[17] Tang, Jian, Wei, Zheng, Wang, Qinqin, Wang, Yu, Han, Bo, Li, Xiaomei, Huang, Biying, Liao, Mengzhou, Liu, Jieying, Li, Na, Zhao, Yanchong, Shen, Cheng, Guo, Yutuo, Bai, Xuedong, Gao, Peng, Yang, Wei, Chen, Lan, Wu, Kehui, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. In Situ Oxygen Doping of Monolayer MoS(2)for Novel Electronics. SMALL[J]. 2020, 16(42): https://www.webofscience.com/wos/woscc/full-record/WOS:000570363300001.[18] Zhao, Yanchong, Du, Luojun, Yang, Wei, Shen, Cheng, Tang, Jian, Li, Xiaomei, Chu, Yanbang, Tian, Jinpeng, Watanabe, Kenji, Taniguchi, Takashi, Yang, Rong, Shi, Dongxia, Sun, Zhipei, Zhang, Guangyu. Observation of logarithmic Kohn anomaly in monolayer graphene. PHYSICAL REVIEW B[J]. 2020, 102(16): http://dx.doi.org/10.1103/PhysRevB.102.165415.[19] Lu, Xiaobo, Tang, Jian, Wallbank, John R, Wang, Shuopei, Shen, Cheng, Wu, Shuang, Chen, Peng, Yang, Wei, Zhang, Jing, Watanabe, Kenji, Taniguchi, Takashi, Yang, Rong, Shi, Dongxia, Efetov, Dmitri K, Falko, Vladimir, I, Zhang, Guangyu. High-order minibands and interband Landau level reconstruction in graphene moire superlattices. PHYSICAL REVIEW B[J]. 2020, 102(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000546191800005.[20] Tang, Jian, Wang, Qinqin, Wei, Zheng, Shen, Cheng, Lu, Xiaobo, Wang, Shuopei, Zhao, Yanchong, Liu, Jieying, Li, Na, Chu, Yanbang, Tian, Jinpeng, Wu, Fanfan, Yang, Wei, He, Congli, Yang, Rong, Shi, Dongxia, Watanabe, Kenji, Taniguchi, Takashi, Zhang, Guangyu. Vertical Integration of 2D Building Blocks for All-2D Electronics. ADVANCED ELECTRONIC MATERIALS[J]. 2020, 6(12): http://dx.doi.org/10.1002/aelm.202000550.[21] He, Congli, Tang, Jian, Shang, DaShan, Tang, Jianshi, Xi, Yue, Wang, Shuopei, Li, Na, Zhang, Qingtian, Lu, JiKai, Wei, Zheng, Wang, Qinqin, Shen, Cheng, Li, Jiawei, Shen, Shipeng, Shen, Jianxin, Yang, Rong, Shi, Dongxia, Wu, Huaqiang, Wang, Shouguo, Zhang, Guangyu. Artificial Synapse Based on van der Waals Heterostructures with Tunable Synaptic Functions for Neuromorphic Computing. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(10): 11945-11954, https://www.webofscience.com/wos/woscc/full-record/WOS:000526609100065.[22] Meng, JianLing, Wei, Zheng, Tang, Jian, Zhao, Yanchong, Wang, Qinqin, Tian, Jinpeng, Yang, Rong, Zhang, Guangyu, Shi, Dongxia. Employing defected monolayer MoS2 as charge storage materials. NANOTECHNOLOGY[J]. 2020, 31(23): https://www.webofscience.com/wos/woscc/full-record/WOS:000521955900001.[23] 廖梦舟, 杜罗军, 张婷婷, 谷林, 姚裕贵, 杨蓉, 时东霞, 张广宇. Pressure-mediated contact quality improvement between monolayer MoS2 and graphite. 中国物理B:英文版[J]. 2019, 178-182, http://lib.cqvip.com/Qikan/Article/Detail?id=90718776504849574849484951.[24] Chen, Peng, Cheng, Cai, Shen, Cheng, Zhang, Jing, Wu, Shuang, Lu, Xiaobo, Wang, Shuopei, Du, Luojun, Watanabe, Kenji, Taniguchi, Takashi, Sun, Jiatao, Yang, Rong, Shi, Dongxia, Liu, Kaihui, Meng, Sheng, Zhang, Guangyu. Band evolution of two-dimensional transition metal dichalcogenides under electric fields. APPLIED PHYSICS LETTERS[J]. 2019, 115(8): [25] Du, Luojun, Huang, Yuan, Wang, Yimeng, Wang, Qinqin, Yang, Rong, Tang, Jian, Liao, Mengzhou, Shi, Dongxia, Shi, Youguo, Zhou, Xingjiang, Zhang, Qingming, Zhang, Guangyu. 2D proximate quantum spin liquid state in atomic-thin alpha-RuCl3. 2D MATERIALS[J]. 2019, 6(1): http://dx.doi.org/10.1088/2053-1583/aaee29.[26] Li, Na, Wei, Zheng, Zhao, Jing, Wang, Qinqin, Shen, Cheng, Wang, Shuopei, Tang, Jian, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Atomic Layer Deposition of Al2O3 Directly on 2D Materials for High-Performance Electronics. ADVANCED MATERIALS INTERFACES[J]. 2019, 6(10): http://dx.doi.org/10.1002/admi.201802055.[27] 王硕培, 何聪丽, 汤建, 杨蓉, 时东霞, 张广宇. Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor. 中国物理B:英文版[J]. 2019, 183-188, http://lib.cqvip.com/Qikan/Article/Detail?id=90718776504849574849484952.[28] Du, Luojun, Zhao, Yanchong, Jia, Zhiyan, Liao, Mengzhou, Wang, Qinqin, Guo, Xiangdong, Shi, Zhiwen, Yang, Rong, Watanabe, Kenji, Taniguchi, Takashi, Xiang, Jianyong, Shi, Dongxia, Dai, Qing, Sun, Zhipei, Zhang, Guangyu. Strong and tunable interlayer coupling of infrared-active phonons to excitons in van der Waals heterostructures. PHYSICAL REVIEW B[J]. 2019, 99(20): https://www.webofscience.com/wos/woscc/full-record/WOS:000467726400007.[29] Du, Luojun, Tang, Jian, Liang, Jing, Liao, Mengzhou, Jia, Zhiyan, Zhang, Qinghua, Zhao, Yanchong, Yang, Rong, Shi, Dongxia, Gu, Lin, Xiang, Jianyong, Liu, Kaihui, Sun, Zhipei, Zhang, Guangyu. Giant Valley Coherence at Room Temperature in 3R WS2 with Broken Inversion Symmetry. RESEARCH[J]. 2019, 2019: http://dx.doi.org/10.34133/2019/6494565.[30] Wang, Shuopei, He, Congli, Tang, Jian, Lu, Xiaobo, Shen, Cheng, Yu, Hua, Du, Luojun, Li, Jiafang, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. New Floating Gate Memory with Excellent Retention Characteristics. ADVANCED ELECTRONIC MATERIALS[J]. 2019, 5(4): [31] Du, Luojun, Zhang, Qian, Zhang, Tingting, Jia, Zhiyan, Liang, Jing, Liu, GuiBin, Yang, Rong, Shi, Dongxia, Xiang, Jianyong, Liu, Kaihui, Sun, Zhipei, Yao, Yugui, Zhang, Qingming, Zhang, Guangyu. Robust circular polarization of indirect Q-K transitions in bilayer 3R-WS2. PHYSICAL REVIEW B[J]. 2019, 100(16): http://dx.doi.org/10.1103/PhysRevB.100.161404.[32] Du Luojun, Tang Jian, Zhao Yanchong, Li Xiaomei, Yang Rong, Hu Xuerong, Bai Xueyin, Wang Xiao, Watanabe Kenji, Taniguchi Takashi, Shi Dongxia, Yu Guoqiang, Bai Xuedong, Hasan Tawfique, Zhang Guangyu, Sun Zhipei. Lattice dynamics, phonon chirality and spin-phonon coupling in 2D itinerant ferromagnet Fe3GeTe2. 2019, http://arxiv.org/abs/1909.01598.[33] Du, Luojun, Tang, Jian, Zhao, Yanchong, Li, Xiaomei, Yang, Rong, Hu, Xuerong, Bai, Xueyin, Wang, Xiao, Watanabe, Kenji, Taniguchi, Takashi, Shi, Dongxia, Yu, Guoqiang, Bai, Xuedong, Hasan, Tawfique, Zhang, Guangyu, Sun, Zhipei. Lattice Dynamics, Phonon Chirality, and Spin-Phonon Coupling in 2D Itinerant Ferromagnet Fe3GeTe2. ADVANCED FUNCTIONAL MATERIALS[J]. 2019, 29(48): https://www.doi.org/10.1002/adfm.201904734.[34] Jianqi Zhu, ZhiChang Wang, Huijia Dai, Qinqin Wang, Rong Yang, Hua Yu, Mengzhou Liao, Jing Zhang, Wei Chen, Zheng Wei, Na Li, Luojun Du, Dongxia Shi, Wenlong Wang, Lixin Zhang, Ying Jiang, Guangyu Zhang. Boundary activated hydrogen evolution reaction on monolayer MoS2. NATURE COMMUNICATIONS[J]. 2019, 10(1): https://doaj.org/article/5d5ef3f662014c9492ad24ca8bcb8d9f.[35] Du, Luojun, Liao, Mengzhou, Liu, GuiBin, Wang, Qinqin, Yang, Rong, Shi, Dongxia, Yao, Yugui, Zhang, Guangyu. Strongly distinct electrical response between circular and valley polarization in bilayer transition metal dichalcogenides. PHYSICAL REVIEW B[J]. 2019, 99(19): https://www.webofscience.com/wos/woscc/full-record/WOS:000467725700005.[36] Wang, Shuopei, He, Congli, Tang, Jian, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor. CHINESE PHYSICS B[J]. 2019, 28(1): http://lib.cqvip.com/Qikan/Article/Detail?id=90718776504849574849484952.[37] Liao, Mengzhou, Du, Luojun, Zhang, Tingting, Gu, Lin, Yao, Yugui, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Pressure-mediated contact quality improvement between monolayer MoS2 and graphite. CHINESE PHYSICS B[J]. 2019, 28(1): http://lib.cqvip.com/Qikan/Article/Detail?id=90718776504849574849484951.[38] Wang, Xiao, Tang, Jian, Xia, Xiuxin, He, Congli, Zhang, Junwei, Liu, Yizhou, Wan, Caihua, Fang, Chi, Guo, Chenyang, Yang, Wenlong, Guang, Yao, Zhang, Xiaomin, Xu, Hongjun, Wei, Jinwu, Liao, Mengzhou, Lu, Xiaobo, Feng, Jiafeng, Li, Xiaoxi, Peng, Yong, Wei, Hongxiang, Yang, Rong, Shi, Dongxia, Zhang, Xixiang, Han, Zheng, Zhang, Zhidong, Zhang, Guangyu, Yu, Guoqiang, Han, Xiufeng. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. SCIENCE ADVANCES[J]. 2019, 5(8): [39] Du, Luojun, Zhang, Qian, Gong, Benchao, Liao, Mengzhou, Zhu, Jianqi, Yu, Hua, He, Rui, Liu, Kai, Yang, Rong, Shi, Dongxia, Gu, Lin, Yan, Feng, Zhang, Guangyu, Zhang, Qingming. Robust spin-valley polarization in commensurate MoS2/graphene heterostructures. PHYSICAL REVIEW B[J]. 2018, 97(11): http://dx.doi.org/10.1103/PhysRevB.97.115445.[40] Du, Luojun, Liao, Mengzhou, Tang, Jian, Zhang, Qian, Yu, Hua, Yang, Rong, Watanabe, Kenji, Taniguchi, Takashi, Shi, Dongxia, Zhang, Qingming, Zhang, Guangyu. Strongly enhanced exciton-phonon coupling in two-dimensional WSe2. PHYSICAL REVIEW B[J]. 2018, 97(23): http://dx.doi.org/10.1103/PhysRevB.97.235145.[41] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报[J]. 2018, 67(22): 226501-1, http://lib.cqvip.com/Qikan/Article/Detail?id=676852772.[42] Mengzhou Liao, ZeWen Wu, Luojun Du, Tingting Zhang, Zheng Wei, Jianqi Zhu, Hua Yu, Jian Tang, Lin Gu, Yanxia Xing, Rong Yang, Dongxia Shi, Yugui Yao, Guangyu Zhang. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. NATURE COMMUNICATIONS[J]. 2018, 9(1): http://dx.doi.org/10.1038/s41467-018-06555-w.[43] Liu Le, Tang Jian, Wang QinQin, Shi DongXia, Zhang GuangYu. Thermal stability of MoS2 encapsulated by graphene. ACTA PHYSICA SINICA[J]. 2018, 67(22): https://www.webofscience.com/wos/woscc/full-record/WOS:000455402400026.[44] 时东霞. 2D proximate quantum spin liquid state in atomic-thin α-RuCl3. 2D Materials 6,015014 (2019). 2018, [45] Du, Luojun, Jia, Zhiyan, Zhang, Qian, Zhang, Anmin, Zhang, Tingting, He, Rui, Yang, Rong, Shi, Dongxia, Yao, Yugui, Xiang, Jianyong, Zhang, Guangyu, Zhang, Qingming. Electronic structure-dependent magneto-optical Raman effect in atomically thin WS2. 2D MATERIALS[J]. 2018, 5(3): http://dx.doi.org/10.1088/2053-1583/aac593.[46] Wang, Dongfei, Yu, Hua, Tao, Lei, Xiao, Wende, Fan, Peng, Zhang, Tingting, Liao, Mengzhou, Guo, Wei, Shi, Dongxia, Du, Shixuan, Zhang, Guangyu, Gao, Hongjun. Bandgap broadening at grain boundaries in single-layer MoS2. NANO RESEARCH[J]. 2018, 11(11): 6102-6109, http://lib.cqvip.com/Qikan/Article/Detail?id=676662707.[47] Wu, Shuang, Liu, Bing, Shen, Cheng, Li, Si, Huang, Xiaochun, Lu, Xiaobo, Chen, Peng, Wang, Guole, Wang, Duoming, Liao, Mengzhou, Zhang, Jing, Zhang, Tingling, Wang, Shuopei, Yang, Wei, Yang, Rong, Shi, Dongxia, Watanabe, Kenji, Taniguchi, Takashi, Yao, Yugui, Wang, Weihua, Zhang, Guangyu. Magnetotransport Properties of Graphene Nanoribbons with Zigzag Edges. PHYSICAL REVIEW LETTERS[J]. 2018, 120(21): http://dx.doi.org/10.1103/PhysRevLett.120.216601.[48] Wei Zheng, Wang QinQin, Guo YuTuo, Li JiaWei, Shi DongXia, Zhang GuangYu. Research progress of high-quality monolayer MoS2 films. ACTA PHYSICA SINICA[J]. 2018, 67(12): http://dx.doi.org/10.7498/aps.67.20180732.[49] Dongfei Wang, Hua Yu, Lei Tao, Wende Xiao, Peng Fan, Tingting Zhang, Mengzhou Liao, Wei Guo, Dongxia Shi, Shixuan Du, Guangyu Zhang, Hongjun Gao. Bandgap broadening at grain boundaries in single-layer MoS2. 纳米研究:英文版[J]. 2018, 11(11): 6102-6109, http://lib.cqvip.com/Qikan/Article/Detail?id=676662707.[50] Wei Zheng, Wang QinQin, Guo YuTuo, Li JiaWei, Shi DongXia, Zhang GuangYu. Research progress of high-quality monolayer MoS2 films. ACTA PHYSICA SINICA[J]. 2018, 67(12): http://dx.doi.org/10.7498/aps.67.20180732.[51] Du, Luojun, Zhang, Tingting, Liao, Mengzhou, Liu, Guibin, Wang, Shuopei, He, Rui, Ye, Zhipeng, Yu, Hua, Yang, Rong, Shi, Dongxia, Yao, Yugui, Zhang, Guangyu. Temperature-driven evolution of critical points, interlayer coupling, and layer polarization in bilayer MoS2. PHYSICAL REVIEW B[J]. 2018, 97(16): https://www.webofscience.com/wos/woscc/full-record/WOS:000429455900009.[52] 时东霞. 高质量单层二硫化钼薄膜的研究进展. 物理学报. 2018, [53] Shao, Yan, Liu, ZhongLiu, Cheng, Cai, Wu, Xu, Liu, Hang, Liu, Chen, Wang, JiaOu, Zhu, ShiYu, Wang, YuQi, Shi, DongXia, Ibrahim, Kurash, Sun, JiaTao, Wang, YeLiang, Gao, HongJun. Epitaxial Growth of Flat Antimonene Monolayer: A New Honeycomb Analogue of Graphene. NANO LETTERS[J]. 2018, 18(3): 2133-2139, http://www.corc.org.cn/handle/1471x/2178065.[54] Yu, Hua, Yang, Zhengzhong, Du, Luojun, Zhang, Jing, Shi, Jinan, Chen, Wei, Chen, Peng, Liao, Mengzhou, Zhao, Jing, Meng, Jianling, Wang, Guole, Zhu, Jianqi, Yang, Rong, Shi, Dongxia, Gu, Lin, Zhang, Guangyu. Precisely Aligned Monolayer MoS2 Epitaxially Grown on h-BN basal Plane. SMALL[J]. 2017, 13(7): http://dx.doi.org/10.1002/smll.201603005.[55] Zhu, Jianqi, Wang, Zhichang, Yu, Hua, Li, Na, Zhang, Jing, Meng, JianLing, Liao, Mengzhou, Zhao, Jing, Lu, Xiaobo, Du, Luojun, Yang, Rong, Shi, Dong, Jiang, Ying, Zhang, Guanyu. Argon Plasma Induced Phase Transition in Monolayer MoS2. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2017, 139(30): 10216-10219, https://www.webofscience.com/wos/woscc/full-record/WOS:000407089500013.[56] Shao, Yan, Song, Shiru, Wu, Xu, Qi, Jing, Lu, Hongliang, Liu, Chen, Zhu, Shiyu, Liu, Zhongliu, Wang, Jiaou, Shi, Dongxia, Du, Shixuan, Wang, Yeliang, Gao, H J. Epitaxial fabrication of two-dimensional NiSe2 on Ni(111) substrate. APPLIED PHYSICS LETTERS[J]. 2017, 111(11): http://www.corc.org.cn/handle/1471x/2177151.[57] Xie, Li, Liao, Mengzhou, Wang, Shuopei, Yu, Hua, Du, Luojun, Tang, Jian, Zhao, Jing, Zhang, Jing, Chen, Peng, Lu, Xiaobo, Wang, Guole, Xie, Guibai, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Graphene-Contacted Ultrashort Channel Monolayer MoS2 Transistors. ADVANCED MATERIALS[J]. 2017, 29(37): https://www.webofscience.com/wos/woscc/full-record/WOS:000412184100020.[58] Zhang, TingTing, Yu, ZhiMing, Guo, Wei, Shi, Dongxia, Zhang, Guangyu, Yao, Yugui. From Type-II Triply Degenerate Nodal Points and Three-Band Nodal Rings to Type-II Dirac Points in Centrosymmetric Zirconium Oxide. JOURNAL OF PHYSICAL CHEMISTRY LETTERS[J]. 2017, 8(23): 5792-5797, http://dx.doi.org/10.1021/acs.jpclett.7b02642.[59] Xie, Li, Du, Luojun, Lu, Xiaobo, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. A facile and efficient dry transfer technique for two-dimensional Van der Waals heterostructure. CHINESE PHYSICS B[J]. 2017, 26(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000407023200001.[60] Yu, Hua, Liao, Mengzhou, Zhao, Wenjuan, Liu, Guodong, Zhou, X J, Wei, Zheng, Xu, Xiaozhi, Liu, Kaihui, Hu, Zonghai, Deng, Ke, Zhou, Shuyun, Shi, JinAn, Gu, Lin, Shen, Cheng, Zhang, Tingting, Du, Luojun, Xie, Li, Zhu, Jianqi, Chen, Wei, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS2 Continuous Films. ACS NANO[J]. 2017, 11(12): 12001-12007, https://www.webofscience.com/wos/woscc/full-record/WOS:000418990200025.[61] Du, Luojun, Yu, Hua, Liao, Mengzhou, Wang, Shuopei, Xie, Li, Lu, Xiaobo, Zhu, Jianqi, Li, Na, Shen, Cheng, Chen, Peng, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Modulating PL and electronic structures of MoS2/graphene heterostructures via interlayer twisting angle. APPLIED PHYSICS LETTERS[J]. 2017, 111(26): https://www.webofscience.com/wos/woscc/full-record/WOS:000418947200031.[62] Zhao, Jing, Li, Na, Yu, Hua, Wei, Zheng, Liao, Mengzhou, Chen, Peng, Wang, Shuopei, Shi, Dongxia, Sun, Qijun, Zhang, Guangyu. Highly Sensitive MoS2 Humidity Sensors Array for Noncontact Sensation. ADVANCED MATERIALS[J]. 2017, 29(34): https://www.webofscience.com/wos/woscc/full-record/WOS:000409448300017.[63] Wang GuoLe, Xie Li, Chen Peng, Yang Rong, Shi DongXia, Zhang GuangYu. Anisotropic etching of bilayer graphene controlled by gate voltage. ACTA PHYSICA SINICA[J]. 2016, 65(19): https://www.webofscience.com/wos/woscc/full-record/WOS:000387141500022.[64] Wang GuoLe, Xie Li, Chen Peng, Yang Rong, Shi DongXia, Zhang GuangYu. Anisotropic etching of bilayer graphene controlled by gate voltage. ACTA PHYSICA SINICA[J]. 2016, 65(19): https://www.webofscience.com/wos/woscc/full-record/WOS:000387141500022.[65] Zhao, Jing, Chen, Wei, Meng, Jianling, Yu, Hua, Liao, Mengzhou, Zhu, Jianqi, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Integrated Flexible and High-Quality Thin Film Transistors Based on Monolayer MoS2. ADVANCED ELECTRONIC MATERIALS[J]. 2016, 2(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000372922800016.[66] Wang, Guole, Wu, Shuang, Zhang, Tingting, Chen, Peng, Lu, Xiaobo, Wang, Shuopei, Wang, Duoming, Watanabe, Kenji, Taniguchi, Takashi, Shi, Dongxia, Yang, Rong, Zhang, Guangyu. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. APPLIED PHYSICS LETTERS[J]. 2016, 109(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000383091400032.[67] Du, Luojun, Yu, Hua, Xie, Li, Wu, Shuang, Wang, Shuopei, Lu, Xiaobo, Liao, Mengzhou, Meng, Jianling, Zhao, Jing, Zhang, Jing, Zhu, Jianqi, Chen, Peng, Wang, Guole, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. The Effect of Twin Grain Boundary Tuned by Temperature on the Electrical Transport Properties of Monolayer MoS2. CRYSTALS[J]. 2016, 6(9): https://doaj.org/article/c0e87dca2dc74fd48934d9db5e9af1a3.[68] Yang, Wei, Lu, Xiaobo, Chen, Guorui, Wu, Shuang, Xie, Guibai, Cheng, Meng, Wang, Duoming, Yang, Rong, Shi, Dongxia, Watanabe, Kenji, Taniguchi, Takashi, Voisin, Christophe, Placais, Bernard, Zhang, Yuanbo, Zhang, Guangyu. Hofstadter Butterfly and Many-Body Effects in Epitaxial Graphene Superlattice. NANO LETTERS[J]. 2016, 16(4): 2387-2392, [69] Zhang, Jing, Wang, Jinhuan, Chen, Peng, Sun, Yue, Wu, Shuang, Jia, Zhiyan, Lu, Xiaobo, Yu, Hua, Chen, Wei, Zhu, Jianqi, Xie, Guibai, Yang, Rong, Shi, Dongxia, Xu, Xiulai, Xiang, Jianyong, Liu, Kaihui, Zhang, Guangyu. Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures. ADVANCED MATERIALS[J]. 2016, 28(10): 1950-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000372308700005.[70] Wang, Duoming, Chen, Guorui, Li, Chaokai, Cheng, Meng, Yang, Wei, Wu, Shuang, Xie, Guibai, Zhang, Jing, Zhao, Jing, Lu, Xiaobo, Chen, Peng, Wang, Guole, Meng, Jianling, Tang, Jian, Yang, Rong, He, Congli, Liu, Donghua, Shi, Dongxia, Watanabe, Kenji, Taniguchi, Takashi, Feng, Ji, Zhang, Yuanbo, Zhang, Guangyu. Thermally Induced Graphene Rotation on Hexagonal Boron Nitride. PHYSICAL REVIEW LETTERS[J]. 2016, 116(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000372728300001.[71] Meng, Jianling, Wang, Guole, Li, Xiaomin, Lu, Xiaobo, Zhang, Jing, Yu, Hua, Chen, Wei, Du, Luojun, Liao, Mengzhou, Zhao, Jing, Chen, Peng, Zhu, Jianqi, Bai, Xuedong, Shi, Dongxia, Zhang, Guangyu. Rolling Up a Monolayer MoS2 Sheet. SMALL[J]. 2016, 12(28): 3770-3774, https://www.webofscience.com/wos/woscc/full-record/WOS:000383375100004.[72] Zhao, Jing, Yu, Hua, Chen, Wei, Yang, Rong, Zhu, Jianqi, Liao, Mengzhou, Shi, Dongxia, Zhang, Guangyu. Patterned Peeling 2D MoS2 off the Substrate. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(26): 16546-16550, https://www.webofscience.com/wos/woscc/full-record/WOS:000379456000002.[73] Chen, Peng, Zhang, Ting Ting, Zhang, Jing, Xiang, Jianyong, Yu, Hua, Wu, Shuang, Lu, Xiaobo, Wang, Guole, Wen, Fusheng, Liu, Zhongyuan, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Gate tunable WSe2-BP van der Waals heterojunction devices. NANOSCALE[J]. 2016, 8(6): 3254-3258, https://www.webofscience.com/wos/woscc/full-record/WOS:000369908900010.[74] Lu, Xiaobo, Yang, Wei, Wang, Shuopei, Wu, Shuang, Chen, Peng, Zhang, Jing, Zhao, Jing, Meng, Jianling, Xie, Guibai, Wang, Duoming, Wang, Guole, Zhang, Ting Ting, Watanabe, Kenji, Taniguchi, Takashi, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Graphene nanoribbons epitaxy on boron nitride. APPLIED PHYSICS LETTERS[J]. 2016, 108(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000373058400037.[75] Chen, Wei, Zhao, Jing, Zhang, Jing, Gu, Lin, Yang, Zhenzhong, Li, Xiaomin, Yu, Hua, Zhu, Xuetao, Yang, Rong, Shi, Dongxia, Lin, Xuechun, Guo, Jiandong, Bai, Xuedong, Zhang, Guangyu. Oxygen-Assisted Chemical Vapor Deposition Growth of Large Single-Crystal and High-Quality Monolayer MoS2. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2015, 137(50): 15632-15635, http://ir.iphy.ac.cn/handle/311004/61063.[76] Chen, Peng, Xiang, Jianyong, Yu, Hua, Zhang, Jing, Xie, Guibai, Wu, Shuang, Lu, Xiaobo, Wang, Guole, Zhao, Jing, Wen, Fusheng, Liu, Zhongyuan, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Gate tunable MoS2-black phosphorus heterojunction devices. 2D MATERIALS[J]. 2015, 2(3): http://ir.iphy.ac.cn/handle/311004/60121.[77] Shen Cheng, Zhang Jing, Shi Dongxia, Zhang Guangyu. Photoluminescence Enhancement in Monolayer Molybdenum Disulfide by Annealing in Air. ACTA CHIMICA SINICA[J]. 2015, 73(9): 954-958, http://ir.iphy.ac.cn/handle/311004/60164.[78] Shen Cheng, Zhang Jing, Shi Dongxia, Zhang Guangyu. Photoluminescence Enhancement in Monolayer Molybdenum Disulfide by Annealing in Air. ACTA CHIMICA SINICA[J]. 2015, 73(9): 954-958, http://ir.iphy.ac.cn/handle/311004/60164.[79] Meng, Jianling, Yang, Rong, Zhao, Jing, He, Congli, Wang, Guole, Shi, Dongxia, Zhang, Guangyu. Nanographene charge trapping memory with a large memory window. NANOTECHNOLOGY[J]. 2015, 26(45): http://ir.iphy.ac.cn/handle/311004/60695.[80] Zhao, Jing, Wang, Guole, Yang, Rong, Lu, Xiaobo, Cheng, Meng, He, Congli, Xie, Guibai, Meng, Jianling, Shi, Dongxia, Zhang, Guangyu. Tunable Piezoresistivity of Nanographene Films for Strain Sensing. ACS NANO[J]. 2015, 9(2): 1622-1629, http://ir.iphy.ac.cn/handle/311004/60157.[81] Wu, Shuang, Yang, Rong, Cheng, Meng, Yang, Wei, Xie, Guibai, Chen, Peng, Shi, Dongxia, Zhang, Guangyu. Defect-enhanced coupling between graphene and SiO2 substrate. APPLIED PHYSICS LETTERS[J]. 2014, 105(6): http://ir.iphy.ac.cn/handle/311004/58895.[82] Meng, Jianling, Shi, Dongxia, Zhang, Guangyu. A review of nanographene: growth and applications. MODERN PHYSICS LETTERS B[J]. 2014, 28(20): http://ir.iphy.ac.cn/handle/311004/59329.[83] Yang, Rong, Wu, Shuang, Wang, Duoming, Xie, Guibai, Cheng, Meng, Wang, Guole, Yang, Wei, Chen, Peng, Shi, Dongxia, Zhang, Guangyu. Fabrication of high-quality all-graphene devices with low contact resistances. NANO RESEARCH[J]. 2014, 7(10): 1449-1456, http://ir.iphy.ac.cn/handle/311004/59346.[84] Cheng, Meng, Wang, Duoming, Sun, Zhaoru, Zhao, Jing, Yang, Rong, Wang, Guole, Yang, Wei, Xie, Guibai, Zhang, Jing, Chen, Peng, He, Congli, Liu, Donghua, Xu, Limei, Shi, Dongxia, Wang, Enge, Zhang, Guangyu. A Route toward Digital Manipulation of Water Nanodroplets on Surfaces. ACS NANO[J]. 2014, 8(4): 3955-3960, http://ir.iphy.ac.cn/handle/311004/58794.[85] Zhang, Jing, Yu, Hua, Chen, Wei, Tian, Xuezeng, Liu, Donghua, Cheng, Meng, Xie, Guibai, Yang, Wei, Yang, Rong, Bai, Xuedong, Shi, Dongxia, Zhang, Guangyu. Scalable Growth of High-Quality Polycrystalline MoS2 Monolayers on SiO2 with Tunable Grain Sizes. ACSNANO[J]. 2014, 8(6): 6024-6030, http://ir.iphy.ac.cn/handle/311004/58793.[86] Liu, Donghua, Yang, Wei, Zhang, Lianchang, Zhang, Jing, Meng, Jianling, Yang, Rong, Zhang, Guangyu, Shi, Dongxia. Two-step growth of graphene with separate controlling nucleation and edge growth directly on SiO2 substrates. CARBON[J]. 2014, 72: 387-392, http://dx.doi.org/10.1016/j.carbon.2014.02.030.[87] Xie, Guibai, Yang, Rong, Chen, Peng, Zhang, Jing, Tian, Xuezeng, Wu, Shuang, Zhao, Jing, Cheng, Meng, Yang, Wei, Wang, Duoming, He, Congli, Bai, Xuedong, Shi, Dongxia, Zhang, Guangyu. A General Route Towards Defect and Pore Engineering in Graphene. SMALL[J]. 2014, 10(11): 2280-2284, http://ir.iphy.ac.cn/handle/311004/59743.[88] Yang, Wei, Chen, Guorui, Shi, Zhiwen, Liu, ChengCheng, Zhang, Lianchang, Xie, Guibai, Cheng, Meng, Wang, Duoming, Yang, Rong, Shi, Dongxia, Watanabe, Kenji, Taniguchi, Takashi, Yao, Yugui, Zhang, Yuanbo, Zhang, Guangyu. Epitaxial growth of single-domain graphene on hexagonal boron nitride. NATURE MATERIALS[J]. 2013, 12(9): 792-797, http://ir.iphy.ac.cn/handle/311004/56973.[89] He, Congli, Li, Jiafang, Wu, Xing, Chen, Peng, Zhao, Jing, Yin, Kuibo, Cheng, Meng, Yang, Wei, Xie, Guibai, Wang, Duoming, Liu, Donghua, Yang, Rong, Shi, Dongxia, Li, Zhiyuan, Sun, Litao, Zhang, Guangyu. Tunable electroluminescence in planar graphene/SiO(2) memristors.. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.)[J]. 2013, 25(39): 5593-, http://ir.iphy.ac.cn/handle/311004/57788.[90] Zhao Jing, Zhang GuangYu, Shi DongXia. Review of graphene-based strain sensors. CHINESE PHYSICS B[J]. 2013, 22(5): http://ir.iphy.ac.cn/handle/311004/57407.[91] He, Congli, Li, Jiafang, Wu, Xing, Chen, Peng, Zhao, Jing, Yin, Kuibo, Cheng, Meng, Yang, Wei, Xie, Guibai, Wang, Duoming, Liu, Donghua, Yang, Rong, Shi, Dongxia, Li, Zhiyuan, Sun, Litao, Zhang, Guangyu. Tunable Electroluminescence in Planar Graphene/SiO2 Memristors. ADVANCED MATERIALS[J]. 2013, 25(39): 5593-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000332331300007.[92] Yang, Rong, Zhu, Chenxin, Meng, Jianling, Huo, Zongliang, Cheng, Meng, Liu, Donghua, Yang, Wei, Shi, Dongxia, Liu, Ming, Zhang, Guangyu. Isolated nanographene crystals for nano-floating gate in charge trapping memory. SCIENTIFIC REPORTS[J]. 2013, 3: http://www.irgrid.ac.cn/handle/1471x/1092012.[93] Shi, Zhiwen, Lu, Hongliang, Zhang, Lianchang, Yang, Rong, Wang, Yi, Liu, Donghua, Guo, Haiming, Shi, Dongxia, Gao, Hongjun, Wang, Enge, Zhang, Guangyu. Studies of graphene-based nanoelectromechanical switches. NANO RESEARCH[J]. 2012, 5(2): 82-87, http://dx.doi.org/10.1007/s12274-011-0187-9.[94] Zhao, Jing, He, Congli, Yang, Rong, Shi, Zhiwen, Cheng, Meng, Yang, Wei, Xie, Guibai, Wang, Duoming, Shi, Dongxia, Zhang, Guangyu. Ultra-sensitive strain sensors based on piezoresistive nanographene films. APPLIED PHYSICS LETTERS[J]. 2012, 101(6): http://dx.doi.org/10.1063/1.4742331.[95] Liu, Qi, Du, Shixuan, Zhang, Yuyang, Jiang, Nan, Shi, Dongxia, Gao, HongJun. Identifying Multiple Configurations of Complex Molecules on Metal Surfaces. SMALL[J]. 2012, 8(6): 796-806, http://ir.semi.ac.cn/handle/172111/23584.[96] Yang, Wei, He, Congli, Zhang, Lianchang, Wang, Yi, Shi, Zhiwen, Cheng, Meng, Xie, Guibai, Wang, Duoming, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Growth, Characterization, and Properties of Nanographene. SMALL[J]. 2012, 8(9): 1429-1435, http://dx.doi.org/10.1002/smll.201101827.[97] Cheng, Meng, Yang, Rong, Zhang, Lianchang, Shi, Zhiwen, Yang, Wei, Wang, Duoming, Xie, Guibai, Shi, Dongxia, Zhang, Guangyu. Restoration of graphene from graphene oxide by defect repair. CARBON[J]. 2012, 50(7): 2581-2587, http://dx.doi.org/10.1016/j.carbon.2012.02.016.[98] Zhong, Dingyong, Chi, Lifeng, Guo, Haiming, Shi, Dongxia, Fuchs, Harald. Molecular Cloisonne: Multicomponent Organic Alternating Nanostructures at Vicinal Surfaces with Tunable Length Scales. SMALL[J]. 2012, 8(4): 535-540, http://dx.doi.org/10.1002/smll.201100822.[99] Zhang, Lianchang, Shi, Zhiwen, Liu, Donghua, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Vapour-phase graphene epitaxy at low temperatures. NANO RESEARCH[J]. 2012, 5(4): 258-264, http://ir.iphy.ac.cn/handle/311004/46501.[100] Wu, Shuang, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Identification of structural defects in graphitic materials by gas-phase anisotropic etching. NANOSCALE[J]. 2012, 4(6): 2005-2009, http://dx.doi.org/10.1039/c2nr11707j.[101] Liu, Donghua, Shi, Zhiwen, Zhang, Lianchang, He, Congli, Zhang, Jing, Cheng, Meng, Yang, Rong, Tian, Xuezeng, Bai, Xuedong, Shi, Dongxia, Zhang, Guangyu. Reducing the contact resistance of SiNW devices by employing a heavily doped carrier injection layer. NANOTECHNOLOGY[J]. 2012, 23(30): http://dx.doi.org/10.1088/0957-4484/23/30/305701.[102] Zhang, Lianchang, Ni, Ming, Liu, Donghua, Shi, Dongxia, Zhang, Guangyu. Competitive Growth and Etching of Epitaxial Graphene. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2012, 116(51): 26929-26931, http://ir.iphy.ac.cn/handle/311004/34981.[103] Zhu, Chenxin, Xu, Zhongguang, Huo, Zongliang, Yang, Rong, Zheng, Zhiwei, Cui, Yanxiang, Liu, Jing, Wang, Yumei, Shi, Dongxia, Zhang, Guangyu, Li, Fanghua, Liu, Ming. Investigation on interface related charge trap and loss characteristics of high-k based trapping structures by electrostatic force microscopy. APPLIED PHYSICS LETTERS[J]. 2011, 99(22): http://www.irgrid.ac.cn/handle/1471x/1092057.[104] Shi, Zhiwen, Yang, Rong, Zhang, Lianchang, Wang, Yi, Liu, Donghua, Shi, Dongxia, Wang, Enge, Zhang, Guangyu. Patterning Graphene with Zigzag Edges by Self-Aligned Anisotropic Etching. ADVANCED MATERIALS[J]. 2011, 23(27): 3061-+, http://ir.iphy.ac.cn/handle/311004/50616.[105] Zhang, Lianchang, Shi, Zhiwen, Wang, Yi, Yang, Rong, Shi, Dongxia, Zhang, Guangyu. Catalyst-free growth of nanographene films on various substrates. NANO RESEARCH[J]. 2011, 4(3): 315-321, http://ir.iphy.ac.cn/handle/311004/34506.[106] Zhang, Lei, Shi, Dongxia, Du, Shixuan, Chi, Lifeng, Fuchs, Harald, Gao, HongJun. Structural Transition and Thermal Stability of a Coronene Molecular Mono layer on Cu(110). JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2010, 114(25): 11180-11184, http://dx.doi.org/10.1021/jp101865j.[107] Zhang HaiGang, Mao JinHai, Liu Qi, Jiang Nan, Zhou HaiTao, Guo HaiMing, Shi DongXia, Gao HongJun. Manipulation and control of a single molecular rotor on Au (111) surface. CHINESE PHYSICS B[J]. 2010, 19(1): http://lib.cqvip.com/Qikan/Article/Detail?id=32672917.[108] Yang, Rong, Zhang, Lianchang, Wang, Yi, Shi, Zhiwen, Shi, Dongxia, Gao, Hongjun, Wang, Enge, Zhang, Guangyu. An Anisotropic Etching Effect in the Graphene Basal Plane. ADVANCED MATERIALS[J]. 2010, 22(36): 4014-4019, http://ir.iphy.ac.cn/handle/311004/33621.[109] Pan, Yi, Zhang, Haigang, Shi, Dongxia, Sun, Jiatao, Du, Shixuan, Liu, Feng, Gao, Hongjun. Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001). ADVANCED MATERIALS[J]. 2009, 21(27): 2777-+, http://ir.iphy.ac.cn/handle/311004/39341.[110] 杨蓉, 高敏, 潘毅, 郭海明, 时东霞, 高鸿钧. Graphene的制备与结构特性. 物理[J]. 2009, 371-377, http://lib.cqvip.com/Qikan/Article/Detail?id=30718555.[111] Shi, Dongxia, Ji, Wei, Yang, Bing, Cun, Huanyao, Du, Shixuan, Chi, Lifeng, Fuchs, Harald, Hofer, Werner A, Gao, HongJun. Alternating the Crystalline Structural Transition of Coronene Molecular Overlayers on Ag(110) through Temperature Increase. JOURNALOFPHYSICALCHEMISTRYC[J]. 2009, 113(41): 17643-17647, http://ir.iphy.ac.cn/handle/311004/33578.[112] Cai Li, Guo HaiMing, Zhu Xi, Du ShiXuan, Shi DongXia, Gao HongJun. Conductance switching mechanism of Rose Bengal organic thin films in ambient conditions. CHINESE PHYSICS B[J]. 2009, 18(4): 1622-1626, http://lib.cqvip.com/Qikan/Article/Detail?id=29813961.[113] 毛金海, 张海刚, 刘奇, 时东霞, 高鸿钧. Graphene的物理性质与器件应用. 物理[J]. 2009, 378-386, http://lib.cqvip.com/Qikan/Article/Detail?id=30718556.[114] 郭海明, 王业亮, 杜世萱, 时东霞, 申承民, 高鸿钧. 功能纳米结构的组装和物性调控. 物理[J]. 2008, 37(6): 412-415, http://lib.cqvip.com/Qikan/Article/Detail?id=27528374.[115] 时东霞, 丰敏, 季威, 杜世萱, 张德清, 朱道本, 高鸿钧. 基于Rotaxane类分子的稳定、重复、可反复擦写的纳米信息存储. 物理[J]. 2008, 37(1): 11-15, http://lib.cqvip.com/Qikan/Article/Detail?id=26434857.[116] Qin ZhiHui, Shi DongXia, Gao HongJun. Structural transformation of Ge dimers on Ge(001) surfaces induced by bias voltage. CHINESE PHYSICS B[J]. 2008, 17(12): 4580-4584, http://lib.cqvip.com/Qikan/Article/Detail?id=28937640.[117] 秦志辉, 时东霞, 庞世瑾, 高鸿钧. STM study of In nanostructures formation on Ge(001) surface at different coverages and temperatures. 中国物理:英文版[J]. 2008, 17(3): 1055-1059, http://lib.cqvip.com/Qikan/Article/Detail?id=26618913.[118] Qin ZhiHui, Shi DongXia, Pang ShiJin, Gao HongJun. STM study of In nanostructures formation on Ge(001) surface at different coverages and temperatures. CHINESE PHYSICS B[J]. 2008, 17(3): 1055-1059, http://lib.cqvip.com/Qikan/Article/Detail?id=26618913.[119] He XiaoBo, Yang TianZhong, Cai JinMing, Zhang ChenDong, Guo HaiMing, Shi DongXia, Shen ChengMin, Gao HongJun. Cathodoluminescent and electrical properties of an individual ZnO nanowire with oxygen vacancies. CHINESE PHYSICS B[J]. 2008, 17(9): 3444-3447, http://lib.cqvip.com/Qikan/Article/Detail?id=28238754.[120] 高鸿钧, 时东霞, 薛增泉. 物理“海马”、数学“海马”与生物“海马”. 物理[J]. 2008, 37(2): 79-85, http://lib.cqvip.com/Qikan/Article/Detail?id=26616065.[121] Pan, Yi, Shi, DongXia, Gao, HongJun. Formation of graphene on Ru(0001) surface. CHINESE PHYSICS[J]. 2007, 16(11): 3151-3153, http://ir.iphy.ac.cn/handle/311004/38401.[122] 蔡金明, 鲍丽宏, 郭伟, 蔡莉, 郇庆, 连季春, 郭海鸣, 王科志, 时东霞, 庞世谨, 高鸿钧. Low-Dimensional Forest-Like and Desert-Like Fractal Patterns Formed in a DDAN Molecular System. 中国物理快报:英文版[J]. 2007, 24(10): 2918-2921, http://lib.cqvip.com/Qikan/Article/Detail?id=25743013.[123] 路军岭, 高鸿钧, 时东霞, Shamil Shaikhutdinov, HansJoachim Freund. 原子尺度上的异质催化. 物理[J]. 2007, 36(5): 370-376, http://lib.cqvip.com/Qikan/Article/Detail?id=24424683.[124] Ma HaiFeng, Xu MingChun, Yang Bing, Shi DongXia, Guo HaiMing, Pang ShiJin, Gao HongJun. Formation and local electronic structure of e clusters on Si(111)-7x7 surfaces. CHINESE PHYSICS[J]. 2007, 16(9): 2661-2664, http://ir.iphy.ac.cn/handle/311004/38341.[125] 时东霞, 季威, 贺晓波, 高利, 程志海, 杜世萱, 庞世瑾, 高鸿钧. 通过不同烷基链取代调控喹吖啶酮分子在Ag(110)表面上的自组织结构. 物理[J]. 2007, 36(1): 11-14, http://lib.cqvip.com/Qikan/Article/Detail?id=23645366.[126] Feng, Min, Gao, Li, Deng, Zhitao, Ji, Wei, Guo, Xuefeng, Du, Shixuan, Shi, Dongxia, Zhang, Deqing, Zhu, Daoben, Gao, Hongjun. Reversible, erasable, and rewritable nanorecording on an H2 rotaxane thin film. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2007, 129(8): 2204-+, http://ir.iphy.ac.cn/handle/311004/52178.[127] 马海峰, 徐明春, 杨冰, 时东霞, 郭海明, 庞世瑾, 高鸿钧. Formation and local electronic structure of Ge clusters on Si(111)-7×7 surfaces. 中国物理:英文版[J]. 2007, 16(9): 2661-2664, http://lib.cqvip.com/Qikan/Article/Detail?id=25283575.[128] Ma HaiFeng, Xu MingChun, Yang Bing, Shi DongXia, Guo HaiMing, Pang ShiJin, Gao HongJun. Formation and local electronic structure of Ge clusters on Si(111)-7×7 surfaces. CHINESE PHYSICS[J]. 2007, 16(9): 2661-2664, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=3132126&detailType=1.[129] Lin, Xiao, He, Xiaobo, Lu, Junling, Gao, Li, Huan, Qing, Deng, Zhitao, Cheng, Zhihai, Shi, Dongxia, Gao, Hongjun. Manipulation and four-probe analysis of nanowires in UHV by application of four tunneling microscope tips: a new method for the investigation of electrical transport through nanowires. SURFACE AND INTERFACE ANALYSIS[J]. 2006, 38(6): 1096-1102, http://ir.iphy.ac.cn/handle/311004/41744.[130] Shi, D X, Ji, W, Lin, X, He, X B, Lian, J C, Gao, L, Cai, J M, Lin, H, Du, S X, Lin, F, Seidel, C, Chi, L F, Hofer, W A, Fuchs, H, Gao, H J. Role of lateral alkyl chains in modulation of molecular structures on metal surfaces. PHYSICAL REVIEW LETTERS[J]. 2006, 96(22): http://ir.iphy.ac.cn/handle/311004/52227.[131] 邓智滔, 高利, 林晓, 程志海, 贺晓波, 路军岭, 季威, 时东霞, 林海平, WA Hofer, 高鸿钧. 扫描隧道显微镜功能化针尖对分子能级的选择成像. 物理[J]. 2006, 35(12): 996-, http://ir.iphy.ac.cn/handle/311004/42909.[132] Qin, Zhihui, Shi, Dongxia, Ji, Wei, Pan, Shijin, Gao, HongJun. Processing of an atomically smooth Ge(001) surface on a large scale. NANOTECHNOLOGY[J]. 2006, 17(9): 2396-2398, http://ir.iphy.ac.cn/handle/311004/51483.[133] 时东霞, 巴德纯, 庞世瑾. SrTiO3斜切基片外延生长Yba2Cu3O7薄膜的扫描探针显微镜研究. 真空科学与技术[J]. 2002, 22: 100-, http://ir.iphy.ac.cn/handle/311004/53006.[134] 王业亮, 郭海明, 刘虹雯, 时东霞, 张昊旭, 高鸿钧. 纳米尺度的数据存储. 科学通报[J]. 2002, 47(17): 1281-1289, http://lib.cqvip.com/Qikan/Article/Detail?id=6775328.[135] 初明璋, 顾文琪, 张福安, 彭开武, 时东霞. 电子束投影曝光装置实验结果分析. 微细加工技术[J]. 2002, 23-27, http://lib.cqvip.com/Qikan/Article/Detail?id=7239604.[136] 高鸿钧, 解思深, 时东霞, 宋延林, 张昊旭, 庞世瑾. 有机单体3—phenyl—1—ureidonitrile薄膜的超高密度信息存储. 物理学报[J]. 2001, 50(2): 361-364, http://lib.cqvip.com/Qikan/Article/Detail?id=4920515.[137] 时东霞, 林晓, 高鸿钧, 张昊旭. 超高密度信息存储/分子存储及其存储机理. 物理[J]. 2001, 30(8): 453-455, http://lib.cqvip.com/Qikan/Article/Detail?id=5459998.[138] 姚建年, 江鹏, 时东霞, 张昊旭, 汪裕萍, 何声太, 庞世瑾, 高鸿钧, 解思深. 表面包敷1—壬基硫醇的银纳米粒子形成过程及其自组织有序阵列. 中国科学:A辑[J]. 2001, 31(6): 534-538, http://lib.cqvip.com/Qikan/Article/Detail?id=5412148.[139] 常香荣, 时东霞, 田中卓, 张秀芳, 张永平, 顾有松. 基体温度对碳氮薄膜成分和结构的影响. 北京科技大学学报[J]. 2000, 22(2): 160-162, http://lib.cqvip.com/Qikan/Article/Detail?id=4212956.[140] 张永平, 袁磊, 张秀芳, 常香荣, 田中卓, 时东霞, 顾有松. 用MPCVD法制备氮化碳薄膜(英文). 人工晶体学报[J]. 2000, 29(3): 234-, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=726578&detailType=1.[141] 顾有松, 时东霞. 用MPCVD法制备氮化碳薄膜. 人工晶体学报[J]. 2000, 29(3): 234-239, http://lib.cqvip.com/Qikan/Article/Detail?id=4460499.[142] 时东霞, 张永平, 陈难先, 顾有松, 袁磊, 张秀芳, 田中卓, 常香荣. C3N4硬膜的人工合成和鉴定. 中国科学:A辑[J]. 1999, 29(8): 757-768, http://lib.cqvip.com/Qikan/Article/Detail?id=3830517.[143] 顾有松, 张永平, 常香荣, 田中卓, 陈难先, 时东霞, 张秀芳, 袁磊. C3N4硬膜的人工合成和鉴定. 中国科学:A辑[J]. 1999, 29(8): 757-768, http://lib.cqvip.com/Qikan/Article/Detail?id=3830517.[144] 时东霞, 袁磊, 常香荣, 顾有松, 张秀芳, 张永平, 田中卓. 理论预言的氮化碳超硬膜研究新进展. 物理[J]. 1999, 28(8): 479-, http://lib.cqvip.com/Qikan/Article/Detail?id=3729467.[145] 时东霞, 顾有松. MPCVD合成β—C3N4晶态薄膜. 真空[J]. 1999, 18-22, http://lib.cqvip.com/Qikan/Article/Detail?id=3394262.[146] 陈秀兰, 曾呈奎, 张玉忠, 周百成, 刘洁, 时东霞, 庞世瑾. 钝顶螺旋藻中一种新的模型藻胆体. 中国科学:C辑[J]. 1999, 29(2): 145-, http://lib.cqvip.com/Qikan/Article/Detail?id=3472068.[147] 时东霞, 顾有松. MPCVD法在Si衬底上生成β—C3N4晶态薄膜的研究. 真空科学与技术[J]. 1999, 19(A10): 77-80, http://lib.cqvip.com/Qikan/Article/Detail?id=3833057.
科研活动
科研项目
1. 国家科技部重大研究计划子课题“CTM存储材料的表征方法和性能研究”430万,2010- 2014,负责人;
2. 国家科技部863项目“用于介观体系电学、电光和力学特性研究的探针测试系统的研制”95万 ,2008- 2010, 负责人;
3. 国家自然科学基金中德重大国际合作项目子课题“多层次的分子组装体-结构、动态与功能”50万,2008- 2011,负责人;
4. 中科院创新工程重要方向性项目子课题“石墨烯的原型器件与应用探索”75万,2009- 2012,负责人;
5. 国家自然科学基金面上项目“基于新型rotaxane 分子薄膜的超高密度信息存储”35万,2008- 2010, 负责人;
6. 国家自然科学基金面上项目“功能分子-纳米金属粒子的制备及在单电子器件中的应用”28万,2003- 2005, 负责人;
7. 国家自然科学基金重点项目“四探针STM构建纳电子器件结构单元及其电子学特性研究”100万,2005- 2008,副组长。
2. 国家科技部863项目“用于介观体系电学、电光和力学特性研究的探针测试系统的研制”95万 ,2008- 2010, 负责人;
3. 国家自然科学基金中德重大国际合作项目子课题“多层次的分子组装体-结构、动态与功能”50万,2008- 2011,负责人;
4. 中科院创新工程重要方向性项目子课题“石墨烯的原型器件与应用探索”75万,2009- 2012,负责人;
5. 国家自然科学基金面上项目“基于新型rotaxane 分子薄膜的超高密度信息存储”35万,2008- 2010, 负责人;
6. 国家自然科学基金面上项目“功能分子-纳米金属粒子的制备及在单电子器件中的应用”28万,2003- 2005, 负责人;
7. 国家自然科学基金重点项目“四探针STM构建纳电子器件结构单元及其电子学特性研究”100万,2005- 2008,副组长。
指导学生
协助培养研究生数名。计划每年招收硕博联读生、博士生1-2名。