基本信息
王德强  男  博导  中国科学院重庆绿色智能技术研究院
电子邮件: dqwang@cigit.ac.cn
通信地址: 重庆市北碚区方正大道266号
邮政编码: 400714

研究领域

纳米孔单分子检测技术;固体纳米孔DNA测序技术;蛋白质分子检测与测序技术;分子手性检测;

招生信息

希望招收能够从事固体纳米孔单分子技术研究的研究生,具有物理学、化学、电子工程、光学、生物物理学等背景

招生专业
080300-光学工程
071011-生物物理学
0703J1-纳米科学与技术
招生方向
纳米孔,DNA测序,单分子检测技术
生物传感器,微纳米加工技术
量子生物光电子学

教育背景

2001-09--2006-07   中国科学院微电子研究所   博士学位
1997-09--2001-07   吉林大学   学士学位
学历
博士

学位

博士

工作经历

2014- 中国科学院重庆绿色智能技术研究院

工作简历
2010-10~2014-03,美国IBM T.J.Watson Research Center, 研究科学家
2008-12~2010-10,美国University of Illinois(UIUC), 博士后
2007-05~2008-12,美国University of Texas, Arlington, 博士后

专利与奖励

   
专利成果
( 1 ) 一种检测miRNA标志物的复合锁核酸磁珠探针、构建方法及包含此探针的诊断试剂, 发明专利, 2022, 第 8 作者, 专利号: CN114107503A

( 2 ) 一种基于残差自编码器卷积神经网络的固态纳米孔测序电信号降噪处理方法, 发明专利, 2021, 第 2 作者, 专利号: CN113743301A

( 3 ) 一种限域介电击穿固态纳米孔器件的制备方法及其产品和应用, 发明专利, 2021, 第 1 作者, 专利号: CN113548641A

( 4 ) 一种液相微纳加工方法和设备, 专利授权, 2021, 第 2 作者, 专利号: CN112034741B

( 5 ) 一种基于氮化硅(SiNx)固态纳米孔检测HIV-1 P24抗原的方法及装置, 发明专利, 2021, 第 1 作者, 专利号: CN113219015A

( 6 ) 基于固态纳米孔的HIV-1抗体检测装置及方法, 发明专利, 2021, 第 2 作者, 专利号: CN113176322A

( 7 ) 基于固态纳米孔的HIV-1抗体+抗原检测装置及方法, 发明专利, 2021, 第 2 作者, 专利号: CN113176323A

( 8 ) 一种基于纳米操纵的纳米孔测序方法, 发明专利, 2021, 第 2 作者, 专利号: CN112941160A

( 9 ) 基于复合固态纳米孔单分子技术的C反应蛋白检测方法, 发明专利, 2021, 第 3 作者, 专利号: CN112834757A

( 10 ) 一种全血HIV检测装置, 发明专利, 2021, 第 3 作者, 专利号: CN112782399A

( 11 ) 一种基于纳米孔的体外HIV蛋白酶检测仪器, 发明专利, 2021, 第 3 作者, 专利号: CN112345771A

( 12 ) 一种电化学免疫检测新型冠状病毒试剂盒的制备方法和产品及其使用方法, 发明专利, 2021, 第 2 作者, 专利号: CN112326749A

( 13 ) 一种双面氦离子束刻蚀制备近零厚度纳米孔的方法及其产品和应用, 发明专利, 2021, 第 1 作者, 专利号: CN112198194A

( 14 ) 一种基于真空法的玻璃针尖纳米孔充灌装置及其使用方法, 发明专利, 2020, 第 2 作者, 专利号: CN112146956A

( 15 ) 一种纳米晶石墨纳米孔检测芯片及其制备方法和应用, 发明专利, 2020, 第 2 作者, 专利号: CN112014430A

( 16 ) 基于纳米孔的体外HIV蛋白酶检测仪器, 实用新型, 2020, 第 1 作者, 专利号: CN211374784U

( 17 ) 一种检测miRNA分子的磁性微球DNA探针的构建方法及其产品和应用, 发明专利, 2020, 第 8 作者, 专利号: CN111549100A

( 18 ) 固态纳米孔高密度编码DNA数字存储读取方法, 发明专利, 2020, 第 2 作者, 专利号: CN111489791A

( 19 ) 近零厚度纳米孔制备及DNA测序方法, 发明专利, 2020, 第 1 作者, 专利号: CN111440855A

( 20 ) 一种基于纳米通道的抗体单分子检测系统, 发明专利, 2020, 第 2 作者, 专利号: CN210953911U

( 21 ) 一种基于纳米孔水解反应的免疫球蛋白M检测方法, 发明专利, 2020, 第 1 作者, 专利号: CN111323469A

( 22 ) 一种调控和动态监测G-四联体构象变化的纳米孔体系和方法, 发明专利, 2020, 第 3 作者, 专利号: CN111289586A

( 23 ) 一种用于DNA测序的通道结构及其制备和测序的方法, 发明专利, 2020, 第 1 作者, 专利号: CN111154848A

( 24 ) 一种微生物固化铬渣的方法, 发明专利, 2020, 第 2 作者, 专利号: CN110812772A

( 25 ) 一种基于纳米通道的抗体单分子检测系统及方法, 发明专利, 2019, 第 2 作者, 专利号: CN110554079A

( 26 ) 一种自动精确定位制备固态纳米孔阵列的系统及方法, 发明专利, 2019, 第 2 作者, 专利号: CN110436406A

( 27 ) 基于纳米孔的体外HIV蛋白酶检测仪器及方法, 发明专利, 2019, 第 1 作者, 专利号: CN110346579A

( 28 ) 一种基于针尖纳米孔单分子检测技术的实时监控酶切反应的方法, 发明专利, 2019, 第 2 作者, 专利号: CN110132921A

( 29 ) 基于表面增强拉曼散射光谱的蓝绿藻种群竞争化感作用机制研究方法, 发明专利, 2019, 第 2 作者, 专利号: CN109991208A

( 30 ) 基于固态纳米孔检测超低浓度分子标志物的方法及装置, 发明专利, 2019, 第 1 作者, 专利号: CN109554452A

( 31 ) 一种动态监测G-四联体形成过程的纳米孔单分子体系及其监测方法和应用, 发明专利, 2019, 第 3 作者, 专利号: CN109557157A

( 32 ) 基于氧化锌纳米线的微囊藻毒素传感器及制备方法、应用, 发明专利, 2019, 第 2 作者, 专利号: CN109490262A

( 33 ) 一种基于固态纳米孔技术的多糖单分子结构解析方法, 专利授权, 2019, 第 3 作者, 专利号: CN109358106A

( 34 ) 氧化锌纳米线/二茂铁基聚噻吩复合材料、金电极及其制备方法, 发明专利, 2019, 第 2 作者, 专利号: CN109301073A

( 35 ) 亚纳米多孔石墨烯渗透膜及其制备方法和应用, 专利授权, 2019, 第 1 作者, 专利号: CN109224881A

( 36 ) 一种基于微流控的纳米孔分离或检测结构, 专利授权, 2018, 第 2 作者, 专利号: CN108579831A

( 37 ) 一种基于常压化学气相沉积的大面积单层二硫化钨薄膜的制备方法和产品, 专利授权, 2018, 第 2 作者, 专利号: CN108559972A

( 38 ) 一种基于适配体-纳米金传感的纳米孔检测微囊藻毒素的新方法, 发明专利, 2018, 第 2 作者, 专利号: CN108344863A

( 39 ) 一种用于拉曼光谱表征的局域电磁场增强器件及其制备方法、应用和使用方法, 发明专利, 2018, 第 2 作者, 专利号: CN108226133A

( 40 ) 一种基于藻细胞特征拉曼散射的水环境扰动评估方法, 发明专利, 2018, 第 2 作者, 专利号: CN107941783A

( 41 ) 一种适用于复杂样品环境中拉曼痕量检测的芯片及其制备方法和使用方法, 专利授权, 2018, 第 2 作者, 专利号: CN107907529A

( 42 ) 一种基于纳米管的纳米孔检测系统, 实用新型, 2018, 第 2 作者, 专利号: CN206892027U

( 43 ) 带DNA分子探针的石墨烯微电极电化学检测传感器, 专利授权, 2017, 第 1 作者, 专利号: CN107167507A

( 44 ) 一种用于痕量微囊藻毒素检测的多孔阵列电磁场增强SERS器件、制备方法及检测方法, 专利授权, 2017, 第 2 作者, 专利号: CN107121423A

( 45 ) 一种基于纳米管的纳米孔检测系统及其制备方法和应用, 专利授权, 2017, 第 2 作者, 专利号: CN106970130A

( 46 ) 单分子操纵的石墨烯纳米孔DNA测序仪, 发明专利, 2017, 第 1 作者, 专利号: CN106596645A

( 47 ) 一种基于纳米压电材料的实时血压监测传感器, 发明专利, 2017, 第 1 作者, 专利号: CN106491109A

( 48 ) 基于线扫描拉曼显微成像的藻细胞计数及藻种判别方法, 专利授权, 2017, 第 4 作者, 专利号: CN106442463A

( 49 ) 一种基于固态纳米孔的HIV‑1蛋白酶检测方法, 发明专利, 2017, 第 1 作者, 专利号: CN106443008A

( 50 ) 一种基于DLP技术和压缩感知理论的超灵敏光谱检测方法及系统, 专利授权, 2017, 第 2 作者, 专利号: CN106323471A

( 51 ) 无机微光学元件批量化制作方法, 发明专利, 2016, 第 7 作者, 专利号: CN105399046A

( 52 ) 一种基于电击穿在氮化硅薄膜上精确制备纳米孔的方法, 发明专利, 2016, 第 1 作者, 专利号: CN105368938A

( 53 ) 一种密封微孔敞口的工艺, 发明专利, 2016, 第 1 作者, 专利号: CN105330336A

( 54 ) 一种基于双层金属线栅结构的太赫兹偏振片, 发明专利, 2015, 第 1 作者, 专利号: CN105158836A

( 55 ) 一种基于分子构象变化的测序方法, 发明专利, 2015, 第 1 作者, 专利号: CN105092647A

( 56 ) 基于导电聚合物纳米孔集成结构的纳米孔检测系统及其制备方法, 发明专利, 2015, 第 2 作者, 专利号: CN104950031A

( 57 ) 基于微纳米孔网集成结构的纳米孔检测系统及其制备方法, 发明专利, 2015, 第 1 作者, 专利号: CN104897728A

( 58 ) 一种适用于液态环境的纳米结构筛选层及工艺及检测系统, 发明专利, 2015, 第 3 作者, 专利号: CN104649215A

( 59 ) DNA测序方法及其系统, 发明专利, 2015, 第 1 作者, 专利号: CN104630358A

( 60 ) 一种纳米颗粒检测系统及筛选分析方法, 发明专利, 2015, 第 1 作者, 专利号: CN104568684A

( 61 ) 基于类金刚石薄膜的纳米孔测量系统及其制备方法, 发明专利, 2015, 第 1 作者, 专利号: CN104458813A

出版信息

   
发表论文
[1] Bahri, Mohamed, Gebre, Shushay Hagos, Elaguech, Mohamed Amin, Dajan, Fekadu Tsegaye, Sendeku, Marshet Getaye, Tlili, Chaker, Wang, Deqiang. Recent advances in chemical vapour deposition techniques for graphene-based nanoarchitectures: From synthesis to contemporary applications. COORDINATION CHEMISTRY REVIEWSnull. 2023, 475: http://dx.doi.org/10.1016/j.ccr.2022.214910.
[2] Tian, Rong, Weng, Ting, Chen, Shanchuan, Wu, Ji, Yin, Bohua, Ma, Wenhao, Liang, Liyuan, Xie, Wanyi, Wang, Yunjiao, Zeng, Xiaoqing, Yin, Yajie, Wang, Deqiang. DNA nanostructure-assisted detection of carcinoembryonic antigen with a solid-state nanopore. BIOELECTROCHEMISTRY[J]. 2023, 149: http://dx.doi.org/10.1016/j.bioelechem.2022.108284.
[3] 陈山川, 闫汉, 唐鹏, 周硕, 田荣, 尹雅洁, 梁丽媛, 王德强, 翁婷. 固态纳米孔检测不同结构DNA分子. 微纳电子技术. 2022, 59(7): 702-709, https://d.wanfangdata.com.cn/periodical/wndzjs202207013.
[4] Zhao, Qiang, Wang, Yunjiao, Sun, Bangyong, Wang, Deqiang, Li, Gang. Nanogap Electrode-Enabled Versatile Electrokinetic Manipulation of Nanometric Species in Fluids. BIOSENSORS-BASEL[J]. 2022, 12(7): [5] 马倩云, 曾小清, 冷仕年, 翁婷, 田荣, 梁丽媛, 尹雅洁, 王德强. 基于别构因子效应的固态纳米孔尿酸分子检测. 微纳电子技术[J]. 2022, 59(9): 966-974, https://d.wanfangdata.com.cn/periodical/wndzjs202209019.
[6] Bao, Jing, Qiu, Xiaopei, Wang, Deqiang, Yang, Huisi, Zhao, Jiaying, Qi, Yanli, Zhang, Liangliang, Chen, Xiaohui, Yang, Mei, Gu, Wei, Huo, Danqun, Luo, Yang, Hou, Changjun. Carbon Nanomaze for Biomolecular Detection with Zeptomolar Sensitivity. ADVANCED FUNCTIONAL MATERIALS[J]. 2021, 31(14): http://dx.doi.org/10.1002/adfm.202006521.
[7] Yan, Han, Zhang, Zhen, Weng, Ting, Zhu, Libo, Zhang, Pang, Wang, Deqiang, Liu, Quanjun. Recognition of Bimolecular Logic Operation Pattern Based on a Solid-State Nanopore. SENSORS[J]. 2021, 21(1): https://doaj.org/article/c64e11feebca4d56924dd82286b7159b.
[8] Xie, Wanyi, He, Shixuan, Fang, Shaoxi, Liang, Liyuan, Shi, Biao, Wang, Deqiang. Visualizing of AuNPs protection aptamer from DNase I enzyme digestion based on Nanopipette and its use for Microcystin-LR detection. ANALYTICA CHIMICA ACTA[J]. 2021, 1173: http://dx.doi.org/10.1016/j.aca.2021.338698.
[9] Tang, Jing, Wu, Ji, Zhu, Rui, Wang, Zhong, Zhao, Chuanqi, Tang, Peng, Xie, Wanyi, Wang, Deqiang, Liang, Liyuan. Reversible photo-regulation on the folding/unfolding of telomere G-quadruplexes with solid-state nanopores. ANALYST[J]. 2021, 146(2): 655-663, https://www.webofscience.com/wos/woscc/full-record/WOS:000611287000032.
[10] He, Shixuan, Xie, Wanyi, Zhang, Yongna, Fang, Shaoxi, Zhou, Daming, Gan, Jie, Zhang, Zhiyou, Du, Jinglei, Du, Chunlei, Wang, Deqiang. Probing the Influence of the Substrate Hole Shape on the Interaction between Helium Ions and Suspended Monolayer Graphene with Raman Spectroscopy. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2021, 125(3): 2202-2211, http://dx.doi.org/10.1021/acs.jpcc.0c10738.
[11] Wang, Sen, Liang, Liyuan, Tang, Jing, Cai, Yao, Zhao, Chuanqi, Fang, Shaoxi, Wang, Huabin, Weng, Ting, Wang, Liang, Wang, Deqiang. Label-free single-molecule identification of telomere G-quadruplexes with a solid-state nanopore sensor. RSC ADVANCES[J]. 2020, 10(45): 27215-27224, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055465/.
[12] Liu, Qianshan, Wang, Yunjiao, Liu, Yaqing, Wang, Han, Li, Wei, Tang, Peng, Weng, Tin, Zhou, Shuo, Liang, Liyuan, Yuan, Jiahu, Wang, Deqiang, Wang, Lang. Reduction chemistry-assisted nanopore determination method for immunoglobulin isotypes. NANOSCALE[J]. 2020, 12(38): 19711-19718, https://www.webofscience.com/wos/woscc/full-record/WOS:000578100000016.
[13] 唐婧, 王森, 吴吉, 梁丽媛, 王亮, 王德强. Applications of Photo-Responsive Molecules in Nanopore-based Devices. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY[J]. 2020, 48(11): 1458-1466, http://dx.doi.org/10.19756/j.issn.0253-3820.201247.
[14] Tang, Jing, Wang, Sen, Wu, Ji, Liang, LiYuan, Wang, Liang, Wang, DeQiang. Applications of Photo-Responsive Molecules in Nanopore-based Devices. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY[J]. 2020, 48(11): 1458-1466, http://dx.doi.org/10.1016/S1872-2040(20)60058-5.
[15] Wang, Liang, Chen, Xiaohan, Wang, Yunjiao, Zhou, Shuo, Wang, Deqiang, Guan, Xiyun. Nanopore Determination of Nucleic Acids in Whole Blood Based on a Displacement Reaction Strategy. BIOPHYSICAL JOURNAL[J]. 2020, 118(3): 475A-475A, http://dx.doi.org/10.1016/j.bpj.2019.11.2637.
[16] Shi, Biao, Zhou, Daming, Qiu, Risheng, Bahri, Mohamed, Kong, Xiangdong, Zhao, Hongquan, Tlili, Chaker, Wang, Deqiang. High-efficiency synthesis of large-area monolayer WS2 crystals on SiO2/Si substrate via NaCl-assisted atmospheric pressure chemical vapor deposition. APPLIED SURFACE SCIENCE[J]. 2020, 533: http://dx.doi.org/10.1016/j.apsusc.2020.147479.
[17] Fang, Shaoxi, Yin, Bohua, Xie, Wanyi, Zhou, Daming, Tang, Peng, He, Shixuan, Yuan, Jiahu, Wang, Deqiang. A novel dielectric breakdown apparatus for solid-state nanopore fabrication with transient high electric field. REVIEW OF SCIENTIFIC INSTRUMENTS[J]. 2020, 91(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000575126400001.
[18] He, Shixuan, Xie, Wanyi, Fang, Shaoxi, Zhang, Ping, Li, Zhe, Zhou, Daming, Zhang, Yongna, Zhang, Zhiyou, Guo, Jinsong, Du, Jinglei, Du, Chunlei, Wang, Deqiang. Probing the changes of carotenoids in Microcystis flosaquae under environmental perturbations by two-dimensional Raman correlation spectroscopy. JOURNAL OF RAMAN SPECTROSCOPY[J]. 2020, 51(1): 79-88, http://dx.doi.org/10.1002/jrs.5752.
[19] 王森, 梁丽媛, 唐婧, 蔡瑶, 翁婷, 尹雅洁, 王亮, 王德强. 固态纳米孔上端粒序列的共价修饰与G-四联体折叠监测. 微纳电子技术[J]. 2020, 57(6): 483-491, http://lib.cqvip.com/Qikan/Article/Detail?id=7102102775.
[20] 张庞, 唐鹏, 闫汉, 周硕, 殷博华, 尹雅洁, 梁丽媛, 王德强, 翁婷. 基于LiCl盐浓度梯度的固态纳米孔DNA分子检测. 微纳电子技术. 2020, 72-79, https://nxgp.cnki.net/kcms/detail?v=3uoqIhG8C46NmWw7YpEsKMypi3qVj28LEUDxQXHYyS3fbyEOrIfBzErZjHp4EnxTzF4rgJumJuv0oFh2YOs95GgQ9n1waASm&uniplatform=NZKPT.
[21] He, Shixuan, Xie, Wanyi, Fang, Shaoxi, Huang, Xin, Zhou, Darning, Zhang, Zhiyou, Du, Jinglei, Du, Chunlei, Wang, Deqiang. Silver films coated inverted cone-shaped nanopore array anodic aluminum oxide membranes for SERS analysis of trace molecular orientation. APPLIED SURFACE SCIENCE[J]. 2019, 488: 707-713, http://dx.doi.org/10.1016/j.apsusc.2019.05.298.
[22] Yan, Han, Zhou, Daming, Shi, Biao, Zhang, Ziyin, Tian, Haibing, Yu, Leyong, Wang, Yunjiao, Guan, Xiyun, Wang, Zuobin, Wang, Deqiang. Slowing down DNA translocation velocity using a LiCl salt gradient and nanofiber mesh. EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS[J]. 2019, 48(3): 261-266, http://119.78.100.138/handle/2HOD01W0/7734.
[23] Shi, Biao, Zhou, Daming, Fang, Shaoxi, Djebbi, Khouloud, Feng, Shuanglong, Zhao, Hongquan, Tlili, Chaker, Wang, Deqiang. Facile and Controllable Synthesis of Large-Area Monolayer WS2 Flakes Based on WO3 Precursor Drop-Casted Substrates by Chemical Vapor Deposition. NANOMATERIALS[J]. 2019, 9(4): http://119.78.100.138/handle/2HOD01W0/7904.
[24] Cai, Yao, Liang, Liyuan, Wang, Sen, Wang, Deqiang, Cui, Hongliang. Single-molecular detection of polysaccharides with chemically-modified nanopores. 9TH IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE, 3M-NANO 2019null. 2019, 257-260, [25] Zhang, Mingkun, Yang, Zhongbo, Tang, Mingjie, Wang, Deqiang, Wang, Huabin, Yan, Shihan, Wei, Dongshan, Cui, HongLiang. Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip. SENSORS[J]. 2019, 19(3): https://doaj.org/article/00d3e4c87bbd451c8e970a72f9317705.
[26] He, Shixuan, Xie, Wanyi, Fang, Shaoxi, Zhou, Daming, Djebbi, Khouloud, Zhang, Zhiyou, Du, Jinglei, Du, Chunlei, Wang, Deqiang. Label-free identification of trace microcystin-LR with surface-enhanced Raman scattering spectra. TALANTA[J]. 2019, 195: 401-406, http://119.78.100.138/handle/2HOD01W0/7397.
[27] Tian, Haibing, Xie, Wanyi, He, Shixuan, Zhou, Daming, Fang, Shaoxi, Liang, Liyuan, Wang, Deqiang. Investigation of the adsorption behavior of BSA with tethered lipid layer-modified solid-state nanopores in a wide pH range. RSC ADVANCES[J]. 2019, 9(27): 15431-15436, http://119.78.100.138/handle/2HOD01W0/8127.
[28] Zhou, Shuo, Xie, Wanyi, He, Shixuan, Tang, Peng, Zhou, Daming, Wang, Deqiang. Nanopore-Based Detection of Microcystin-LR. BIOPHYSICAL JOURNAL[J]. 2018, 114(3): 688A-688A, http://dx.doi.org/10.1016/j.bpj.2017.11.3711.
[29] He, Shixuan, Fang, Shaoxi, Xie, Wanyi, Zhang, Ping, Li, Zhe, Zhou, Daming, Zhang, Zhiyou, Guo, Jinsong, Du, Chunlei, Du, Jinglei, Wang, Deqiang. Assessment of physiological responses and growth phases of different microalgae under environmental changes by Raman spectroscopy with chemometrics. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY[J]. 2018, 204: 287-294, http://dx.doi.org/10.1016/j.saa.2018.06.060.
[30] Xie, Linguo, Zhou, Xinxing, Qiu, Xiaodong, Luo, Lan, Liu, Xiong, Li, Zhaoxue, He, Yu, Du, Jinglei, Zhang, Zhiyou, Wang, Deqiang. Unveiling the spin Hall effect of light in Imbert-Fedorov shift at the Brewster angle with weak measurements. OPTICS EXPRESS[J]. 2018, 26(18): 22934-22943, https://www.webofscience.com/wos/woscc/full-record/WOS:000443431400048.
[31] He, Shixuan, Xie, Wanyi, Zhang, Ping, Fang, Shaoxi, Li, Zhe, Tang, Peng, Gao, Xia, Guo, Jinsong, Tlili, Chaker, Wang, Deqiang. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY[J]. 2018, 190: 417-422, http://dx.doi.org/10.1016/j.saa.2017.09.036.
[32] Zhao, Yue, Xie, Wanyi, Tian, Enling, Ren, Yiwei, Zhu, Jifeng, Deng, Yunsheng, He, Shixuan, Liang, Liyuan, Wang, Yunjiao, Zhou, Daming, Wang, Deqiang. Slowing down DNA translocation by a nanofiber meshed layer. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2018, 51(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000419615200001.
[33] Zhang, ZiYin, Deng, YunSheng, Tian, HaiBing, Yan, Han, Cui, HongLiang, Wang, DeQiang. Noise Analysis of Monolayer Graphene Nanopores. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES[J]. 2018, 19(9): https://doaj.org/article/3306eb98d92440ca950be8957fb78284.
[34] Zhou Shuo, Tang Peng, Wang YunJiao, Wang Liang, Wang DeQiang. Applications of Nanopore Sensing in Detection of Toxic Molecules. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY[J]. 2018, 46(6): 826-835, http://119.78.100.138/handle/2HOD01W0/8010.
[35] Wang, Haitao, Xie, Wanyi, Wang, Yunjiao, Zhu, Jifeng, Liu, Mengwan, Lu, Wenqiang, Deng, Yunsheng, Wang, Guodong, Wang, Deqiang. Fabrication of 3D nanovolcano-shaped nanopores with helium ion microscopy. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B[J]. 2018, 36(1): http://dx.doi.org/10.1116/1.5001927.
[36] Wang, Liang, Chen, Xiaohan, Zhou, Shuo, Roozbahani, Golbarg M, Zhang, Youwen, Wang, Deqiang, Guan, Xiyun. Displacement chemistry-based nanopore analysis of nucleic acids in complicated matrices. CHEMICAL COMMUNICATIONS[J]. 2018, 54(99): 13977-13980, http://119.78.100.138/handle/2HOD01W0/7161.
[37] 刘梦婉, 王赟姣, 谢婉谊, 周大明, 王德强, 崔洪亮. 一种基于氮化硼纳米管的微纳流控芯片. 微纳电子技术[J]. 2018, 55(8): 557-562, http://lib.cqvip.com/Qikan/Article/Detail?id=675667747.
[38] He, Feng, Liang, Liyuan, Zhou, Shuo, Xie, Wanyi, He, Shixuan, Wang, Yunjiao, Tlili, Chaker, Tong, Shoufeng, Wang, Deqiang. Label-Free Sensitive Detection of Microcystin-LR via Aptamer-Conjugated Gold Nanoparticles Based on Solid-State Nanopores. LANGMUIR[J]. 2018, 34(49): 14825-14833, http://119.78.100.138/handle/2HOD01W0/7189.
[39] Zhou Shuo, Tang Peng, Wang YunJiao, Wang Liang, Wang DeQiang. Applications of Nanopore Sensing in Detection of Toxic Molecules. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY[J]. 2018, 46(6): 826-835, http://119.78.100.138/handle/2HOD01W0/8010.
[40] Luan, Binquan, Zhou, Shuo, Wang, Deqiang, Zhou, Ruhong. Detecting Interactions between Nanomaterials and Cell Membranes by Synthetic Nanopores. ACS NANO[J]. 2017, 11(12): 12615-12623, http://dx.doi.org/10.1021/acsnano.7b07005.
[41] Zhao, Yue, Ying, Cuifeng, Huang, Qimeng, Deng, Yunsheng, Zhou, Daming, Wang, Deqiang, Lu, Wenqiang, Cui, HongLiang. Fabrication of controllable mesh layers above SiNx micro pores with ZnO nanostructures. MICROELECTRONIC ENGINEERING[J]. 2017, 169: 43-48, http://dx.doi.org/10.1016/j.mee.2016.12.007.
[42] Xie, Linguo, Qiu, Xiaodong, Luo, Lan, Liu, Xiong, Li, Zhaoxue, Zhang, Zhiyou, Du, Jinglei, Wang, Deqiang. Quantitative detection of the respective concentrations of chiral compounds with weak measurements. APPLIED PHYSICS LETTERS[J]. 2017, 111(19): [43] Kong, Xiangdong, Fu, Yuegang, Zhang, Weiguo, Dong, Lianhe, Zhou, Jianhong, Wang, Deqiang. Analysis of random antireflective structures fabricated by silver dewetting to enhance transmission. JOURNAL OF NANOPHOTONICS[J]. 2017, 11(3): http://dx.doi.org/10.1117/1.JNP.11.036019.
[44] Yin, Bohua, Xie, Wanyi, Liang, Liyuan, Deng, Yunsheng, He, Shixuan, He, Feng, Zhou, Daming, Tlili, Chaker, Wang, Deqiang. Covalent Modification of Silicon Nitride Nanopore by Amphoteric Polylysine for Short DNA Detection. ACS OMEGA[J]. 2017, 2(10): 7127-7135, https://doaj.org/article/e3f7633594c3416f94a85af63a7a0a69.
[45] Liang, Liyuan, Xie, Wanyi, Fang, Shaoxi, He, Feng, Yin, Bohua, Tlili, Chaker, Wang, Deqiang, Qiu, Song, Li, Qingwen. High-efficiency dispersion and sorting of single-walled carbon nanotubes via non-covalent interactions. JOURNALOFMATERIALSCHEMISTRYC[J]. 2017, 5(44): 11339-11368, http://ir.sinano.ac.cn/handle/332007/5436.
[46] Huang, Qimeng, Deng, Yunsheng, Zhao, Yue, Zhao, Lei, Hu, Weihua, Wang, Deqiang. A Bioinspired Surface Chemistry for Solid- State Nanopores Modification. BIOPHYSICAL JOURNAL[J]. 2017, 112(3): 458A-458A, http://dx.doi.org/10.1016/j.bpj.2016.11.2455.
[47] Deng, Yunsheng, Huang, Qimeng, Zhou, Daming, Zhou, Shuo, Liang, Liyuan, Fang, Shaoxi, Xie, Wanyi, He, Shixuan, Tang, Peng, Wang, Deqiang. Slowing Down DNA Translocation using Integrated Nanopore and Nanopillars Precisely Deposited by Helium Ion Beam. BIOPHYSICAL JOURNAL[J]. 2017, 112(3): 155A-155A, http://dx.doi.org/10.1016/j.bpj.2016.11.853.
[48] Deng, Yunsheng, Huang, Qimeng, Zhao, Yue, Zhou, Daming, Ying, Cuifeng, Wang, Deqiang. Precise fabrication of a 5nm graphene nanopore with a helium ion microscope for biomolecule detection. NANOTECHNOLOGY[J]. 2017, 28(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000391569000002.
[49] 王德强. 基于双层结构的高消光比太赫兹偏光片. AIP Advance. 2016, [50] Wang Deqiang, Lu Wenqiang, Gao Fengli, Jiang Haitao, Guo Shuxu, Jian Guan. Controllable synthesis of large scale, catalyst-free, lateral ZnO nanowires network. 6TH IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE, IEEE 3M-NANO 2016null. 2016, 39-42, http://www.chinair.org.cn/handle/1471x/1661175.
[51] Lu, Bin, Wang, Haitao, Shen, Jun, Yang, Jun, Mao, Hongyan, Xia, Liangping, Zhang, Weiguo, Wang, Guodong, Peng, XiaoYu, Wang, Deqiang. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure. AIP ADVANCES[J]. 2016, 6(2): https://doaj.org/article/90214d9c00c24b619f4e56c45c50d495.
[52] Wei, Helei, Hu, Dejiao, Deng, Yunsheng, Wu, Xuannan, Xiao, Xiao, Hou, Yidong, Wang, Yunjiao, Shi, Ruiying, Wang, Deqiang, Du, Jinglei. Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips. AIP ADVANCES[J]. 2016, 6(12): https://doaj.org/article/2f335a92c4f349b7b9d6d901d10858f7.
[53] Zhang, Yuechuan, Chen, Yanling, Fu, Yongqi, Ying, Cuifeng, Feng, Yanxiao, Huang, Qimeng, Wang, Chao, Pei, DeSheng, Wang, Deqiang. Monitoring tetracycline through a solid-state nanopore sensor. SCIENTIFIC REPORTS[J]. 2016, 6: https://www.webofscience.com/wos/woscc/full-record/WOS:000378074400001.
[54] Wang Deqiang, Liu Mengwan, Zhou Daming, Zhang Mingkun, Cui HongLiang. A microfluidic chip for terahertz spectral detection. 6TH IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE, IEEE 3M-NANO 2016null. 2016, 59-63, http://www.chinair.org.cn/handle/1471x/1661803.
[55] Zhang Weiguo, Du Chunlei, Xiong Xin, Wang Deqiang, Zhu Guodong, Liu Fenglei. Fabricating fresnel mirrors imaged in visible light region by ultra precision manufacturing technology. 6TH IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE, IEEE 3M-NANO 2016null. 2016, 43-46, http://www.chinair.org.cn/handle/1471x/1661177.
[56] 王德强. Rectification of ion current determined by the nanopore geometry:experiments and modeling. Chin. Phys. Lett.. 2016, [57] Ying, Cuifeng, Feng, Yanxiao, Zhang, Yuechuan, Zhou, Wenyuan, Hui, Wangwei, Wang, Deqiang, Tian, Jianguo. Stability of Solid-State Nanopore Fabricated by Dielectric Breakdown. BIOPHYSICAL JOURNAL[J]. 2016, 110(3): 506A-506A, https://www.webofscience.com/wos/woscc/full-record/WOS:000375142700464.
[58] Kong, Xiangdong, Fu, Yuegang, Xia, Liangping, Zhang, Weiguo, Zhang, Ziyin, Dong, Lianhe, Wang, Deqiang, Du, Chunlei. Analysis of Ag nanoparticle resist in fabrication of transmission-enhanced subwavelength structures. JOURNAL OF NANOPHOTONICS[J]. 2016, 10(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000398606100017.
[59] Zhou, DaMing, Deng, YunSheng, Ying, CuiFeng, Zhang, YueChuan, Feng, YanXiao, Huang, QiMeng, Liang, LiYuan, Wang, DeQiang. Rectification of Ion Current Determined by the Nanopore Geometry: Experiments and Modelling. CHINESE PHYSICS LETTERS[J]. 2016, 33(10): 158-162, http://lib.cqvip.com/Qikan/Article/Detail?id=670332663.
[60] 周大明, 邓云生, 应翠凤, 张月川, 冯艳晓, 黄绮梦, 梁丽媛, 王德强. Rectification of Ion Current Determined by the Nanopore Geometry: Experiments and Modelling. 中国物理快报:英文版[J]. 2016, 158-162, http://lib.cqvip.com/Qikan/Article/Detail?id=670332663.
[61] Ying, Cuifeng, Zhang, Yuechuan, Feng, Yanxiao, Zhou, Daming, Wang, Deqiang, Xiang, Yinxiao, Zhou, Wenyuan, Chen, Yongsheng, Du, Chunlei, Tian, Jianguo. 3D nanopore shape control by current-stimulus dielectric breakdown. APPLIED PHYSICS LETTERS[J]. 2016, 109(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000383183600042.
[62] Feng, Yanxiao, Zhang, Yuechuan, Ying, Cuifeng, Wang, Deqiang, Du, Chunlei. Nanopore-based Fourth-generation DNA Sequencing Technology (vol 144, pg 4, 2015). GENOMICS PROTEOMICS & BIOINFORMATICS. 2015, 13(6): 383-383, https://www.webofscience.com/wos/woscc/full-record/WOS:000369604900008.
[63] Feng, Yanxiao, Wang, Deqiang, Bai, Jingwei, Nam, Sungwook, Peng, Hongbo, Bruce, Robert, Gignac, Lynn, Brink, Markus, Waggoner, Phil, Wang, Chao, Guillorn, Mike, Polonsky, Stanislav, Royyuru, Ajay, Rao, Satyavolu Papa, Stolovitzky, Gustavo. Fabrication of Sub-20 NM Nanopore Arrays in Membranes with Embedded Metal Electrodes at Wafer Scales. BIOPHYSICAL JOURNALnull. 2015, 108(2): 174A-175A, https://www.webofscience.com/wos/woscc/full-record/WOS:000362849100088.
[64] Yanxiao Feng, Yuechuan Zhang, Cuifeng Ying, Deqiang Wang, Chunlei Du. Corrigendum to Nanopore-based Fourth- generation DNA Sequencing Technology' GPB 144 (2015)- GPB 131 (4-16). 基因组蛋白质组与生物信息学报:英文版[J]. 2015, 13(6): 383-383, http://lib.cqvip.com/Qikan/Article/Detail?id=668018700.
[65] Yanxiao Feng, Yuechuan Zhang, Cuifeng Ying, Deqiang Wang, Chunlei Du. Nanopore-based Fourth-generation DNA Sequencing Technology. 基因组蛋白质组与生物信息学报:英文版[J]. 2015, 13(1): 4-16, http://lib.cqvip.com/Qikan/Article/Detail?id=664451414.
[66] Feng, Yanxiao, Zhang, Yuechuan, Ying, Cuifeng, Wang, Deqiang, Du, Chunlei. Nanopore-based Fourth-generation DNA Sequencing Technology (vol 13, pg 4, 2015). GENOMICSPROTEOMICSBIOINFORMATICS. 2015, 13(3): 200-201, https://www.webofscience.com/wos/woscc/full-record/WOS:000360562700008.
[67] Feng, Yanxiao, Zhang, Yuechuan, Ying, Cuifeng, Wang, Deqiang, Du, Chunlei. Nanopore-based Fourth-generation DNA Sequencing Technology. GENOMICS PROTEOMICS & BIOINFORMATICS[J]. 2015, 13(1): 4-16, http://lib.cqvip.com/Qikan/Article/Detail?id=664451414.
发表著作
(1) 基于纳米孔的第三代DNA测序技术, The 3rd Generation DNA sequencing with a Nanopore, Springer, Berlin, 2011-04, 第 5 作者

科研活动

   
科研项目
( 1 ) 单分子操纵石墨烯纳米孔DNA测序技术研究, 负责人, 中国科学院计划, 2016-01--2017-12
( 2 ) 微纳米网格和纳米孔垂直集成结构减少DNA通过纳米孔熵势垒研究, 负责人, 国家任务, 2015-01--2018-12
( 3 ) 二维/三维石墨烯材料与器件的可控制备及示范应用, 参与, 国家任务, 2015-01--2017-12
( 4 ) DNA通过近零厚度纳米孔输运特性研究, 负责人, 中国科学院计划, 2015-01--2016-12
参与会议
(1)纳米孔技术专题   2016 3M-Nano   2016-07-18
(2)纳米孔技术专题   3M-Nano 2015   2015-10-05
(3) DNA-translocation through a solid state nanopore coated with a functionally switchable self-assembled monolayer   NIH   D.Q. Wang, S. Harrer, B.Q. Luan, A.A Afzali, H.B. Peng, G.A. Stolovitzky   2012-04-01
(4)Using Measurements of the ion Current Through a Synthetic Nanopore to Discriminate Nucleotides in a Single DNA Molecule   第55次年度生物物理学年会   2. D. Q. Wang, J. Shim, W. Timp, A. Ho, A. Aksimentiev, G. Timp   2011-03-05
(5)Discriminating Bases by Stretching Double-Stranded DNA in a Nanopore   第54次年度生物物理学年会   2. D. Q. Wang, W. Timp, J. Shim, U. Mirsaidov, J. Comer, A. Aksimentiev, G. Timp   2010-02-23
(6)Sequencing DNA using a Nanopore in a Solid State Membrane   美国材料学年会   4. D.Q. Wang, W. Timp, J. Comer, U. Mirsaidov, A. Aksimentiev, G. Timp.   2009-11-30
(7)Detection of nerve agent hydrolytes in an engineered nanopore   第53次年度生物物理学年会   5. D.Q. Wang, Q. Zhao, D.A. Jayawardhana, X. Guan   2009-02-28

指导学生

已指导学生

冯艳晓  硕士研究生  085210-控制工程  

赵小静  硕士研究生  085202-光学工程  

田海兵  硕士研究生  085202-光学工程  

王赟姣  博士研究生  080300-光学工程  

刘千山  硕士研究生  085202-光学工程  

刘倩倩  硕士研究生  085202-光学工程  

谢婉谊  博士研究生  080300-光学工程  

李苇  博士研究生  080300-光学工程  

张庞  硕士研究生  085202-光学工程  

刘业香  硕士研究生  085202-光学工程  

方绍熙  博士研究生  080300-光学工程  

现指导学生

刘千山  博士研究生  080300-光学工程  

戴玉洁  博士研究生  080300-光学工程