基本信息
魏大鹏 男 重庆绿色智能技术研究院
电子邮件:dpwei@cigit.ac.cn
通信地址:重庆市渝北区金渝大道85号汉国中心B座9层
邮政编码:401122

招生信息

   
招生专业
080300-光学工程
080501-材料物理与化学
070205-凝聚态物理
招生方向
微纳光学
纳米电子学,纳米材料
微纳光学
招生专业
080300-光学工程
080501-材料物理与化学
070205-凝聚态物理
招生方向
微纳光学
纳米电子学,纳米材料
微纳光学

教育背景

2004-09--2009-07 北京大学 博士
2000-09--2004-07 南京大学 学士

工作经历

   
工作简历
2012-11--今 重庆绿色智能技术研究院 副研究员
2010-07--2012-06 美国普渡大学 博士后
2009-07--2010-06 中国电子科技集团公司 工程师

专利与奖励

   
奖励信息
(1) 北京大学苏州工业园奖学金,研究所(学校)级,2008
(2) 北京大学五四奖学金,研究所(学校)级,2007
(3) 北京大学学习优秀奖,研究所(学校)级,2005
专利成果
[1] 邵丽, 周萌, 唐新悦, 魏大鹏, 张恒, 胡承刚, 史浩飞. 一种基于频率可重构天线的无线应变传感系统及监测方法. CN: CN112097700B, 2021-11-02.

[2] 魏大鹏, 唐新悦, 余崇圣, 杨俊, 史浩飞. 一种多级微结构栅薄膜晶体管柔性压力传感器及其制备方法. CN: CN111811701B, 2021-10-29.

[3] 魏大鹏, 杨俊, 姜星池, 孙泰, 史浩飞. 一种基于碳纳米墙阵列传感器的智能床垫. CN: CN111166102B, 2021-09-24.

[4] 杨俊, 魏大鹏, 史浩飞. 大面阵分离式压力传感器及其制备方法、水性导电浆料及其制备方法. CN: CN110108394B, 2021-08-10.

[5] 杨俊, 周熙, 魏大鹏, 史浩飞. 触觉/滑觉传感器及其制备方法、电子设备、盲文识别设备、机器人. CN: CN110031135B, 2021-07-09.

[6] 魏大鹏, 杨俊, 台国君. 一种真皮基柔性压力传感器的制备方法及应用. CN: CN112903146A, 2021-06-04.

[7] 邵丽, 周萌, 唐新悦, 魏大鹏, 史浩飞, 胡承刚, 张恒. 一种柔性频率可重构天线及其制备方法、应用. CN: CN112151955A, 2020-12-29.

[8] 杨俊, 魏大鹏, 胡云, 孙泰, 于乐泳, 魏兴战, 史浩飞. 一种基于多点压力传感器的脉诊仪. CN: CN107374598B, 2020-12-18.

[9] 杨俊, 张辉, 魏大鹏, 胡云, 孙泰, 于乐泳, 魏兴战, 史浩飞. 一种基于脉搏波传感器的动态血压监测穿戴式设备及监测方法. CN: CN107397542B, 2020-12-18.

[10] 余崇圣, 魏大鹏. 一种基于时变多任务网络的事件自适应聚类方法. CN: CN111901167A, 2020-11-06.

[11] 魏大鹏, 杨俊, 唐新悦, 孙泰, 史浩飞. 一种基于微纳结构力敏薄膜的柔性人工传入神经系统及其制备方法. CN: CN111490162A, 2020-08-04.

[12] 孙泰, 史浩飞, 冯双龙, 魏大鹏, 赵博伟. 一种微波化学气相沉积制备二氧化硅/石墨烯纳米复合材料的方法及其产品. CN: CN109957784B, 2020-04-14.

[13] 孙泰, 史浩飞, 魏大鹏, 赵博伟. 一种二氧化硅/石墨烯三维复合材料及其制备方法和应用. CN: CN109941986B, 2020-01-21.

[14] 魏大鹏, 郭云飞, 孙泰, 杨俊, 于乐泳, 胡云, 史浩飞, 杜春雷. 基于石墨烯柔性传感器的人体生理信息数据背心. CN: CN208822755U, 2019-05-07.

[15] 申钧, 魏兴战, 冯双龙, 魏大鹏, 杨俊, 周大华, 史浩飞, 杜春雷. 一种基于石墨烯量子点的微测辐射热计. CN: CN106197687B, 2019-03-05.

[16] 魏大鹏, 郭云飞, 孙泰, 杨俊, 于乐泳, 胡云, 史浩飞, 杜春雷. 基于碳纳米复合柔性电极的微型智能针灸理疗仪. CN: CN208541691U, 2019-02-26.

[17] 魏大鹏, 宋雪芬, 冉秦翠, 孙泰, 杨俊, 于乐泳, 胡云, 史浩飞, 杜春雷. 一种基于石墨烯材料的风速测试器及其制备方法. CN: CN106093461B, 2018-11-30.

[18] 魏大鹏, 宋雪芬, 孙泰, 申钧, 史浩飞, 杜春雷. 一种基于三维共形石墨烯的柔性光电传感器及其制作方法. CN: CN105810830B, 2018-10-30.

[19] 申钧, 魏兴战, 冯双龙, 魏大鹏, 杨俊, 周大华, 史浩飞, 杜春雷. 一种基于石墨烯平面结的光电探测器. CN: CN105957955B, 2018-10-23.

[20] 于乐泳, 冯双龙, 胡云, 孙泰, 杨俊, 魏大鹏, 史浩飞, 杜春雷. 一种低温快速生长各种类型图形化三维石墨烯的方法. CN: CN106315570B, 2018-10-19.

[21] 魏大鹏, 宋雪芬, 杨俊, 于乐泳, 余崇圣, 申钧, 史浩飞, 杜春雷. 一种三维非催化性基底负载石墨烯薄膜结构及其在低温环境下的制备方法. CN: CN105296958B, 2018-10-02.

[22] 于乐泳, 胡云, 魏大鹏, 杨俊, 孙泰, 史浩飞, 杜春雷. 一种用于设备壳体细微形变检测的石墨烯探测元件. CN: CN106197253B, 2018-09-11.

[23] 褚金, 杨俊, 魏大鹏, 宋雪芬, 李占成, 史浩飞, 杜春雷. 一种基于石墨烯纳米墙的柔性温度传感器及其制备方法. CN: CN104374486B, 2018-08-21.

[24] 于乐泳, 胡云, 孙泰, 杨俊, 魏大鹏, 史浩飞, 杜春雷. 一维碳纳米管和三维石墨烯复合材料图形化生长方法. CN: CN106367717B, 2018-07-13.

[25] 魏大鹏, 袁康, 杨俊, 孙泰, 于乐泳, 申钧, 史浩飞, 杜春雷. 一种柔性石墨烯纳米墙磁场检测装置及其制备方法. CN: CN105372607B, 2018-06-29.

[26] 杨俊, 罗伟, 魏大鹏, 魏兴战, 史浩飞, 杜春雷. 一种具有压力感应的石墨烯电容式触摸屏. CN: CN207408927U, 2018-05-25.

[27] 杨俊, 罗伟, 魏大鹏, 魏兴战, 史浩飞, 杜春雷. 一种具有压力感应的石墨烯电容式触摸屏. CN: CN207408927U, 2018-05-25.

[28] 杨俊, 尹舒冉, 白向兴, 胡云, 孙泰, 于乐泳, 魏大鹏, 史浩飞, 杜春雷. 一种石墨烯多点脉搏波血压监测智能穿戴设备. CN: CN106343987B, 2018-05-01.

[29] 魏大鹏, 谷峰, 孙泰, 宋雪芬, 史浩飞, 杜春雷. 一种SERS衬底及其制备方法. CN: CN104677882B, 2018-04-27.

[30] 魏大鹏, 郭云飞, 孙泰, 杨俊, 于乐泳, 胡云, 史浩飞, 杜春雷. 基于石墨烯柔性传感器的人体生理信息数据背心及制作方法. CN: CN107951473A, 2018-04-24.

[31] 孙泰, 魏大鹏, 杨俊, 于乐泳, 胡云, 史浩飞, 杜春雷. 一种多组分石墨烯/聚氨酯弹性体复合材料的制备方法. CN: CN106398179B, 2018-03-06.

[32] 魏大鹏, 郭云飞, 孙泰, 杨俊, 于乐泳, 胡云, 史浩飞, 杜春雷. 基于碳纳米复合柔性电极的制备方法及微型智能针灸理疗仪. CN: CN107616911A, 2018-01-23.

[33] 杨俊, 曲玉昆, 胡云, 孙泰, 于乐泳, 魏大鹏, 史浩飞, 杜春雷. 一种基于石墨烯传感器的手语手套. CN: CN206649765U, 2017-11-17.

[34] 杨俊, 曲玉昆, 胡云, 孙泰, 于乐泳, 魏大鹏, 史浩飞, 杜春雷. 一种基于石墨烯传感器的手语手套. CN: CN206649765U, 2017-11-17.

[35] 魏大鹏, 刘盾, 宋雪芬, 其他发明人请求不公开姓名. 一种石墨烯柔性表面肌电电极及其制备方法. CN: CN104887227B, 2017-11-07.

[36] 杨俊, 魏大鹏, 汤林龙, 史浩飞, 杜春雷. 一种基于石墨烯纳米墙的气流传感器及制作方法. CN: CN104316086B, 2017-10-27.

[37] 杨俊, 魏大鹏, 谷峰, 史浩飞, 杜春雷. 一种柔性基三维共面形石墨烯薄膜的制备方法. CN: CN104505148B, 2017-09-29.

[38] 魏大鹏, 尹舒冉, 孙泰, 杨俊, 于乐泳, 胡云, 史浩飞, 杜春雷. 一种基于石墨烯柔性压力传感器的脉诊仪. CN: CN206491784U, 2017-09-15.

[39] 魏大鹏, 尹舒冉, 孙泰, 杨俊, 于乐泳, 胡云, 史浩飞, 杜春雷. 一种基于石墨烯柔性压力传感器的脉诊仪. CN: CN206491784U, 2017-09-15.

[40] 杨俊, 尹舒冉, 白向兴, 胡云, 孙泰, 于乐泳, 魏大鹏, 史浩飞, 杜春雷. 一种石墨烯多点脉搏波血压监测智能穿戴设备. CN: CN206453762U, 2017-09-01.

[41] 魏大鹏, 刘盾, 宋雪芬, 杨俊, 孙泰, 史浩飞, 杜春雷. 石墨烯纳米墙柔性心电电极及其制备方法. CN: CN104739403B, 2017-08-25.

[42] 杨俊, 魏大鹏, 罗伟, 史浩飞, 杜春雷. 一种基于石墨烯的柔性电路. CN: CN104333975B, 2017-07-28.

[43] 杨俊, 史浩飞, 魏大鹏, 罗伟, 孙泰, 胡云, 杜春雷. 一种石墨烯分布式多物理量传感器阵列系统. CN: CN206339255U, 2017-07-18.

[44] 杨俊, 史浩飞, 魏大鹏, 罗伟, 孙泰, 胡云, 杜春雷. 一种石墨烯分布式多物理量传感器阵列系统. CN: CN206339255U, 2017-07-18.

[45] 杨俊, 魏大鹏, 谷峰, 史浩飞, 杜春雷. 石墨烯纳米墙柔性导电薄膜的制备方法. CN: CN104505147B, 2017-07-04.

[46] 孙泰, 魏大鹏, 罗实, 于乐泳, 胡云, 杨俊, 史浩飞, 杜春雷. 一种柔性石墨烯复合材料压力传感器及其制备方法. CN: CN106382998B, 2017-06-30.

[47] 杨俊, 宋雪芬, 余崇圣, 孙泰, 于乐泳, 胡云, 魏大鹏, 史浩飞, 杜春雷. 一种多点触压力成像的石墨烯电容式触摸屏及智能终端. CN: CN206236046U, 2017-06-09.

[48] 杨俊, 宋雪芬, 余崇圣, 孙泰, 于乐泳, 胡云, 魏大鹏, 史浩飞, 杜春雷. 一种多点触压力成像的石墨烯电容式触摸屏及智能终端. CN: CN206236046U, 2017-06-09.

[49] 孙泰, 魏大鹏, 陈前伟, 杨俊, 于乐泳, 史浩飞, 杜春雷. 一种三维石墨烯乳酸传感器的制备方法. CN: CN105708416B, 2017-05-03.

[50] 杨俊, 魏大鹏, 史浩飞, 胡云, 孙泰, 罗伟, 杜春雷. 一种石墨烯压力传感器阵列系统. CN: CN206114156U, 2017-04-19.

[51] 魏大鹏, 宋雪芬, 杨俊, 孙泰, 于乐泳, 胡云, 史浩飞, 杜春雷. 一种基于石墨烯的电容式压力传感器. CN: CN106546362A, 2017-03-29.

[52] 魏大鹏, 余崇圣, 石彪, 冉秦翠, 史浩飞, 杜春雷. 一种石墨烯电致发光冷光板及其制作方法. CN: CN106535386A, 2017-03-22.

[53] 孙泰, 魏大鹏, 杨俊, 于乐泳, 李朝龙, 史浩飞, 杜春雷. 可图形化三维石墨烯/聚氨酯柔性导电薄膜的制备方法. CN: CN105590703B, 2017-03-15.

[54] 杨俊, 魏大鹏, 史浩飞, 曾超, 罗伟, 孙泰, 于乐泳, 胡云, 杜春雷. 一种石墨烯应变传感器阵列. CN: CN106468533A, 2017-03-01.

[55] 余崇圣, 魏大鹏, 石彪, 冉秦翠, 史浩飞, 杜春雷. 一种石墨烯电致发光点阵显示面板及其制作方法. CN: CN106455242A, 2017-02-22.

[56] 杨俊, 魏大鹏, 史浩飞, 胡云, 孙泰, 罗伟, 杜春雷. 一种石墨烯压力传感器阵列系统及其制备方法. CN: CN106441645A, 2017-02-22.

[57] 魏大鹏, 刘相志, 申钧, 杨俊, 孙泰, 于乐泳, 史浩飞, 杜春雷. 基于石墨烯纳米墙/硅的室温红外探测器. CN: CN205960006U, 2017-02-15.

[58] 魏大鹏, 宋雪芬, 于乐泳, 杨俊, 孙泰, 胡云, 史浩飞, 杜春雷. 基于共形石墨烯的电容式压力传感器及其制备方法. CN: CN106370324A, 2017-02-01.

[59] 于乐泳, 胡云, 魏大鹏, 杨俊, 孙泰, 史浩飞, 杜春雷. 一种三维石墨烯气压传感器及系统. CN: CN205898355U, 2017-01-18.

[60] 于乐泳, 胡云, 魏大鹏, 杨俊, 孙泰, 史浩飞, 杜春雷. 三维石墨烯压力传感器以及基于该传感器的报警系统. CN: CN205898354U, 2017-01-18.

[61] 魏大鹏, 刘相志, 申钧, 杨俊, 孙泰, 于乐泳, 史浩飞, 杜春雷. 基于石墨烯纳米墙/硅的室温红外探测器及其制备方法. CN: CN106206833A, 2016-12-07.

[62] 于乐泳, 孙泰, 杨俊, 魏大鹏, 史浩飞. 利用激光刻蚀三维石墨烯纳米墙进行图形化的方法. CN: CN106206268A, 2016-12-07.

[63] 孙泰, 陈前伟, 魏大鹏, 于乐泳, 杨俊, 胡云, 史浩飞, 杜春雷. 一种基于三维石墨烯的葡萄糖传感器. CN: CN205607915U, 2016-09-28.

[64] 孙泰, 魏大鹏, 陈前伟, 杨俊, 于乐泳, 胡云, 冯华, 史浩飞, 杜春雷. 一种三维石墨烯乳酸传感器. CN: CN205506748U, 2016-08-24.

[65] 魏大鹏, 杨俊, 朱鹏, 余崇圣, 张永娜, 姜浩, 黄德萍, 李占成, 史浩飞, 杜春雷. 直接在三维结构基片上全表面共形覆盖石墨烯薄膜的方法. CN: CN104018136B, 2016-08-24.

[66] 魏东山, 周丽娜, 孙泰, 赵晗, 黎静, 武永刚, 魏大鹏, 史浩飞. 一种高比表面积的三维氧化石墨烯气凝胶制备方法. CN: CN104828807B, 2016-08-10.

[67] 孙泰, 魏大鹏, 刘盾, 于乐泳, 杨俊, 史浩飞, 杜春雷. 三维石墨烯泡沫复合纳米硫化镉光电化学电极的制备方法. CN: CN105679848A, 2016-06-15.

[68] 孙泰, 魏大鹏, 刘盾, 于乐泳, 杨俊, 胡云, 史浩飞, 杜春雷. 一种三维石墨烯泡沫复合纳米硫化镉光电化学电极. CN: CN205319167U, 2016-06-15.

[69] 魏大鹏, 袁康, 杨俊, 孙泰, 于乐永, 申钧, 史浩飞, 杜春雷. 一种柔性石墨烯纳米墙磁场检测装置. CN: CN205280917U, 2016-06-01.

[70] 魏大鹏, 杨俊, 朱鹏, 余崇圣, 张永娜, 姜浩, 黄德萍, 李占成, 史浩飞, 杜春雷. 直接在针尖表面共形覆盖石墨烯的方法. CN: CN103924209B, 2016-04-06.

[71] 周大华, 魏兴战, 冯双龙, 申均, 魏大鹏, 史浩飞. 基于石墨烯薄膜的光电探测器及其制备方法. CN: CN105280749A, 2016-01-27.

[72] 魏大鹏, 宋雪芬, 孙泰, 杨俊, 申钧, 史浩飞, 杜春雷. 稳定改善石墨烯光电性能的退火方法. CN: CN105140117A, 2015-12-09.

[73] 冷重钱, 杨俊, 魏大鹏, 史浩飞, 杜春雷. 一种石墨烯柔性键盘. CN: CN204695244U, 2015-10-07.

[74] 魏大鹏, 焦天鹏, 刘健, 杨俊, 史浩飞, 杜春雷. 柔性异质结薄膜太阳能电池. CN: CN204558500U, 2015-08-12.

[75] 魏大鹏, 焦天鹏, 刘健, 杨俊, 史浩飞, 杜春雷. 柔性异质结薄膜太阳能电池及其制备方法. CN: CN104835872A, 2015-08-12.

[76] 魏大鹏, 杨俊, 焦天鹏, 史浩飞, 杜春雷. 一种柔性石墨烯纳米墙电阻式湿度传感器. CN: CN204514847U, 2015-07-29.

[77] 杨俊, 魏大鹏, 卢斌, 史浩飞, 杜春雷. 一种基于石墨烯的脉搏心率计. CN: CN204468068U, 2015-07-15.

[78] 杨俊, 魏大鹏, 卢斌, 史浩飞, 杜春雷. 一种基于石墨烯的脉搏心率计. CN: CN204468068U, 2015-07-15.

[79] 高翾, 杨俊, 魏大鹏, 史浩飞, 杜春雷. 一种智能手套. 中国: CN204426804U, 2015-07-01.

[80] 魏大鹏, 杨俊, 焦天鹏, 史浩飞, 杜春雷. 一种石墨烯纳米墙电阻式湿度传感器. CN: CN204359739U, 2015-05-27.

[81] 魏大鹏, 贾树明, 焦天鹏, 杨俊, 史浩飞, 杜春雷. 制备图案化石墨烯的方法及石墨烯柔性透明电热膜. CN: CN104637789A, 2015-05-20.

[82] 魏大鹏, 杨俊, 焦天鹏, 史浩飞, 杜春雷. 一种石墨烯纳米墙电阻式湿度传感器及其制备方法. CN: CN104569079A, 2015-04-29.

[83] 魏大鹏, 杨俊, 焦天鹏, 史浩飞, 杜春雷. 一种柔性石墨烯纳米墙电阻式湿度传感器及其制备方法. CN: CN104569078A, 2015-04-29.

[84] 魏大鹏, 杨俊, 邵丽, 史浩飞, 杜春雷. 一种基于三维柔性衬底石墨烯的电子皮肤及其制备方法. CN: CN104359597A, 2015-02-18.

[85] 王国芳. 一种智能手套. CN: CN204104917U, 2015-01-21.

[86] 高翾, 王化斌, 魏大鹏, 王德强. 一种安全套. 中国: CN203943790U, 2014-11-19.

[87] 魏大鹏, 贾树明, 焦天鹏, 杨俊, 史浩飞, 杜春雷. 一种柔性薄膜太阳能电池. CN: CN203445136U, 2014-02-19.

出版信息

   
发表论文
[1] Yu, Chongsheng, Sun, Tai, Zhao, Bowei, Zhang, Mengqin, Gu, Mingxin, Lin, Yuanchang, He, Guotian, Chen, Zongyong, Liao, Tingmao, Ran, Haofeng, Li, Jialu, Luo, Shi, Wei, Dapeng. Highly sensitive flexible strain sensor based on GSB-enhanced three-dimensional graphene composite. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES[J]. 2022, 140: [2] Shao, Li, Tang, Xinyue, Yang, Yujie, Wei, Dacheng, Lin, Yuanchang, He, Guotian, Wei, Dapeng. Flexible force sensitive frequency reconfigurable antenna base on stretchable conductive fabric. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2022, 55(19): [3] Junlin Lu, Jien Li, Jing Wan, Xiangyu Han, Peiyuan Ji, Shuang Luo, Mingxin Gu, Dapeng Wei, Chenguo Hu. A facile strategy of in-situ anchoring of Co3O4 on N doped carbon cloth for an ultrahigh electrochemical performance. NANO RESEARCH[J]. 2021, 14(7): 2410-2417, [4] Luo Shi, Wei DaPeng, Wei DaCheng. Applications of two-dimensional materials in bio-sensors. ACTA PHYSICA SINICA[J]. 2021, 70(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000631862800014.
[5] 罗实, 魏大鹏, 魏大程. 二维材料在生物传感器中的应用. 物理学报. 2021, 70(6): 128-141, http://lib.cqvip.com/Qikan/Article/Detail?id=7104157190.
[6] Tang, Xinyue, Yang, Weidong, Yin, Shuran, Tai, Guojun, Su, Min, Yang, Jin, Shi, Haofei, Wei, Dapeng, Yang, Jun. Controllable Graphene Wrinkle for a High-Performance Flexible Pressure Sensor. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(17): 20448-20458, http://dx.doi.org/10.1021/acsami.0c22784.
[7] Hong, Xin, Shen, Jun, Tang, Xinyue, Xie, Yi, Su, Min, Tai, Guojun, Yao, Jing, Fu, Yichao, Ji, Junyang, Liu, Xueqin, Yang, Jun, Wei, Dapeng. High-performance broadband photodetector with in-situ-grown Bi2Se3 film on micropyramidal Si substrate. OPTICAL MATERIALS[J]. 2021, 117: http://dx.doi.org/10.1016/j.optmat.2021.111118.
[8] Luo, Shi, Zhou, Xi, Tang, Xinyue, Li, Jialu, Wei, Dacheng, Tai, Guojun, Chen, Zongyong, Liao, Tingmao, Fu, Jianting, Wei, Dapeng, Yang, Jun. Microconformal electrode-dielectric integration for flexible ultrasensitive robotic tactile sensing. NANO ENERGY[J]. 2021, 80: http://dx.doi.org/10.1016/j.nanoen.2020.105580.
[9] Yi, Kongyang, Liu, Donghua, Chen, Xiaosong, Yang, Jun, Wei, Dapeng, Liu, Yunqi, Wei, Dacheng. Plasma-Enhanced Chemical Vapor Deposition of Two-Dimensional Materials for Applications. ACCOUNTS OF CHEMICAL RESEARCHnull. 2021, 54(4): 1011-1022, https://www.webofscience.com/wos/woscc/full-record/WOS:000620925900024.
[10] Luo, Shi, Li, JiaLu, Sun, Tai, Liu, Xiangzhi, Wei, Dacheng, Zhou, Dahua, Shen, Jun, Wei, Dapeng. High-performance mid-infrared photodetection based on Bi2Se3 maze and free-standing nanoplates. NANOTECHNOLOGY[J]. 2021, 32(10): http://dx.doi.org/10.1088/1361-6528/abcd64.
[11] Zhou, Kai, Shen, Jun, Li, Xiaoxia, Hong, Xin, Feng, Wenlin, Tang, Xinyue, Jiang, Xingchi, Wei, Dacheng, Chen, Yifu, Liu, Xueqin, Xie, Yi, Wei, Dapeng, Sun, Tai. Broadband photodetector based on 2D layered PtSe2/silicon heterojunction at room-temperature. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES[J]. 2020, 123: http://dx.doi.org/10.1016/j.physe.2020.114147.
[12] Yang, Wei, Li, Zhiwei, Wang, Yuwei, Shen, Jun, Wei, Dapeng, Wei, Xianlong. High-Performance On-Chip Electron Sources Based on Electroformed Silicon Oxide. ADVANCED ELECTRONIC MATERIALS[J]. 2020, 6(7): [13] Lan, Guilian, Nong, Jinpeng, Wei, Wei, Liu, Xiangzhi, Luo, Peng, Jin, Weifeng, Wei, Dacheng, Wei, Dapeng. Highly stable all-in-one photoelectrochemical electrodes based on carbon nanowalls. NANOTECHNOLOGY[J]. 2020, 31(33): https://www.webofscience.com/wos/woscc/full-record/WOS:000539994900001.
[14] Li, Xiaoxia, Sun, Tai, Zhou, Kai, Hong, Xin, Tang, Xinyue, Wei, Dacheng, Feng, Wenlin, Shen, Jun, Wei, Dapeng. Broadband InSb/Si heterojunction photodetector with graphene transparent electrode. NANOTECHNOLOGY[J]. 2020, 31(31): https://www.webofscience.com/wos/woscc/full-record/WOS:000536056800001.
[15] Liu, Xiangzhi, Zhou, Quan, Luo, Shi, Du, Haiwei, Cao, Zhensong, Peng, Xiaoyu, Feng, Wenlin, Shen, Jun, Wei, Dapeng. Infrared Photodetector Based on the Photothermionic Effect of Graphene-Nanowall/Silicon Heterojunction. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(19): 17663-17669, http://119.78.100.138/handle/2HOD01W0/7895.
[16] Shao, Li, Guo, Yunfei, Liu, Wenjun, Sun, Tai, Wei, Dapeng. A flexible dry electroencephalogram electrode based on graphene materials. MATERIALS RESEARCH EXPRESS[J]. 2019, 6(8): http://119.78.100.138/handle/2HOD01W0/7809.
[17] Zhao, Bowei, Sun, Tai, Zhou, Xi, Liu, Xiangzhi, Li, Xiaoxia, Zhou, Kai, Dong, Lianhe, Wei, Dapeng. Three-Dimensional Graphene Composite Containing Graphene-SiO2 Nanoballs and Its Potential Application in Stress Sensors. NANOMATERIALS[J]. 2019, 9(3): http://119.78.100.138/handle/2HOD01W0/7737.
[18] Zhou, Quan, Shen, Jun, Liu, Xiangzhi, Li, Zhancheng, Jiang, Hao, Feng, Shuanglong, Feng, Wenlin, Wang, Yuefeng, Wei, Dapeng. Hybrid graphene heterojunction photodetector with high infrared responsivity through barrier tailoring. NANOTECHNOLOGY[J]. 2019, 30(19): http://119.78.100.138/handle/2HOD01W0/7401.
[19] Donghua Liu, Xiaosong Chen, Yaping Yan, Zhongwei Zhang, Zhepeng Jin, Kongyang Yi, Cong Zhang, Yujie Zheng, Yao Wang, Jun Yang, Xiangfan Xu, Jie Chen, Yunhao Lu, Dapeng Wei, Andrew Thye Shen Wee, Dacheng Wei. Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nature Communications[J]. 2019, 10(1): 1-11, https://doaj.org/article/03f0bb60becd4df091fcee1d73322325.
[20] Jia, PanPan, Sun, Tai, Junaid, Muhammad, Yang, Li, Ma, YanBo, Cui, ZhiSong, Wei, DaPeng, Shi, HaoFei, Pei, DeSheng. Nanotoxicity of different sizes of graphene (G) and graphene oxide (GO) in vitro and in vivo. ENVIRONMENTAL POLLUTION[J]. 2019, 247: 595-606, http://119.78.100.138/handle/2HOD01W0/7583.
[21] Peng, Zhiqing, Feng, Wenlin, Yang, Xiaozhan, Fang, Liang, Wei, Dapeng, Liu, Xiangzhi. Graphene-Based Waist-Enlarged Optical Fibre Sensor for Measurement of Sucrose Concentration. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES[J]. 2019, 74(9): 751-756, https://www.webofscience.com/wos/woscc/full-record/WOS:000483256400003.
[22] Zhou, Xi, Zhang, Yongna, Yang, Jun, Li, Jialu, Luo, Shi, Wei, Dapeng. Flexible and Highly Sensitive Pressure Sensors Based on Microstructured Carbon Nanowalls Electrodes. NANOMATERIALS[J]. 2019, 9(4): http://119.78.100.138/handle/2HOD01W0/7907.
[23] Yang, Jun, Luo, Shi, Zhou, Xi, Li, Jialu, Fu, Jianting, Yang, Weidong, Wei, Dapeng. Flexible, Tunable, and Ultrasensitive Capacitive Pressure Sensor with Microconformal Graphene Electrodes. ACS APPLIED MATERIALS & INTERFACES[J]. 2019, 11(16): 14997-15006, http://119.78.100.138/handle/2HOD01W0/7901.
[24] 周全, 张恩亮, 白向兴, 申钧, 魏大鹏, 汪岳峰. 石墨烯/二氧化钛异质结场效应探测器光电特性. 光子学报[J]. 2018, 47(6): 0623001-1, http://lib.cqvip.com/Qikan/Article/Detail?id=675433744.
[25] Luo, Shi, Yang, Jun, Song, Xuefen, Zhou, Xi, Yu, Leyong, Sun, Tai, Yu, Chongsheng, Huang, Deping, Du, Chunlei, Wei, Dapeng. Tunable-Sensitivity flexible pressure sensor based on graphene transparent electrode. SOLID-STATE ELECTRONICS[J]. 2018, 145: 29-33, http://dx.doi.org/10.1016/j.sse.2018.04.003.
[26] Li, Keke, Liu, Anping, Wei, Dapeng, Yu, Keke, Sun, Xiaonan, Yan, Sheng, Huang, Yingzhou. Electromagnetic Field Redistribution in Metal Nanoparticle on Graphene. NANOSCALE RESEARCH LETTERS[J]. 2018, 13(1): http://119.78.100.138/handle/2HOD01W0/8022.
[27] 罗实, 周熙, 杨俊, 魏大鹏. 碳纳米材料在柔性压力传感器中的应用. 功能材料[J]. 2018, 49(8): 08048-08056,08061, http://lib.cqvip.com/Qikan/Article/Detail?id=675968571.
[28] Wu, Gongtao, Li, Zhiwei, Tang, Zhigiang, Wei, Dapeng, Zhang, Gengmin, Chen, Qing, Peng, LionMao, Wei, Xianlong. Silicon Oxide Electron-Emitting Nanodiodes. ADVANCED ELECTRONIC MATERIALS[J]. 2018, 4(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000441125200013.
[29] 袁康, 魏大鹏, 赵从梅, 傅顺. 一种基于SVM的核相关跟踪算法. 传感器与微系统[J]. 2018, 37(5): 138-143, http://lib.cqvip.com/Qikan/Article/Detail?id=675381521.
[30] Zhou, Quan, Liu, Xiangzhi, Luo, Wei, Shen, Jun, Wang, Yuefeng, Wei, Dapeng. The interface modification for GNWs/Si Schottky junction with PEI/PEIE interlayers. MATERIALS RESEARCH EXPRESS[J]. 2018, 5(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000428779600001.
[31] Zhang Jie, Yin Zenghe, Gong Tiancheng, Luo Yunfei, Wei Dapeng, Zhu Yong. Graphene/Ag nanoholes composites for quantitative surface-enhanced Raman scattering. OPTICS EXPRESS[J]. 2018, 26(17): 22432-22439, https://www.webofscience.com/wos/woscc/full-record/WOS:000442136200091.
[32] Liu, Lianlian, Guan, Ting, Fang, Liang, Wu, Fang, Lu, Yi, Luo, Haijun, Song, Xuefen, Zhou, Miao, Hu, Baoshan, Wei, Dapeng, Shi, Haofei. Self-supported 3D NiCo-LDH/Gr composite nanosheets array electrode for high-performance supercapacitor. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2018, 763: 926-934, http://dx.doi.org/10.1016/j.jallcom.2018.05.358.
[33] Donghua Liu, Xiaosong Chen, Yibin Hu, Tai Sun, Zhibo Song, Yujie Zheng, Yongbin Cao, Zhi Cai, Min Cao, Lan Peng, Yuli Huang, Lei Du, Wuli Yang, Gang Chen, Dapeng Wei, Andrew Thye Shen Wee, Dacheng Wei. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition. NATURE COMMUNICATIONS[J]. 2018, 9(1): https://doaj.org/article/3993edea013a475f8d177bcd2521f32b.
[34] Li, Yanrong, Wang, Xue, Yang, Qi, Javed, Muhammad Sufyan, Liu, Qipeng, Xu, Weina, Hu, Chenguo, Wei, Dapeng. Ultra-fine CuO Nanoparticles Embedded in Three-dimensional Graphene Network Nano-structure for High-performance Flexible Supercapacitors. ELECTROCHIMICA ACTA[J]. 2017, 234: 63-70, http://dx.doi.org/10.1016/j.electacta.2017.02.167.
[35] Yang, Jun, Ran, Qincui, Wei, Dapeng, Sun, Tai, Yu, Leyong, Song, Xuefen, Pu, Lichun, Shi, Haofei, Du, Chunlei. Three-dimensional conformal graphene microstructure for flexible and highly sensitive electronic skin. NANOTECHNOLOGY[J]. 2017, 28(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000395887000001.
[36] Xia, Xiaona, Chen, Jie, Guo, Hengyu, Liu, Guanlin, Wei, Dapeng, Xi, Yi, Wang, Xue, Hu, Chenguo. Embedding variable micro-capacitors in polydimethylsiloxane for enhancing output power of triboelectric nanogenerator. NANO RESEARCH[J]. 2017, 10(1): 320-330, https://www.webofscience.com/wos/woscc/full-record/WOS:000390066000028.
[37] Liu, Xiaomei, Cheng, Shujuan, Long, Jilan, Zhang, Wei, Liu, Xiaohong, Wei, Dapeng. MOFs-Derived Co@CN bi-functional catalysts for selective transfer hydrogenation of alpha,beta-unsaturated aldehydes without use of base additives. MATERIALS CHEMISTRY FRONTIERS[J]. 2017, 1(10): 2005-2012, https://www.webofscience.com/wos/woscc/full-record/WOS:000412466100009.
[38] Yang, Jun, Liu, Peibo, Wei, Xingzhan, Luo, Wei, Yang, Jin, Jiang, Hao, Wei, Dapeng, Shi, Ruiying, Shi, Haofei. Surface Engineering of Graphene Composite Transparent Electrodes for High-Performance Flexible Triboelectric Nanogenerators and Self-Powered Sensors. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(41): 36017-36025, https://www.webofscience.com/wos/woscc/full-record/WOS:000413503700052.
[39] Shen, Jun, Liu, Xiangzhi, Song, Xuefen, Li, Xinming, Wang, Jun, Zhou, Quan, Luo, Shi, Feng, Wenlin, Wei, Xingzhan, Lu, Shirong, Feng, Shuanglong, Du, Chunlei, Wang, Yuefeng, Shi, Haofei, Wei, Dapeng. High-performance Schottky heterojunction photodetector with directly grown graphene nanowalls as electrodes. NANOSCALE[J]. 2017, 9(18): 6020-6025, https://www.webofscience.com/wos/woscc/full-record/WOS:000401146200031.
[40] Lan, Changyong, Li, Chun, Wang, Shuai, He, Tianying, Zhou, Zhifei, Wei, Dapeng, Guo, Huayang, Yang, Hao, Liu, Yong. Highly responsive and broadband photodetectors based on WS2-graphene van der Waals epitaxial heterostructures. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2017, 5(6): 1494-1500, https://www.webofscience.com/wos/woscc/full-record/WOS:000395888900025.
[41] Nong Jinpeng, Wei Wei, Zhu Yong, Tang Linlong, Zhang Guiwen, Jiang Xiao, Chen Na, Wei Dapeng. Resonance Spectra and Sensing Characteristics of Plasmons in Graphene-Covered Aluminum Nano-Grating. SPECTROSCOPY AND SPECTRAL ANALYSIS[J]. 2017, 37(4): 997-1002, https://www.webofscience.com/wos/woscc/full-record/WOS:000400041300001.
[42] Chen, Qianwei, Sun, Tai, Song, Xuefen, Ran, Qincui, Yu, Chongsheng, Yang, Jun, Feng, Hua, Yu, Leyong, Wei, Dapeng. Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate. NANOTECHNOLOGY[J]. 2017, 28(31): https://www.webofscience.com/wos/woscc/full-record/WOS:000405474500001.
[43] Nong, Jinpeng, Wei, Wei, Song, Xuefen, Tang, Linlong, Yang, Jun, Sun, Tai, Yu, Leyong, Luo, Wei, Li, Chun, Wei, Dapeng. Direct growth of graphene nanowalls on silica for high-performance photo-electrochemical anode. SURFACE & COATINGS TECHNOLOGY[J]. 2017, 320: 579-583, http://dx.doi.org/10.1016/j.surfcoat.2016.10.092.
[44] Jinpeng Nong, Wei Wei, Xuefen Song, Linlong Tang, Jun Yang, Tai Sun, Leyong Yu, Wei Luo, Chun Li, Dapeng Wei. Direct growth of graphene nanowalls on silica for high-performance photo-electrochemical anode. Surface & Coatings Technology. 2017, 579-583, http://dx.doi.org/10.1016/j.surfcoat.2016.10.092.
[45] Wang, Mingjun, Song, Xuefen, Song, Bo, Liu, Jianlin, Hu, Chenguo, Wei, Dapeng, Wong, ChingPing. Precisely quantified catalyst based on in situ growth of Cu2O nanoparticles on a graphene 3D network for highly sensitive glucose sensor. SENSORS AND ACTUATORS B-CHEMICAL[J]. 2017, 250: 333-341, http://dx.doi.org/10.1016/j.snb.2017.04.125.
[46] Sun, Tai, Gu, Feng, Pu, Lichun, Liu, Xiaohong, Zhang, Wei, Yu, Leyong, Yang, Jun, Yu, Chongsheng, Huang, Deping, Xu, Zhixian, He, Shixuan, Du, Chunlei, Wei, Dapeng. In situ fabrication of graphene nanowalls as active surface-enhanced Raman scattering substrate. MATERIALS EXPRESS[J]. 2017, 7(5): 398-404, https://www.webofscience.com/wos/woscc/full-record/WOS:000418002100008.
[47] Mingjun Wang, Xuefen Song, Bo Song, Jianlin Liu, Chenguo Hu, Dapeng Wei, Ching-Ping Wong. Precisely quantified catalyst based on in situ growth of Cu2O nanoparticles on a graphene 3D network for highly sensitive glucose sensor. Sensors & Actuators: B. Chemical. 2017, 250: 333-341, http://dx.doi.org/10.1016/j.snb.2017.04.125.
[48] 农金鹏, 韦玮, 朱永, 汤林龙, 张桂稳, 蒋肖, 陈娜, 魏大鹏. 石墨烯覆盖铝纳米光栅表面等离激元共振光谱及传感特性. 光谱学与光谱分析[J]. 2017, 37(4): 997-1002, http://lib.cqvip.com/Qikan/Article/Detail?id=671918297.
[49] Wei, Wei, Nong, Jinpeng, Zhu, Yong, Tang, Linlong, Zhang, Guiwen, Yang, Jun, Huang, Yu, Wei, Dapeng. Cavity-enhanced continuous graphene plasmonic resonator for infrared sensing. OPTICS COMMUNICATIONS[J]. 2017, 395: 147-153, http://dx.doi.org/10.1016/j.optcom.2016.06.007.
[50] Guo, Huayang, Lan, Changyong, Zhou, Zhifei, Sun, Peihua, Wei, Dapeng, Li, Chun. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. NANOSCALE[J]. 2017, 9(19): 6246-6253, https://www.webofscience.com/wos/woscc/full-record/WOS:000401649700004.
[51] Zhang, JingHui, Sun, Tai, Niu, Aping, Tang, YuMei, Deng, Shun, Luo, Wei, Xu, Qun, Wei, Dapeng, Pei, DeSheng. Perturbation effect of reduced graphene oxide quantum dots (rGOQDs) on aryl hydrocarbon receptor (AhR) pathway in zebrafish. BIOMATERIALS[J]. 2017, 133: 49-59, http://dx.doi.org/10.1016/j.biomaterials.2017.04.026.
[52] Zhou, Quan, Liu, Xiangzhi, Zhang, Enliang, Luo, Shi, Shen, Jun, Wang, Yuefeng, Wei, Dapeng. The controlled growth of graphene nanowalls on Si for Schottky photodetector. AIP ADVANCES[J]. 2017, 7(12): https://doaj.org/article/06cf549baba44be4a8a8c1da774d263c.
[53] He, Shixuan, Fang, Shaoxi, Liu, Xiaohong, Zhang, Wei, Xie, Wanyi, Zhang, Hua, Wei, Dapeng, Fu, Weiling, Pei, Desheng. Investigation of a genetic algorithm based cubic spline smoothing for baseline correction of Raman spectra. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS[J]. 2016, 152: 1-9, http://dx.doi.org/10.1016/j.chemolab.2016.01.005.
[54] Li, Menglin, Liu, Donghua, Wei, Dacheng, Song, Xuefen, Wei, Dapeng, Wee, Andrew Thye Shen. Controllable Synthesis of Graphene by Plasma-Enhanced Chemical Vapor Deposition and Its Related Applications. ADVANCED SCIENCEnull. 2016, 3(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000387649100002.
[55] Jiao, Tianpeng, Wei, Dapeng, Song, Xuefen, Sun, Tai, Yang, Jun, Yu, Leyong, Feng, Yanhui, Sun, Wentao, Wei, Wei, Shi, Haofei, Hu, Chenguo, Du, Chunlei. High-efficiency, stable and non-chemically doped graphene-Si solar cells through interface engineering and PMMA antireflection. RSC ADVANCES[J]. 2016, 6(12): 10175-10179, https://www.webofscience.com/wos/woscc/full-record/WOS:000369516100096.
[56] Wang, Mingjun, Song, Xuefen, Dai, Shuge, Xu, Weina, Yang, Qi, Liu, Jianlin, Hu, Chenguo, Wei, Dapeng. NiO nanoparticles supported on graphene 3D network current collector for high-performance electrochemical energy storage. ELECTROCHIMICA ACTA[J]. 2016, 214: 68-75, http://dx.doi.org/10.1016/j.electacta.2016.08.036.
[57] Chunlei Du. High-efficiency, stable and non-chemical-doped graphene-Si solar cells through interface engineering and PMMA antireflection. RSC Advances. 2016, [58] Song, Xuefen, Wei, Dapeng, Sun, Tai, Yu, Leyong, Yang, Jun, Zhang, Yongna, Fang, Liang, Wei, Dacheng, Shi, Haofei, Du, Chunlei. A stably enhanced transparent conductive graphene film obtained using an air-annealing method. MATERIALS RESEARCH EXPRESS[J]. 2016, 3(8): [59] Song, Xuefen, Sun, Tai, Yang, Jun, Yu, Leyong, Wei, Dacheng, Fang, Liang, Lu, Bin, Du, Chunlei, Wei, Dapeng. Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(26): 16869-16875, https://www.webofscience.com/wos/woscc/full-record/WOS:000379456000041.
[60] Nong, Jinpeng, Liu, Dun, Wei, Wei, Li, Chun, Yang, Jun, Sun, Tai, Yu, Leyong, Shi, Haofei, Du, Chunlei, Wei, Dapeng. CdS nanowire-modified 3D graphene foam for high-performance photo-electrochemical anode. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2016, 688: 37-43, https://www.webofscience.com/wos/woscc/full-record/WOS:000384430800007.
[61] Lan, Changyong, Li, Chun, Wang, Shuai, He, Tianying, Jiao, Tianpeng, Wei, Dapeng, Jing, Wenkui, Li, Luying, Liu, Yong. Zener Tunneling and Photoresponse of a WS2/Si van der Waals Heterojunction. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 8(28): 18375-18382, https://www.webofscience.com/wos/woscc/full-record/WOS:000380298400071.
[62] 魏大鹏. 基于石墨烯薄膜的触摸屏技术. 高科技与产业化[J]. 2016, 56-59, http://www.chinair.org.cn/handle/1471x/1661201.
[63] Wei Dapeng. Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-performance Pressure-Sensitive Sensor. ACS Applied Materials & Interfaces. 2016, [64] Liu, Jian, Sun, Wentao, Wei, Dapeng, Song, Xuefen, Jiao, Tianpeng, He, Shixuan, Zhang, Wei, Du, Chunlei. Direct growth of graphene nanowalls on the crystalline silicon for solar cells. APPLIED PHYSICS LETTERS[J]. 2015, 106(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000348996200077.
[65] 余崇圣, 魏大鹏. 石墨烯薄膜的前驱气体预热化学气相沉积快速制备方法. 功能材料[J]. 2015, 46(16): 16110-16114, http://lib.cqvip.com/Qikan/Article/Detail?id=665893469.
[66] Song, Xuefen, Wang, Mingjun, Wei, Dapeng, Liu, Dun, Shi, Haofei, Hu, Chenguo, Fang, Liang, Zhang, Wei, Du, Chunlei. Enhanced photoelectrochemical perporties of graphene nanowalls-CdS composite materials. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2015, 651: 230-236, https://www.webofscience.com/wos/woscc/full-record/WOS:000361830700034.
[67] Song, Xuefen, Yang, Jun, Ran, Qincui, Wei, Dapeng, Fang, Liang, Shi, Haofei, Du, Chunlei. 3-D conformal graphene for stretchable and bendable transparent conductive film. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2015, 3(48): 12379-12384, https://www.webofscience.com/wos/woscc/full-record/WOS:000366413600003.
[68] Wang, Mingjun, Song, Xuefen, Yang, Qi, Hua, Hao, Dai, Shuge, Hu, Chenguo, Wei, Dapeng. Pt nanoparticles supported on graphene three-dimensional network structure for effective methanol and ethanol oxidation. JOURNAL OF POWER SOURCES[J]. 2015, 273: 624-630, http://dx.doi.org/10.1016/j.jpowsour.2014.09.117.
[69] 汪岳峰, 焦天鹏, 贾树明, 魏大鹏. 基于石墨烯薄膜材料的肖特基结光伏器件研究进展. 功能材料[J]. 2015, 46(16): 16001-16008,16015, http://lib.cqvip.com/Qikan/Article/Detail?id=665893451.
[70] Shao Li, Wei Dapeng, Shi Haofei. Mass production technology of graphene and its industrialized application. Gongneng Cailiao/Journal of Functional Materials[J]. 2015, 46(16): 16023-16029, http://www.chinair.org.cn/handle/1471x/1661120.
[71] Yang, Jun, Wei, Dapeng, Tang, Linlong, Song, Xuefen, Luo, Wei, Chu, Jin, Gao, Tianpeng, Shi, Haofei, Du, Chunlei. Wearable temperature sensor based on graphene nanowalls. RSC ADVANCES[J]. 2015, 5(32): 25609-25615, https://www.webofscience.com/wos/woscc/full-record/WOS:000351354000099.
[72] Jiao, Tianpeng, Liu, Jian, Wei, Dapeng, Feng, Yanhui, Song, Xuefen, Shi, Haofei, Jia, Shuming, Sun, Wentao, Dut, Chunlei. Composite Transparent Electrode of Graphene Nanowalls and Silver Nanowires on Micropyramidal Si for High-Efficiency Schottky Junction Solar Cells. ACS APPLIED MATERIALS & INTERFACES[J]. 2015, 7(36): 20179-20183, https://www.webofscience.com/wos/woscc/full-record/WOS:000361501700037.
[73] 邵丽, 史浩飞, 魏大鹏. 石墨烯规模化制备技术及其产业化应用展望. 功能材料[J]. 2015, 46(16): 16023-16029, http://lib.cqvip.com/Qikan/Article/Detail?id=665893454.
[74] Jiao, Tianpeng, Wei, Dapeng, Liu, Jian, Sun, Wentao, Jia, Shuming, Zhang, Wei, Feng, Yanhui, Shi, Haofei, Du, Chunlei. Flexible solar cells based on graphene-ultrathin silicon Schottky junction. RSC ADVANCES[J]. 2015, 5(89): 73202-73206, https://www.webofscience.com/wos/woscc/full-record/WOS:000360552000088.
[75] Yu Chongsheng, Wei Dapeng. Fast synthesis of graphene films by precursor-gas preheating thermal chemical vapor deposition. Gongneng Cailiao/Journal of Functional Materials[J]. 2015, 46(16): 16110-16114, http://www.chinair.org.cn/handle/1471x/1661141.
[76] Song, Xuefen, Liu, Jian, Yu, Leyong, Yang, Jun, Fang, Liang, Shi, Haofei, Du, Chunlei, Wei, Dapeng. Direct versatile PECVD growth of graphene nanowalls on multiple substrates. MATERIALS LETTERS[J]. 2014, 137: 25-28, http://dx.doi.org/10.1016/j.matlet.2014.08.125.
[77] Jin, Yan, Hu, Baoshan, Wei, Zidong, Luo, Zhengtang, Wei, Dapeng, Xi, Yi, Zhang, Ye, Liu, Yunling. Roles of H-2 in annealing and growth times of graphene CVD synthesis over copper foil. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2014, 2(38): 16208-16216, https://www.webofscience.com/wos/woscc/full-record/WOS:000342079200066.
[78] Wei, Dapeng, Mitchell, James I, Tansarawiput, Chookiat, Nam, Woongsik, Qi, Minghao, Ye, Peide D, Xu, Xianfan. Laser direct synthesis of graphene on quartz. CARBON[J]. 2013, 53: 374-379, https://www.webofscience.com/wos/woscc/full-record/WOS:000313922200044.
[79] Wei, Dapeng, Xu, Xianfan. Laser direct growth of graphene on silicon substrate. APPLIED PHYSICS LETTERS[J]. 2012, 100(2): [80] Xiong, Lin, Yang, Ye, Mai, Jiaxing, Sun, Weiling, Zhang, Chaoying, Wei, Dapeng, Chen, Qing, Ni, Jinren. Adsorption behavior of methylene blue onto titanate nanotubes. CHEMICAL ENGINEERING JOURNAL[J]. 2010, 156(2): 313-320, http://dx.doi.org/10.1016/j.cej.2009.10.023.
[81] Wei, Dapeng, Chen, Qing. Evolution of Catalyst Droplets during VLS Growth and Cooling Process: A Case of Ge/ZnO Nanomatchsticks. CRYSTAL GROWTH & DESIGN[J]. 2010, 10(1): 122-127, https://www.webofscience.com/wos/woscc/full-record/WOS:000274757100022.
[82] Wei, Dapeng, Chen, Qing. The temperature dependence of 1D germanium nanostructures grown in a small-diameter quartz tube cavity by vapor deposition. JOURNAL OF CRYSTAL GROWTH[J]. 2010, 312(16-17): 2315-2319, http://dx.doi.org/10.1016/j.jcrysgro.2010.05.033.
[83] Wei Dapeng. Low temperature synthesis of K2Mo3O10.3H2O nanowires in minutes. Nanotechnology. 2009, [84] Wei Dapeng. Synthesis of Carbon Nanotube Using MnCl2 as Catalytic Precursors by CVD. Acta Scientiarum Naturalium Universitatis Pekinensis. 2008, [85] Wei, D P, Ma, Y, Pan, H Y, Chen, Q. A versatile chemical vapor deposition method to synthesize one-dimensional silica-sheathed nanostructures. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2008, 112(23): 8594-8599, https://www.webofscience.com/wos/woscc/full-record/WOS:000256492500017.
[86] Wei, D P, Chen, Q. Metal-catalyzed CVD method to synthesize silicon nanobelts. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2008, 112(39): 15129-15133, https://www.webofscience.com/wos/woscc/full-record/WOS:000259552200009.
[87] Shi Luo, Xi Zhou, Xinyue Tang, Jialu Li, Dacheng Wei, Guojun Tai, Zongyong Chen, Tingmao Liao, Jianting Fu, Dapeng Wei, Jun Yang. Microconformal Electrode-Dielectric Integration with Zinc Oxide for Flexible Ultrasensitive Robotic Tactile Sensing. Nano Energy. http://dx.doi.org/10.1016/j.nanoen.2020.105580.

科研活动

   
参与会议
(1) Laser Direct Growth of Silicon Nanowire and Graphene for Device Fabrication,2012-06,W. Nam, J. Mitchell, D. P. Wei, C. Tansarawiput, M. H. Qi, X. F. Xu,
(2) Direct growth of graphene from solid carbon source,2012-01,Dapeng Wei, Xianfan Xu
(3) Laser Direct Growth of Graphene on Semiconductor Substrate,2011-11,D. P. Wei, J. Mitchell, X. F. Xu,
(4) Morphological Modulation of Silicon One-dimersional nanostructures by the Precursor Concentration,2009-09,D. P. Wei, Q. Chen
(5) Easy Growth of Large-area Tungsten Oxide Nanostructures and Their Field Emission Properties,2008-10,Jin Xiao, Gengmin Zhang, Dengzhu Guo, Dapeng Wei

招生信息

   
招生专业
080300-光学工程
080501-材料物理与化学
070205-凝聚态物理
招生方向
微纳光学
纳米电子学,纳米材料
微纳光学
招生专业
080300-光学工程
080501-材料物理与化学
070205-凝聚态物理
招生方向
微纳光学
纳米电子学,纳米材料
微纳光学

教育背景

2004-09--2009-07 北京大学 博士
2000-09--2004-07 南京大学 学士