杜增丰  男    中国科学院海洋研究所
电子邮件: duzengfeng@qdio.ac.cn
通信地址: 山东省青岛市市南区南海路7号
邮政编码:

招生信息

   
招生专业
070704-海洋地质
085700-资源与环境
070702-海洋化学
招生方向
海洋沉积学
海洋地质工程

教育背景

2010-09--2015-06   中国海洋大学   博士
2006-09--2010-06   中国海洋大学   学士

工作经历

   
工作简历
2022-09~现在, 中国科学院海洋研究所, 副研究员
2015-07~2022-09,中国科学院海洋研究所, 助理研究员
社会兼职
2023-05-22-今,中国光学工程学会, 会员
2020-12-24-今,青岛地质学会会员, 会员

专利与奖励

   
奖励信息
(1) 海洋科学技术奖一等奖-深海冷泉生态系统原位探测技术研发与科学应用, 一等奖, 部委级, 2022
专利成果
( 1 ) 缆控海底沉积物声温同步探测取样装置及方法, 发明专利, 2022, 第 6 作者, 专利号: CN114216516A

( 2 ) 沉积物样品管顶出装置, 发明专利, 2022, 第 10 作者, 专利号: CN114047023A

( 3 ) 立式沉积物取样管连接结构, 发明专利, 2022, 第 10 作者, 专利号: CN114047028A

( 4 ) 沉积物样品防滑落装置及取样管装置, 发明专利, 2022, 第 10 作者, 专利号: CN114001998A

( 5 ) 沉积物取样刀头, 发明专利, 2022, 第 10 作者, 专利号: CN113984438A

( 6 ) 一种适用于水下的高光谱成像分析仪, 发明专利, 2021, 第 1 作者, 专利号: CN214374259U

( 7 ) 适用于深海高温热液流体的耐腐蚀拉曼探头装置, 实用新型, 2021, 第 1 作者, 专利号: CN213749615U

( 8 ) 适用于水下的高光谱成像分析仪, 发明专利, 2021, 第 1 作者, 专利号: CN112816420A

( 9 ) 深水可视可控轻型沉积物柱状取样系统释放机构, 外观设计, 2021, 第 5 作者, 专利号: CN212568037U

( 10 ) 适用于深海高温热液流体的耐腐蚀拉曼探头装置及方法, 发明专利, 2021, 第 1 作者, 专利号: CN112240882A

( 11 ) 一种显微可视化高温高压拉曼反应舱, 外观设计, 2021, 第 2 作者, 专利号: CN212301280U

( 12 ) 一种立式沉积物取样管快速连接结构, 外观设计, 2021, 第 4 作者, 专利号: CN212300888U

( 13 ) 一种显微可视化低温高压拉曼反应舱, 外观设计, 2020, 第 2 作者, 专利号: CN212159529U

( 14 ) 一种沉积物泥样采集防脱芯装置, 外观设计, 2020, 第 4 作者, 专利号: CN212159169U

( 15 ) 一种可监测pH参数的拉曼反应舱, 实用新型, 2020, 第 3 作者, 专利号: CN211576964U

( 16 ) 显微可视化高温高压拉曼反应舱, 发明专利, 2020, 第 2 作者, 专利号: CN111562217A

( 17 ) 显微可视化低温高压拉曼反应舱, 发明专利, 2020, 第 2 作者, 专利号: CN111521555A

( 18 ) 深水可视可控轻型沉积物柱状取样系统释放机构及方法, 发明专利, 2020, 第 5 作者, 专利号: CN111521435A

( 19 ) 基于ROV的深海贻贝等大型生物切割式原位固定装置, 实用新型, 2020, 第 8 作者, 专利号: CN211235013U

( 20 ) 一种基于ROV的深海剖面微小生物及沉积物捕获器, 实用新型, 2020, 第 3 作者, 专利号: CN211235003U

( 21 ) 一种适用于拉曼光谱面扫描检测方法的过滤杯和过滤装置, 实用新型, 2020, 第 5 作者, 专利号: CN211122540U

( 22 ) 基于ROV的深海贻贝等大型生物挤压式原位固定装置, 发明专利, 2020, 第 7 作者, 专利号: CN211042749U

( 23 ) 一种基于ROV的流体样品抽滤装置, 实用新型, 2020, 第 1 作者, 专利号: CN210322442U

( 24 ) 基于ROV的深海多通道原位流体取样过滤装置, 实用新型, 2020, 第 2 作者, 专利号: CN210071392U

( 25 ) 基于ROV的深海贻贝等大型生物挤压式原位固定装置及其固定方法, 发明专利, 2020, 第 7 作者, 专利号: CN110763502A

( 26 ) 基于ROV的深海贻贝等大型生物切割式原位固定装置及其固定方法, 发明专利, 2020, 第 8 作者, 专利号: CN110763503A

( 27 ) 一种过滤杯、过滤装置及其在拉曼光谱面扫描检测方法中的应用, 发明专利, 2020, 第 5 作者, 专利号: CN110726714A

( 28 ) 一种基于ROV的流体样品抽滤装置及其使用方法, 发明专利, 2019, 第 1 作者, 专利号: CN110286000A

( 29 ) 基于ROV的深海多通道原位流体取样过滤装置及方法, 发明专利, 2019, 第 2 作者, 专利号: CN109932211A

( 30 ) 一种拉曼反应舱, 实用新型, 2019, 第 3 作者, 专利号: CN208607144U

( 31 ) 一种深海极端环境模拟系统, 实用新型, 2019, 第 3 作者, 专利号: CN208607151U

( 32 ) 一种深海极端环境模拟系统, 发明专利, 2018, 第 3 作者, 专利号: CN108760720A

( 33 ) 基于ROV的深海流体保真取样器的多通阀体机构, 实用新型, 2018, 第 6 作者, 专利号: CN207717416U

( 34 ) 基于ROV的深海原位流体高通量采样器, 实用新型, 2018, 第 7 作者, 专利号: CN207623060U

( 35 ) 一种基于ROV的储能式保真取样钢瓶, 实用新型, 2018, 第 6 作者, 专利号: CN207623059U

( 36 ) 一种基于ROV的全方位水下短距钻机取样器, 实用新型, 2018, 第 6 作者, 专利号: CN207620787U

( 37 ) 一种基于ROV的储能式保真取样钢瓶及其取样方法, 发明专利, 2018, 第 6 作者, 专利号: CN107991133A

( 38 ) 基于ROV的深海原位流体高通量采样器及其取样方法, 发明专利, 2018, 第 7 作者, 专利号: CN107966321A

( 39 ) 一种基于ROV的全方位水下短距钻机取样器及其取样方法, 发明专利, 2018, 第 6 作者, 专利号: CN107965317A

( 40 ) 一种基于ROV的深海流体保真取样器的多通阀体机构, 发明专利, 2018, 第 6 作者, 专利号: CN107957351A

( 41 ) 深海保温保压舱的转向开关盖机构, 实用新型, 2017, 第 4 作者, 专利号: CN206174745U

( 42 ) 深海样品保真转运器, 实用新型, 2017, 第 4 作者, 专利号: CN206172216U

( 43 ) 深海保温保压舱的自锁式保压封盖, 实用新型, 2017, 第 4 作者, 专利号: CN206146662U

( 44 ) 一种深海保温保压舱的自锁式保压封盖, 发明专利, 2017, 第 4 作者, 专利号: CN106501017A

( 45 ) 一种深海样品保真转运器, 发明专利, 2017, 第 4 作者, 专利号: CN106429020A

( 46 ) 一种深海保温保压舱的转向开关盖机构, 专利授权, 2017, 第 4 作者, 专利号: CN106285282A

出版信息

   
发表论文
[1] Lihui Ren, Ye Tian, Xiaoying Yang, Qi Wang, Leshan Wang, Xin Geng, Kaiqiang Wang, Zengfeng Du, Ying Li, Hong Lin. Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods. FOOD CHEMISTRY. 2023, 400: http://dx.doi.org/10.1016/j.foodchem.2022.134043.
[2] Shichuan Xi, Qinglei Sun, Ruifang Huang, Zhendong Luan, Zengfeng Du, Lianfu Li, Xin Zhang. Different magmatic–hydrothermal fluid components support distinct microbial communities: evidence from in situ detection. Journal of Geophysical Research: Oceans[J]. 2023, 128(5): [3] Wanying He, Ruining Cai, Shichuan Xi, Ziyu Yin, Zengfeng Du, Zhendong Luan, Xin Zhang. Confocal Raman quantitative 3D imaging facilitates the study of microbial sulfur metabolism in a real-time pathway. MICROBIOLOGY SPECTRUM[J]. 2023, 11(2): [4] Siyu Wang, Ruhao Pan, Wanying He, Lianfu Li, Yang Yang, Zengfeng Du, Zhendong Luan, Xin Zhang. In situ surface-enhanced Raman scattering detection of biomolecular in deep ocean. Applied Surface Science[J]. 2023, 620: [5] Zengfeng Du, Xiong Zhang, Chao Lian, Zhendong Luan, Shichuan Xi, Lianfu Li, Liang Ma, Jianxing Zhang, Wenzao Zhou, Xiufeng Chen, Zhijun Lu, Chuanbo Wang, Yu Chen, Jun Yan, Xin Zhang. The development and applications of a controllable lander for in-situ, long-term observation of deep sea chemosynthetic communities. DEEP-SEA RESEARCH PART I[J]. 2023, 193: http://dx.doi.org/10.1016/j.dsr.2022.103960.
[6] Lianfu Li, Zhendong Luan, Zengfeng Du, Shichuan Xi, Jun Yan, Xin Zhang. In situ Raman observation reveal that gas fluxes of diffuse flow in hydrothermal systems are greatly underestimated. GEOLOGY[J]. 2023, 51(4): 372-376, [7] Lianfu Li, Zimeng Li, Richen Zhong, Zengfeng Du, Zhendong Luan, Shichuan Xi, Xin Zhang. Direct H2S, HS- and pH measurements of high-temperature hydrothermal vent fluids with in situ Raman spectroscopy. Geophysical Research Letters[J]. 2023, 50(9): [8] Du, Zengfeng, Xi, Shichuan, Luan, Zhendong, Li, Lianfu, Ma, Liang, Zhang, Xiong, Zhang, Jianxing, Lian, Chao, Yan, Jun, Zhang, Xin. Development and deployment of lander-based multi-channel Raman spectroscopy for in-situ long-term experiments in extreme deep-sea environment. DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS[J]. 2022, 190: http://dx.doi.org/10.1016/j.dsr.2022.103890.
[9] 张建兴, 宋永东, 杜增丰, 马小川, 栾振东, 张鑫, 阎军. SeaBeam 3030多波束系统在南海冷泉调查中的应用. 海洋科学[J]. 2022, 46(1): 154-162, http://lib.cqvip.com/Qikan/Article/Detail?id=7106492418.
[10] Wang, Bing, Du, Zengfeng, Luan, Zhendong, Zhang, Xin, Wang, Minxiao, Wang, Xiujuan, Lian, Chao, Yan, Jun. Seabed features associated with cold seep activity at the Formosa Ridge, South China Sea: Integrated application of high-resolution acoustic data and photomosaic images. DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS[J]. 2021, 177: http://dx.doi.org/10.1016/j.dsr.2021.103622.
[11] Ge, Meng, Li, Lianfu, Zhang, Xin, Luan, Zhendong, Du, Zengfeng, Xi, Shichuan, Yan, Jun. A Piecewise Model for In Situ Raman Measurement of the Chlorinity of Deep-Sea High-Temperature Hydrothermal Fluids. APPLIED SPECTROSCOPY[J]. 2021, 75(9): 1178-1188, http://dx.doi.org/10.1177/0003702821999114.
[12] 杜增丰, 连超, 席世川, 栾振东, 张鑫, 阎军. 基于“发现”号缆控水下机器人的深海原位探测/取样/实验技术研发与科学应用. 现代物理知识[J]. 2021, 33(1): 14-18, http://lib.cqvip.com/Qikan/Article/Detail?id=7104387577.
[13] Li, Lianfu, Zhang, Xin, Luan, Zhendong, Du, Zengfeng, Xi, Shichuan, Yan, Jun. The impacts of elevated temperature and mNaCl for in situ Raman quantitative calibration of dissolved gas species. CHEMICAL GEOLOGY[J]. 2021, 583: http://dx.doi.org/10.1016/j.chemgeo.2021.120490.
[14] Sun, QingLei, Zhang, Jian, Wang, MinXiao, Cao, Lei, Du, ZengFeng, Sun, YuanYuan, Liu, ShiQi, Li, ChaoLun, Sun, Li. High-Throughput Sequencing Reveals a Potentially Novel Sulfurovum Species Dominating the Microbial Communities of the Seawater-Sediment Interface of a Deep-Sea Cold Seep in South China Sea. MICROORGANISMS[J]. 2020, 8(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000540222300068.
[15] Li, Lianfu, Zhang, Xin, Luan, Zhendong, Du, Zengfeng, Xi, Shichuan, Wang, Bing, Cao, Lei, Lian, Chao, Yan, Jun. In situ Raman quantitative detection of methane concentrations in deep-sea high-temperature hydrothermal vent fluids. JOURNAL OF RAMAN SPECTROSCOPY[J]. 2020, 51(11): 2328-2337, http://dx.doi.org/10.1002/jrs.5981.
[16] Xi, Shichuan, Zhang, Xin, Luan, Zhendong, Du, Zengfeng, Li, Lianfu, Wang, Bing, Lian, Chao, Yan, Jun. Biogeochemical implications of chemosynthetic communities on the evolution of authigenic carbonates. DEEPSEARESEARCHPARTIOCEANOGRAPHICRESEARCHPAPERS[J]. 2020, 162: http://dx.doi.org/10.1016/j.dsr.2020.103305.
[17] 梁政委, 杜增丰, 李超伦, 王敏晓, 王冰, 张鑫, 阎军. 贻贝足的共聚焦显微拉曼光谱分析. 光谱学与光谱分析[J]. 2020, 40(3): 755-759, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=GUAN202003021&v=MjcxNjBGckNVUjdxZVorZHBGaWpoVzcvS0lqaktZTEc0SE5ITXJJOUhaWVI4ZVgxTHV4WVM3RGgxVDNxVHJXTTE=.
[18] Li, Lianfu, Zhang, Xin, Luan, Zhendong, Du, Zengfeng, Xi, Shichuan, Wang, Bing, Lian, Chao, Cao, Lei, Yan, Jun. Hydrothermal Vapor-Phase Fluids on the Seafloor: Evidence From In Situ Observations. GEOPHYSICAL RESEARCH LETTERS[J]. 2020, 47(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000560371700026.
[19] 崔楠楠, 杜增丰, 张鑫, 栾振东, 席世川, 李连福, 王敏晓, 王冰, 梁政委, 刘靖, 连超, 阎军. 共聚焦拉曼光谱在贻贝介壳探测中的应用. 光谱学与光谱分析[J]. 2020, 40(3): 750-754, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=GUAN202003020&v=MDAwNDFyQ1VSN3FlWitkcEZpamhXci9CSWpqS1lMRzRITkhNckk5SFpJUjhlWDFMdXhZUzdEaDFUM3FUcldNMUY=.
[20] Du, Zengfeng, Zhang, Xin, Xue, Boyang, Luan, Zhendong, Yan, Jun. The applications of the in situ laser spectroscopy to the deep-sea cold seep and hydrothermal vent system. SOLID EARTH SCIENCES[J]. 2020, 5(3): 153-168, http://dx.doi.org/10.1016/j.sesci.2020.06.001.
[21] 王冰, 宋永东, 杜增丰, 李超伦, 张建兴, 栾振东, 张鑫, 连超, 阎军. 基于“发现”号ROV的近海底综合声学调查系统及其在台西南冷泉调查中的应用. 海洋与湖沼[J]. 2020, 51(4): 889-898, http://lib.cqvip.com/Qikan/Article/Detail?id=7102346661.
[22] Zhang, Xin, Li, LianFu, Du, ZengFeng, Hao, XiLuo, Cao, Lei, Luan, ZhenDong, Wang, Bing, Xi, ShiChuan, Lian, Chao, Yan, Jun, Sun, WeiDong. Discovery of supercritical carbon dioxide in a hydrothermal system. SCIENCE BULLETIN[J]. 2020, 65(11): 958-964, http://dx.doi.org/10.1016/j.scib.2020.03.023.
[23] Tian, Zhixian, Zhang, Xin, Liu, Changling, Meng, Qingguo, Du, Zengfeng, Yan, Jun. Characterization of the Influence of Hydrated Ions on the Oxygen-Hydrogen Stretching Vibration of Water by Raman Spectroscopy. ANALYTICAL LETTERS[J]. 2020, 53(13): 2034-2046, https://www.webofscience.com/wos/woscc/full-record/WOS:000514954100001.
[24] Liu Jing, Zhang Xin, Du Zengfeng, Luan Zhendong, Li Lianfu, Xi Shichuan, Wang Bing, Cao Lei, Yan Jun. Application of confocal laser Raman spectroscopy on marine sediment microplastics. JOURNAL OF OCEANOLOGY AND LIMNOLOGY[J]. 2020, 38(5): 1502-1516, http://lib.cqvip.com/Qikan/Article/Detail?id=7102940541.
[25] 杜增丰, 张鑫, 郑荣儿. 拉曼光谱技术在深海原位探测中的研究进展. 大气与环境光学学报[J]. 2020, 15(1): 2-12, http://lib.cqvip.com/Qikan/Article/Detail?id=7101307558.
[26] Li, Leilei, Wang, Minxiao, Li, Lifeng, Du, Zengfeng, Sun, Yan, Wang, Xiaocheng, Zhang, Xin, Li, Chaolun. Endosymbionts of Metazoans Dwelling in the PACManus Hydrothermal Vent: Diversity and Potential Adaptive Features Revealed by Genome Analysis. APPLIED AND ENVIRONMENTAL MICROBIOLOGY[J]. 2020, 86(21): http://dx.doi.org/10.1128/AEM.00815-20.
[27] Xi, Shichuan, Zhang, Xin, Luan, Zhendong, Du, Zengfeng, Li, Lianfu, Liang, Zhengwei, Lian, Chao, Yan, Jun. Micro-Raman Study of Thermal Transformations of Sulfide and Oxysalt Minerals Based on the Heat Induced by Laser. MINERALS[J]. 2019, 9(12): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000506636900035.
[28] 王冰, 宋永东, 杜增丰, 李超伦, 张建兴, 杨慧良, 栾振东, 张鑫, 连超, 阎军. 水下激光扫描成像系统及其在冷泉研究中的应用. 海洋地质前沿[J]. 2019, 35(11): 60-65, http://lib.cqvip.com/Qikan/Article/Detail?id=7101005920.
[29] Du, Zengfeng, Zhang, Xin, Xi, Shichuan, Li, Lianfu, Luan, Zhendong, Lian, Chao, Wang, Bing, Yan, Jun. In situ Raman spectroscopy study of synthetic gas hydrate formed by cold seep flow in the South China Sea. JOURNAL OF ASIAN EARTH SCIENCES[J]. 2018, 168: 197-206, http://www.irgrid.ac.cn/handle/1471x/2486119.
[30] Li, Lianfu, Zhang, Xin, Luan, Zhendong, Du, Zengfeng, Xi, Shichuan, Wang, Bing, Cao, Lei, Lian, Chao, Yan, Jun. In Situ Quantitative Raman Detection of Dissolved Carbon Dioxide and Sulfate in Deep-Sea High-Temperature Hydrothermal Vent Fluids. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS[J]. 2018, 19(6): 1809-1823, http://ir.qibebt.ac.cn/handle/337004/11721.
[31] Li, Lianfu, Zhang, Xin, Luan, Zhendong, Du, Zengfeng, Xi, Shichuan, Wang, Bing, Lian, Chao, Yan, Jun. A New Approach to Measuring the Temperature of Fluids Reaching 300 celcius and 2 mol/kg NaCl Based on the Raman Shift of Water. APPLIED SPECTROSCOPY[J]. 2018, 72(11): 1621-1631, http://ir.qibebt.ac.cn/handle/337004/11031.
[32] 席世川, 张鑫, 杜增丰, 栾振东, 李连福, 王冰, 梁政委, 连超, 阎军. 硫酸根拉曼频移用于深海热液温度探测的方法探讨. 光谱学与光谱分析[J]. 2018, 38(11): 3390-3394, http://lib.cqvip.com/Qikan/Article/Detail?id=7000902787.
[33] 王冰, 栾振东, 张鑫, 杜增丰, 席世川, 李连福, 连超, 梁政委, 阎军. 福尔摩沙海脊冷泉区海底表征规模及其分布规律. 海洋地质前沿[J]. 2018, 34(6): 1-7, http://lib.cqvip.com/Qikan/Article/Detail?id=675761556.
[34] Li, Lianfu, Du, Zengfeng, Zhang, Xin, Xi, Shichuan, Wang, Bing, Luan, Zhendong, Lian, Chao, Yan, Jun. In Situ Raman Spectral Characteristics of Carbon Dioxide in a Deep-Sea Simulator of Extreme Environments Reaching 300℃ and 30MPa. APPLIED SPECTROSCOPY[J]. 2018, 72(1): 48-59, http://ir.qdio.ac.cn/handle/337002/154307.
[35] Li, Lianfu, Zhang, Xin, Luan, Zhendong, Du, Zengfeng, Xi, Shichuan, Wang, Bing, Cao, Lei, Lian, Chao, Yan, Jun. Raman vibrational spectral characteristics and quantitative analysis of H-2 up to 400 degrees C and 40MPa. JOURNAL OF RAMAN SPECTROSCOPY[J]. 2018, 49(10): 1722-1731, http://ir.qdio.ac.cn/handle/337002/156550.
[36] Du, Zengfeng, Zhang, Xin, Luan, Zhendong, Wang, Minxiao, Xi, Shichuan, Li, Lianfu, Wang, Bing, Cao, Lei, Lian, Chao, Li, Chaolun, Yan, Jun. In situ Raman Quantitative Detection of the Cold Seep Vents and Fluids in the Chemosynthetic Communities in the South China Sea. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS[J]. 2018, 19(7): 2049-2061, http://ir.qibebt.ac.cn/handle/337004/11999.
[37] Xi, Shichuan, Zhang, Xin, Luan, Zhendong, Du, Zengfeng, Li, Lianfu, Wang, Bing, Cao, Lei, Lian, Chao, Yan, Jun. A Direct Quantitative Raman Method for the Measurement of Dissolved Bisulfate in Acid-Sulfate Fluids. APPLIED SPECTROSCOPY[J]. 2018, 72(8): 1234-1243, http://ir.qibebt.ac.cn/handle/337004/11975.
[38] Xi, Shichuan, Zhang, Xin, Du, Zengfeng, Li, Lianfu, Wang, Bing, Luan, Zhendong, Lian, Chao, Yan, Jun. Laser Raman detection of authigenic carbonates from cold seeps at the Formosa Ridge and east of the Pear River Mouth Basin in the South China Sea. JOURNAL OF ASIAN EARTH SCIENCES[J]. 2018, 168: 207-224, http://ir.qdio.ac.cn/handle/337002/155754.
[39] Zhang, Xin, Du, Zengfeng, Zheng, Ronger, Luan, Zhendong, Qi, Fujun, Cheng, Kai, Wang, Bing, Ye, Wangquan, Liu, Xiaorui, Lian, Chao, Chen, Changan, Guo, Jinjia, Li, Ying, Yan, Jun. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids. DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS[J]. 2017, 123: 1-12, http://ir.qdio.ac.cn/handle/337002/137096.
[40] Zhang, Xin, Du, Zengfeng, Luan, Zhendong, Wang, Xiujuan, Xi, Shichuan, Wang, Bing, Li, Lianfu, Lian, Chao, Yan, Jun. In Situ Raman Detection of Gas Hydrates Exposed on the Seafloor of the South China Sea. GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS[J]. 2017, 18(10): 3700-3713, http://ir.qdio.ac.cn/handle/337002/143040.
发表著作
(1) South China Sea Seeps (Chapter 14): In Situ Detection and Seafloor Observation of the Site F Cold Seep, Springer Nature Singapore Pte Ltd., 2023-05, 第 3 作者

科研活动

   
科研项目
( 1 ) 深海冷泉喷口流体中多相态甲烷的拉曼光谱定量分析方法研究及科学应用, 负责人, 国家任务, 2021-01--2023-12
( 2 ) 沉积物中稀土元素LIBS光谱探测系统实 验室原理样机研制和技术验证, 负责人, 其他任务, 2021-12--2024-12
参与会议
(1) 基于原位数据的甲烷通量计算新思路 -以我国南海冷泉区为例   第六届青年地学论坛   2019-10-12
(2)A New Insight into the Geochemical Analysis of Cold Seeps in the South China Sea   2019-08-18
(3)In situ Raman detection of gas hydrate in the South China Sea   2018-10-22
(4)Raman spectroscopy study of properties of gas hydrate formed by cold seep flow in the South China Sea   2018-06-10