基本信息

董迪,工学博士,基金委优青,中国科学院自动化研究所研究员,博士生研究生导师,中国科学院分子影像重点实验室影像组学方向责任老师,中国科学院青年创新促进会优秀会员,北京癌症防治学会胃癌防治专业委员会常务委员,研究型医院学会放射专业青年委员会委员,中国抗癌协会肿瘤人工智能专业委员会委员,中国体视学会会员,中国生物物理学会分子影像学专委会委员,入选了“全国医学影像领域学者论文学术影响力排名(2012~2021) Top 100”学者。在肿瘤影像组学和医学影像大数据智能分析等方面开展了长期的研究工作,提高了影像辅助肿瘤诊疗的效果,获四川省科技进步一等奖(排名第5),研究连续三年(2019-2021)纳入《中国临床肿瘤学会CSCO胃癌诊疗指南》。牵头主持国家基金委优秀青年基金项目、国家基金委重大研究计划培育项目、国家基金委面上基金项目(2项)、科技部重点研发计划子课题等多项。近年来在医学领域主流SCI期刊Annals of Oncology (SCI IF: 51.769,2篇),European Respiratory Journal (SCI IF: 33.795),Clinical Cancer Research (SCI IF: 13.801,3篇)等上发表论文60余篇,ESI Top 1%高被引论文12篇,谷歌H因子44,获授权国家发明专利25项,申请软件著作权22项。多次在影像组学会议、北美放射年会、世界分子影像会议、国际生物医学工程会议等国际主流会议上做口头报告。担任国家基金委项目评审专家,担任IEEE TMI、Ebiomedicine、eClinicalMedicine、International Journal of Cancer、iScience、Immunity等杂志的审稿人。


电子邮件: di.dong@ia.ac.cn

通信地址: 北京市海淀区中关村东路95号智能化大厦

邮政编码: 100190


招生信息

招收博士研究生、硕士研究生

招生专业
081104-模式识别与智能系统
081203-计算机应用技术
1001Z1-精准医学
招生方向
医学影像处理与分析
影像大数据智能分析
医疗大数据智能分析

教育背景

2008-09--2013-06   中国科学院大学   博士研究生/工学博士学位
2004-09--2008-06   北京科技大学   本科/工学学士学位
学历
博士研究生

学位
工学博士学位

工作经历

   
工作简历
2020-10~现在, 中国科学院自动化研究所, 研究员
2015-11~2020-10,中国科学院自动化研究所, 副研究员
2013-07~2015-10,中国科学院自动化研究所, 助理研究员
社会兼职
2022-05-14-今,中国图学学会, 高级会员
2021-12-16-今,中国科学院青年创新促进会, 优秀会员
2020-10-24-今,北京癌症防治学会胃癌防治专业委员会, 常务委员

专利与奖励

   
奖励信息
(1) 四川省科学技术进步一等奖“肺癌早期诊断的基础与关键技术研究”, 一等奖, 省级, 2019
(2) 2015年全国发明博览会金奖“光学分子影像微创手术导航系统”, 一等奖, 国家级, 2015
(3) 2014年国际发明展览会金奖“光学分子影像肿瘤靶向手术导航系统”, 一等奖, 国家级, 2014
专利成果
[1] 田捷, 董迪, 李聪, 胡振华, 杨鑫, 胡朝恩. 基于Unet迁移学习的胃印戒细胞癌图像智能分类系统. CN: CN112861994A, 2021-05-28.

[2] 田捷, 惠辉, 胡朝恩, 董迪, 杨鑫. 基于乳腺癌检测的平板PET与光学双模融合成像系统及方法. CN: CN109589128B, 2020-12-11.

[3] 田捷, 董迪, 张利文, 杨鑫. 基于肿瘤影像的多区域的影像组学特征提取方法. CN: CN110427954A, 2019-11-08.

[4] 田捷, 孟慧, 惠辉, 董迪, 杨鑫. 基于CUDA加速的神经元活动图像动态配准方法及装置. CN: CN106384350B, 2019-06-07.

[5] 田捷, 胡朝恩, 惠辉, 董迪, 杨鑫. 一种基于多角度的选择性光片照明显微成像的重建方法. CN: CN106447717B, 2019-05-03.

[6] 田捷, 刘振宇, 沈忱, 董迪, 臧亚丽, 杨彩云, 徐敏. 一种基于影像组学的多模态磁共振图像差异检测方法及装置. CN: CN105931221B, 2019-03-15.

[7] 田捷, 梁潇, 董迪, 惠辉, 杨鑫, 徐敏. 基于梯度调整的血管图像增强方法. 中国: CN105654439B, 2018.09.11.

[8] 田捷, 梁潇, 董迪, 惠辉, 杨鑫, 徐敏. 基于先验模型的光片显微成像条纹噪声去除方法. 中国: CN104835123B, 2018-07-31.

[9] 田捷, 方梦捷, 董迪, 惠辉, 杨鑫, 徐敏. 光学投影断层成像的检测方法. 中国: CN104865195B, 2018-02-02.

[10] 田捷, 宋江典, 董迪, 臧亚丽, 刘振宇. 一种基于影像组学的病变组织辅助预后系统和方法. 中国: CN105653858A, 2016-06-08.

[11] 田捷, 杨玉洁, 董迪, 惠辉, 马喜波, 施亮亮, 汪俊. 基于仿体的光学投影断层成像系统的几何校正方法. 中国: CN104713864A, 2015.06.17.

[12] 田捷, 宋江典, 董迪, 张帅通, 喻冬东. 一种基于肿瘤表型特征的非小细胞肺癌预后方法. 中国: CN105005714A, 2015-10-28.

[13] 田捷, 张帅通, 董迪, 惠辉, 杨鑫, 徐敏. 一种基于仿体的混合成像三维配准方法. 中国: CN104992450A, 2015-10-21.

[14] 田捷, 张帅通, 董迪, 惠辉, 杨鑫, 徐敏. 图像配准方法. 中国: CN104820989A, 2015-08-05.

[15] 杨鑫, 惠辉, 田捷, 董迪, 马喜波. 多光子激发多向照明显微成像系统. 中国: CN104677872A, 2015-06-03.

[16] 杨鑫, 惠辉, 田捷, 董迪, 马喜波. 多光子激发光片照明显微成像系统. 中国: CN104677871A, 2015-06-03.

[17] 田捷, 惠辉, 董迪, 詹诗杰, 杨鑫. 一种结构-光学-核素多模态成像系统与方法. 中国: CN103800076A, 2014.05.21.

[18] 田捷, 惠辉, 董迪, 詹诗杰, 杨鑫. 一种光学多模态成像系统. 中国: CN103735251A, 2014-04-23.

[19] 田捷, 惠辉, 董迪, 詹诗杰, 杨鑫. 一种光学多模态成像系统与方法. 中国: CN103735252A, 2014-04-23.

[20] 田捷, 刘振宇, 董迪, 杨鑫, 王坤, 彭冬. 一种光声与X射线断层成像融合的成像系统. 中国: CN103690244A, 2014-04-02.

[21] 田捷, 詹诗杰, 惠辉, 董迪, 杨鑫. 一种监测仪器的干扰屏蔽伸缩式装置. 中国: CN203502578U, 2014-03-26.

[22] 田捷, 詹诗杰, 惠辉, 董迪, 杨鑫. 一种监测仪器的干扰屏蔽旋转装置. 中国: CN203490352U, 2014-03-19.

[23] 杨鑫, 刘振宇, 田捷, 董迪, 马喜波, 彭冬. 一种集成光声与X射线断层成像的分离式成像系统. 中国: CN103519789A, 2014-01-22.

[24] 田捷, 郭进, 董迪, 杨鑫, 马喜波, 杨玉洁. 一种基于景深融合的光学投影断层成像图像获取方法. 中国: CN103308452A, 2013.09.18.

[25] 田捷, 施亮亮, 董迪, 马喜波, 詹诗杰, 刘振宇. 一种分离式多模融合三维断层成像系统及其方法. 中国: CN103431912A, 2013-12-11.

[26] 田捷, 彭冬, 董迪, 杜洋, 杨鑫, 刘振宇. 一种光声和荧光循环互提升成像方法. 中国: CN103393408A, 2013-11-20.

[27] 田捷, 彭冬, 董迪, 杜洋, 杨鑫, 刘振宇. 一种光声和光学融合的多模态成像系统. 中国: CN103389273A, 2013-11-13.

[28] 田捷, 郭进, 董迪, 杨鑫, 马喜波, 施亮亮. 一种位置可调的光学投影断层成像系统样本固定装置. 中国: CN103364254A, 2013-10-23.

[29] 田捷, 刘振宇, 彭冬, 马喜波, 董迪, 徐敏. 一种基于迭代自适应加权的有限视角光声成像重建方法. 中国: CN103345770A, 2013-10-09.

[30] 田捷, 尤优博, 董迪, 杨鑫, 刘振宇, 卫文娟. 一种基于模态融合的大脑网络功能连接偏侧性检测方法. 中国: CN103345749A, 2013-10-09.

[31] 田捷, 杨玉洁, 董迪, 杨鑫, 詹诗杰, 郭进. 自动防辐射的FMT和CT双模成像系统. 中国: CN103330549A, 2013-10-02.

[32] 田捷, 尤优博, 杨鑫, 董迪, 刘振宇, 卫文娟. 一种基于模态融合的默认态脑网络中心节点检测方法. 中国: CN103325119A, 2013-09-25.

[33] 杨鑫, 尤优博, 田捷, 董迪, 杨玉洁, 郭进. 一种分离式多模态融合的三维成像系统. 中国: CN103300828A, 2013-09-18.

[34] 田捷, 董迪, 秦承虎, 杨鑫. 一种定位光学投影断层成像旋转中心的方法. 中国: CN102512140B, 2013-07-24.

[35] 田捷, 董迪, 杨鑫, 郭进. 基于图像重叠的选择性平面照射显微成像伪影去除方法. 中国: CN102982521A, 2013-03-20.

[36] 田捷, 郭进, 董迪, 杨鑫. 自动处理景深的光学投影断层成像方法. 中国: CN102973246A, 2013-03-20.

[37] 田捷, 董迪, 秦承虎, 杨鑫, 郭进, 马喜波. 光学投影断层成像系统. 中国: CN102743159A, 2012-10-24.

[38] 田捷, 董迪, 秦承虎, 杨鑫, 郭进, 马喜波. 一种基于拼合螺旋扫描方式的光学投影断层成像方法. 中国: CN102727188A, 2012-10-17.

[39] 田捷, 董迪, 秦承虎, 杨鑫. 一种基于螺旋扫描轨道的光学投影断层成像方法. 中国: CN102599887A, 2012-07-25.

出版信息


发表论文
[1] Liwen Zhang, Lianzhen Zhong, Cong Li, Wenjuan Zhang, Chaoen Hu, Di Dong, Zaiyi Liu, Junlin Zhou, Jie Tian. Knowledge-guided multi-task attention network for survival risk prediction using multi-center computed tomography images. Neural Networks[J]. 2022, 152: 394-406, doi.org/10.1016/j.neunet.2022.04.027.
[2] Mengjie Fang, Jie Tian, Di Dong. Non-invasively predicting response to neoadjuvant chemotherapy in gastric cancer via deep learning radiomics. EClinicalMedicine[J]. 2022, 46: 101380-, [3] Lixin Gong, Min Xu, Mengjie Fang, Bingxi He, Hailin Li, Xiangming Fang, Di Dong, Jie Tian. The potential of prostate gland radiomic features in identifying the Gleason score. Computers in Biology and Medicine[J]. 2022, 144: 105318-, [4] Li, Cong, Qin, Yun, Zhang, WeiHan, Jiang, Hanyu, Song, Bin, Bashir, Mustafa R, Xu, Heng, Duan, Ting, Fang, Mengjie, Zhong, Lianzhen, Meng, Lingwei, Dong, Di, Hu, Zhenhua, Tian, Jie, Hu, JianKun. Deep learning-based AI model for signet-ring cell carcinoma diagnosis and chemotherapy response prediction in gastric cancer. MEDICAL PHYSICS[J]. 2022, 49(3): 1535-1546, [5] Zhao, Xun, Liang, YuJing, Zhang, Xu, Wen, DongXiang, Fan, Wei, Tang, LinQuan, Dong, Di, Tian, Jie, Mai, HaiQiang. Deep learning signatures reveal multiscale intratumor heterogeneity associated with biological functions and survival in recurrent nasopharyngeal carcinoma. EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING[J]. 2022, 49: 2972-2982, [6] He, BingXi, Zhong, YiFan, Zhu, YongBei, Deng, JiaJun, Fang, MengJie, She, YunLang, Wang, TingTing, Yang, Yang, Sun, XiWen, Belluomini, Lorenzo, Watanabe, Satoshi, Dong, Di, Tian, Jie, Xie, Dong. Deep learning for predicting immunotherapeutic efficacy in advanced non-small cell lung cancer patients: a retrospective study combining progression-free survival risk and overall survival risk. TRANSLATIONAL LUNG CANCER RESEARCH[J]. 2022, 11(4): 670-685, [7] Liwen Zhang, Di Dong, Yongqing Sun, Chaoen Hu, Congxin Sun, Qingqing Wu, Jie Tian. Development and validation of a deep learning model to screen for trisomy 21 during the first trimester from nuchal ultrasonographic images. JAMA NETWORK OPEN[J]. 2022, 5(6): e2217854-, [8] Wang, Siwen, Dong, Di, Li, Liang, Li, Hailin, Bai, Yan, Hu, Yahua, Huang, Yuanyi, Yu, Xiangrong, Liu, Sibin, Qiu, Xiaoming, Lu, Ligong, Wang, Meiyun, Zha, Yunfei, Tian, Jie. A Deep Learning Radiomics Model to Identify Poor Outcome in COVID-19 Patients With Underlying Health Conditions: A Multicenter Study. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS[J]. 2021, 25(7): 2353-2362, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000678341200001.
[9] Zhang, Lu, Wu, Xiangjun, Liu, Jing, Zhang, Bin, Mo, Xiaokai, Chen, Qiuying, Fang, Jin, Wang, Fei, Li, Minmin, Chen, Zhuozhi, Liu, Shuyi, Chen, Luyan, You, Jingjing, Jin, Zhe, Tang, Binghang, Dong, Di, Zhang, Shuixing. MRI-Based Deep-Learning Model for Distant Metastasis-Free Survival in Locoregionally Advanced Nasopharyngeal Carcinoma. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2021, 53(1): 167-178, http://dx.doi.org/10.1002/jmri.27308.
[10] Tian, Panwen, He, Bingxi, Mu, Wei, Liu, Kunqin, Liu, Li, Zeng, Hao, Liu, Yujie, Jiang, Lili, Zhou, Ping, Huang, Zhipei, Dong, Di, Li, Weimin. Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images. THERANOSTICS[J]. 2021, 11(5): 2098-2107, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7797686/.
[11] Wang, Xiaoxiao, Li, Cong, Fang, Mengjie, Zhang, Liwen, Zhong, Lianzhen, Dong, Di, Tian, Jie, Shan, Xiuhong. Integrating No.3 lymph nodes and primary tumor radiomics to predict lymph node metastasis in T1-2 gastric cancer. BMC MEDICAL IMAGING[J]. 2021, 21(1): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7989204/.
[12] Meng, Lingwei, Dong, Di, Chen, Xin, Fang, Mengjie, Wang, Rongpin, Li, Jing, Liu, Zaiyi, Tian, Jie. 2D and 3D CT Radiomic Features Performance Comparison in Characterization of Gastric Cancer: A Multi-Center Study. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS[J]. 2021, 25(3): 755-763, https://www.webofscience.com/wos/woscc/full-record/WOS:000626521100015.
[13] Wu, Xiangjun, Dong, Di, Zhang, Lu, Fang, Mengjie, Zhu, Yongbei, He, Bingxi, Ye, Zhaoxiang, Zhang, Minming, Zhang, Shuixing, Tian, Jie. Exploring the predictive value of additional peritumoral regions based on deep learning and radiomics: A multicenter study. MEDICAL PHYSICS[J]. 2021, 48(5): 2374-2385, http://dx.doi.org/10.1002/mp.14767.
[14] Hu, Hao, Gong, Lixin, Dong, Di, Zhu, Liang, Wang, Min, He, Jie, Shu, Lei, Cai, Yiling, Cai, Shilun, Su, Wei, Zhong, Yunshi, Li, Cong, Zhu, Yongbei, Fang, Mengjie, Zhong, Lianzhen, Yang, Xin, Zhou, Pinghong, Tian, Jie. Identifying early gastric cancer under magnifying narrow-band images with deep learning: a multicenter study. GASTROINTESTINAL ENDOSCOPY[J]. 2021, 93(6): 1333-+, http://dx.doi.org/10.1016/j.gie.2020.11.014.
[15] Zhong, Lianzhen, Dong, Di, Fang, Xueliang, Zhang, Fan, Zhang, Ning, Zhang, Liwen, Fang, Mengjie, Jiang, Wei, Liang, Shaobo, Li, Cong, Liu, Yujia, Zhao, Xun, Cao, Runnan, Shan, Hong, Hu, Zhenhua, Ma, Jun, Tang, Linglong, Tian, Jie. A deep learning-based radiomic nomogram for prognosis and treatment decision in advanced nasopharyngeal carcinoma: A multicentre study. EBIOMEDICINE[J]. 2021, 70: http://dx.doi.org/10.1016/j.ebiom.2021.103522.
[16] Sun, RuiJia, Fang, MengJie, Tang, Lei, Li, XiaoTing, Lu, QiaoYuan, Dong, Di, Tian, Jie, Sun, YingShi. CT-based deep learning radiomics analysis for evaluation of serosa invasion in advanced gastric cancer. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2020, 132: http://dx.doi.org/10.1016/j.ejrad.2020.109277.
[17] Di Dong. Predicting response to immunotherapy in advanced non-small cell lung cancer using tumour mutational burden radiomic biomarker. Journal for ImmunoTherapy of Cancer (共同第一作者). 2020, [18] Chen, Jiaming, He, Bingxi, Dong, Di, Liu, Ping, Duan, Hui, Li, Weili, Li, Pengfei, Wang, Lu, Fan, Huijian, Wang, Siwen, Zhang, Liwen, Tian, Jie, Huang, Zhipei, Chen, Chunlin. Noninvasive CT radiomic model for preoperative prediction of lymph node metastasis in early cervical carcinoma. BRITISH JOURNAL OF RADIOLOGY[J]. 2020, 93(1108): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7362918/.
[19] Zhong, Lianzhen, Dong, Di, Tang, Linglong, Han, Shuyan, Tian, Jie. Deep learning-based prognosis prediction in T3N1 nasopharyngeal carcinoma patients treated with induction chemotherapy followed by concurrent chemoradiotherapy. CANCER RESEARCHnull. 2020, 80(16): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000590059301397.
[20] Li, Jing, Dong, Di, Fang, Mengjie, Wang, Rui, Tian, Jie, Li, Hailiang, Gao, Jianbo. Dual-energy CT-based deep learning radiomics can improve lymph node metastasis risk prediction for gastric cancer. EUROPEAN RADIOLOGY[J]. 2020, 30(4): 2324-2333, https://www.webofscience.com/wos/woscc/full-record/WOS:000507798400010.
[21] Li, Cong, Dong, Di, Li, Liang, Gong, Wei, Li, Xiaohu, Bai, Yan, Wang, Meiyun, Hu, Zhenhua, Zha, Yunfei, Tian, Jie. Classification of Severe and Critical Covid-19 Using Deep Learning and Radiomics. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS[J]. 2020, 24(12): 3585-3594, http://dx.doi.org/10.1109/JBHI.2020.3036722.
[22] 王睿, 李靖, 方梦捷, 董迪, 梁盼, 高剑波. 基于能谱CT的影像组学术前预测进展期胃癌淋巴结转移的价值. 中华医学杂志[J]. 2020, 100(21): 1617-1622, http://lib.cqvip.com/Qikan/Article/Detail?id=7102206832.
[23] Hu, Wenchao, Wu, Xiangjun, Dong, Di, Cui, LongBiao, Jiang, Min, Zhang, Jibin, Wang, Yabin, Wang, Xinjiang, Gao, Lei, Tian, Jie, Cao, Feng. Novel radiomics features from CCTA images for the functional evaluation of significant ischaemic lesions based on the coronary fractional flow reserve score. INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING[J]. 2020, 36(10): 2039-2050, https://www.webofscience.com/wos/woscc/full-record/WOS:000537356200001.
[24] Su, Jiehua, Meng, Lingwei, Dong, Di, Zhuo, Wenyan, Wang, Jianming, Liu, Libin, Qin, Yi, Tian, Ye, Tian, Jie, Li, Zhaohui. Noninvasive model for predicting future ischemic strokes in patients with silent lacunar infarction using radiomics. BMC MEDICAL IMAGING[J]. 2020, 20(1): http://dx.doi.org/10.1186/s12880-020-00470-7.
[25] Chang Chen, Bingxi He, Yunlang She, Caicun Zhou, Mengjie Fang, Yongbei Zhu, Zhipei Huang, Tao Jiang. Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker. JOURNAL FOR IMMUNOTHERAPY OF CANCER[J]. 2020, 8(2): http://dx.doi.org/10.1136/jitc-2020-000550.
[26] Zhang, Wenjuan, Fang, Mengjie, Dong, Di, Wang, Xiaoxiao, Ke, Xiaoai, Zhang, Liwen, Hu, Chaoen, Guo, Lingyun, Guan, Xiaoying, Zhou, Junlin, Shan, Xiuhong, Tian, Jie. Development and validation of a CT-based radiomic nomogram for preoperative prediction of early recurrence in advanced gastric cancer. RADIOTHERAPY AND ONCOLOGY[J]. 2020, 145: 13-20, http://dx.doi.org/10.1016/j.radonc.2019.11.023.
[27] Li, Qiong, Liu, Yujia, Dong, Di, Bai, Xu, Huang, Qingbo, Guo, Aitao, Ye, Huiyi, Tian, Jie, Wang, Haiyi. Multiparametric MRI Radiomic Model for Preoperative Predicting WHO/ISUP Nuclear Grade of Clear Cell Renal Cell Carcinoma. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2020, 52(5): 1557-1566, https://www.webofscience.com/wos/woscc/full-record/WOS:000535717500001.
[28] Zhou, Hongyu, Mao, Haixia, Dong, Di, Fang, Mengjie, Gu, Dongsheng, Liu, Xueling, Xu, Min, Yang, Shudong, Zou, Jian, Yin, Ruohan, Zheng, Hairong, Tian, Jie, Pan, Changjie, Fang, Xiangming. Development and External Validation of Radiomics Approach for Nuclear Grading in Clear Cell Renal Cell Carcinoma. ANNALS OF SURGICAL ONCOLOGY[J]. 2020, 27(10): 4057-4065, https://www.webofscience.com/wos/woscc/full-record/WOS:000533809900002.
[29] Di Dong. First-trimester screening for trisomy 21 via an individualized nomogram. Ultrasound in Obstetrics and Gynecology (共同第一作者). 2020, [30] Zhong, LianZhen, Fang, XueLiang, Dong, Di, Peng, Hao, Fang, MengJie, Huang, ChengLong, He, BingXi, Lin, Li, Ma, Jun, Tang, LingLong, Tian, Jie. A deep learning MR-based radiomic nomogram may predict survival for nasopharyngeal carcinoma patients with stage T3N1M0. RADIOTHERAPY AND ONCOLOGY[J]. 2020, 151: 1-9, http://dx.doi.org/10.1016/j.radonc.2020.06.050.
[31] Gong, Lixin, Xu, Min, Fang, Mengjie, Zou, Jian, Yang, Shudong, Yu, Xinyi, Xu, Dandan, Zhou, Lijuan, Li, Hailin, He, Bingxi, Wang, Yan, Fang, Xiangming, Dong, Di, Tian, Jie. Noninvasive Prediction of High-Grade Prostate Cancer via Biparametric MRI Radiomics. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2020, 52(4): 1102-1109, https://www.webofscience.com/wos/woscc/full-record/WOS:000521407200001.
[32] Li, Hailin, Zhang, Rui, Wang, Siwen, Fang, Mengjie, Zhu, Yongbei, Hu, Zhenhua, Dong, Di, Shi, Jingyun, Tian, Jie. CT-Based Radiomic Signature as a Prognostic Factor in Stage IV ALK-Positive Non-small-cell Lung Cancer Treated With TKI Crizotinib: A Proof-of-Concept Study. FRONTIERS IN ONCOLOGY[J]. 2020, 10: https://doaj.org/article/8f3e9d9ba97e49a48f116306be0d2d0e.
[33] Wang, XiaoXiao, Ding, Yi, Wang, SiWen, Dong, Di, Li, HaiLin, Chen, Jian, Hu, Hui, Lu, Chao, Tian, Jie, Shan, XiuHong. Intratumoral and peritumoral radiomics analysis for preoperative Lauren classification in gastric cancer. CANCER IMAGING[J]. 2020, 20(1): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7684959/.
[34] Fu, Jia, Fang, Mengjie, Dong, Di, Li, Jian, Sun, Yingshi, Tian, Jie, Tang, Lei. Heterogeneity of metastatic gastrointestinal stromal tumor on texture analysis: DWI texture as potential biomarker of overall survival. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2020, 125: http://dx.doi.org/10.1016/j.ejrad.2020.108825.
[35] Mo, Xiaokai, Wu, Xiangjun, Dong, Di, Guo, Baoliang, Liang, Changhong, Luo, Xiaoning, Zhang, Bin, Zhang, Lu, Dong, Yuhao, Lian, Zhouyang, Liu, Jing, Pei, Shufang, Huang, Wenhui, Ouyang, Fusheng, Tian, Jie, Zhang, Shuixing. Prognostic value of the radiomics-based model in progression-free survival of hypopharyngeal cancer treated with chemoradiation. EUROPEAN RADIOLOGY[J]. 2020, 30(2): 833-843, https://www.webofscience.com/wos/woscc/full-record/WOS:000511977900017.
[36] Zhang, Fan, Zhong, LianZhen, Zhao, Xun, Dong, Di, Yao, JiJin, Wang, SiYang, Liu, Ye, Zhu, Ding, Wang, Yin, Wang, GuoJie, Wang, YiMing, Li, Dan, Wei, Jiang, Tian, Jie, Shan, Hong. A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study. THERAPEUTIC ADVANCES IN MEDICAL ONCOLOGY[J]. 2020, 12: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739087/.
[37] Wang, Siwen, Feng, Caizhen, Dong, Di, Li, Hailin, Zhou, Jing, Ye, Yingjiang, Liu, Zaiyi, Tian, Jie, Wang, Yi. Preoperative computed tomography-guided disease-free survival prediction in gastric cancer: a multicenter radiomics study. MEDICAL PHYSICS[J]. 2020, 47(10): 4862-4871, https://www.webofscience.com/wos/woscc/full-record/WOS:000555757600001.
[38] Zhang, Liwen, Dong, Di, Zhang, Wenjuan, Hao, Xiaohan, Fang, Mengjie, Wang, Shuo, Li, Wuchao, Liu, Zaiyi, Wang, Rongpin, Zhou, Junlin, Tian, Jie. A deep learning risk prediction model for overall survival in patients with gastric cancer: A multicenter study. RADIOTHERAPY AND ONCOLOGY[J]. 2020, 150: 73-80, http://dx.doi.org/10.1016/j.radonc.2020.06.010.
[39] Fang, Mengjie, Kan, Yangyang, Dong, Di, Yu, Tao, Zhao, Nannan, Jiang, Wenyan, Zhong, Lianzhen, Hu, Chaoen, Luo, Yahong, Tian, Jie. Multi-Habitat Based Radiomics for the Prediction of Treatment Response to Concurrent Chemotherapy and Radiation Therapy in Locally Advanced Cervical Cancer. FRONTIERS IN ONCOLOGY[J]. 2020, 10: https://doaj.org/article/8e5c135175044828a56dad86d708b0e6.
[40] Meng, Lingwei, Dong, Di, Li, Liang, Niu, Meng, Bai, Yan, Wang, Meiyun, Qiu, Xiaoming, Zha, Yunfei, Tian, Jie. A Deep Learning Prognosis Model Help Alert for COVID-19 Patients at High-Risk of Death: A Multi-Center Study. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS[J]. 2020, 24(12): 3576-3584, http://dx.doi.org/10.1109/JBHI.2020.3034296.
[41] Fang, Mengjie, He, Bingxi, Li, Li, Dong, Di, Yang, Xin, Li, Cong, Meng, Lingwei, Zhong, Lianzhen, Li, Hailin, Li, Hongjun, Tian, Jie. CT radiomics can help screen the Coronavirus disease 2019 (COVID-19): a preliminary study. SCIENCE CHINA-INFORMATION SCIENCES[J]. 2020, 63(7): 218-225, http://lib.cqvip.com/Qikan/Article/Detail?id=7102354896.
[42] 王超, 刘侠, 董迪, 臧丽亚, 刘再毅, 梁长虹, 田捷. 基于影像组学的非小细胞肺癌淋巴结转移预测. 自动化学报[J]. 2019, 45(6): 1087-1093, [43] Fang Mengjie, Zhang Wenjuan, Dong Di, Zhou Junlin, Tian Jie, Angelini ED, Landman BA. Predicting Histopathological Findings of Gastric Cancer via Deep Generalized Multi-instance Learning. MEDICAL IMAGING 2019: IMAGE PROCESSINGnull. 2019, 10949: [44] Dong, Di, Zhang, Fan, Zhong, LianZhen, Fang, MengJie, Huang, ChengLong, Yao, JiJin, Sun, Ying, Tian, Jie, Ma, Jun, Tang, LingLong. Development and validation of a novel MR imaging predictor of response to induction chemotherapy in locoregionally advanced nasopharyngeal cancer: a randomized controlled trial substudy (NCT01245959). BMC MEDICINE[J]. 2019, 17(1): http://dx.doi.org/10.1186/s12916-019-1422-6.
[45] Peng, Hao, Dong, Di, Fang, MengJie, Li, Lu, Tang, LingLong, Chen, Lei, Li, WenFei, Mao, YanPing, Fan, Wei, Liu, LiZhi, Tian, Li, Lin, AiHua, Sun, Ying, Tian, Jie, Ma, Jun. Prognostic Value of Deep Learning PET/CT-Based Radiomics: Potential Role for Future Individual Induction Chemotherapy in Advanced Nasopharyngeal Carcinoma. CLINICAL CANCER RESEARCH[J]. 2019, 25(14): 4271-4279, https://www.webofscience.com/wos/woscc/full-record/WOS:000478018100010.
[46] Zhu, Yongbei, Man, Chuntao, Gong, Lixin, Dong, Di, Yu, Xinyi, Wang, Shuo, Fang, Mengjie, Wang, Siwen, Fang, Xiangming, Chen, Xuzhu, Tian, Jie. A deep learning radiomics model for preoperative grading in meningioma. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2019, 116: 128-134, http://ir.ia.ac.cn/handle/173211/24380.
[47] Ma, Xiaoke, Dong, Di, Wang, Quan. Community Detection in Multi-Layer Networks Using Joint Nonnegative Matrix Factorization. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING[J]. 2019, 31(2): 273-286, http://ir.ia.ac.cn/handle/173211/25343.
[48] Liu, Yaou, Dong, Di, Zhang, Liwen, Zang, Yali, Duan, Yunyun, Qiu, Xiaolu, Huang, Jing, Dong, Huiqing, Barkhof, Frederik, Hu, Chaoen, Fang, Mengjie, Tian, Jie, Li, Kuncheng. Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder. EUROPEAN RADIOLOGY[J]. 2019, 29(9): 4670-4677, https://www.webofscience.com/wos/woscc/full-record/WOS:000478873300015.
[49] Fang Mengjie, Dong Di, Sun Ruijia, Fan Li, Sun Yingshi, Liu Shiyuan, Tian Jie, Mori K, Hahn HK. Using Multi-task Learning to Improve Diagnostic Performance of Convolutional Neural Networks. MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSISnull. 2019, 10950: [50] Chen, Wujie, Wang, Siwen, Dong, Di, Gao, Xuning, Zhou, Kefeng, Li, Jiaying, Lv, Bin, Li, Hailin, Wu, Xiangjun, Fang, Mengjie, Tian, Jie, Xu, Maosheng. Evaluation of Lymph Node Metastasis in Advanced Gastric Cancer Using Magnetic Resonance Imaging-Based Radiomics. FRONTIERS IN ONCOLOGY[J]. 2019, 9: [51] Li, Wuchao, Zhang, Liwen, Tian, Chong, Song, Hui, Fang, Mengjie, Hu, Chaoen, Zang, Yali, Cao, Ying, Dai, Shiyuan, Wang, Fang, Dong, Di, Wang, Rongpin, Tian, Jie. Prognostic value of computed tomography radiomics features in patients with gastric cancer following curative resection. EUROPEAN RADIOLOGY[J]. 2019, 29(6): 3079-3089, http://ir.ia.ac.cn/handle/173211/24583.
[52] Han, Lu, Zhu, Yongbei, Liu, Zhenyu, Yu, Tao, He, Cuiju, Jiang, Wenyan, Kan, Yangyang, Dong, Di, Tian, Jie, Luo, Yahong. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer. EUROPEAN RADIOLOGY[J]. 2019, 29(7): 3820-3829, http://ir.ia.ac.cn/handle/173211/24392.
[53] Wang, Fei, Zhang, Bin, Wu, Xiangjun, Liu, Lizhi, Fang, Jin, Chen, Qiuying, Li, Minmin, Chen, Zhuozhi, Li, Yueyue, Dong, Di, Tian, Jie, Zhang, Shuixing. Radiomic Nomogram Improves Preoperative T Category Accuracy in Locally Advanced Laryngeal Carcinoma. FRONTIERS IN ONCOLOGY[J]. 2019, 9: [54] Dong, D, Tang, L, Li, Z Y, Fang, MJ, Gao, JB, Shan, XH, Ying, XJ, Sun, YS, Fu, J, Wang, XX, Li, LM, Li, ZH, Zhang, DF, Zhang, Y, Li, ZM, Shan, F, Bu, ZD, Tian, J, Ji, JF. Development and validation of an individualized nomogram to identify occult peritoneal metastasis in patients with advanced gastric cancer. ANNALS OF ONCOLOGY[J]. 2019, 30(3): 431-438, http://dx.doi.org/10.1093/annonc/mdz001.
[55] Kan, Yangyang, Dong, Di, Zhang, Yuchen, Jiang, Wenyan, Zhao, Nannan, Han, Lu, Fang, Mengjie, Zang, Yali, Hu, Chaoen, Tian, Jie, Li, Chunming, Luo, Yahong. Radiomic signature as a predictive factor for lymph node metastasis in early-stage cervical cancer. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2019, 49(1): 304-310, http://ir.ia.ac.cn/handle/173211/25657.
[56] Wang, Bei, Li, Min, Ma, He, Han, Fangfang, Wang, Yan, Zhao, Shunying, Liu, Zhimin, Yu, Tong, Tian, Jie, Dong, Di, Peng, Yun. Computed tomography-based predictive nomogram for differentiating primary progressive pulmonary tuberculosis from community-acquired pneumonia in children. BMC MEDICAL IMAGING[J]. 2019, 19(1): http://dx.doi.org/10.1186/s12880-019-0355-z.
[57] Chen, Bin, Zhong, Lianzhen, Dong, Di, Zheng, Jianjun, Fang, Mengjie, Yu, Chunyao, Dai, Qi, Zhang, Liwen, Tian, Jie, Lu, Wei, Jin, Yinhua. Computed Tomography Radiomic Nomogram for Preoperative Prediction of Extrathyroidal Extension in Papillary Thyroid Carcinoma. FRONTIERS IN ONCOLOGY[J]. 2019, 9: https://doaj.org/article/d6e9ff5045844314911ffe3d4815765f.
[58] Yuan, Chunwang, Wang, Zhenchang, Gu, Dongsheng, Tian, Jie, Zhao, Peng, Wei, Jingwei, Yang, Xiaozhen, Hao, Xiaohan, Dong, Di, He, Ning, Sun, Yu, Gao, Wenfeng, Feng, Jiliang. Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram. CANCER IMAGING[J]. 2019, 19(1): http://ir.ia.ac.cn/handle/173211/24458.
[59] Wang, Chao, Li, Hailin, Jiaerken, Yeerfan, Huang, Peiyu, Sun, Lifeng, Dong, Fei, Huang, Yajing, Dong, Di, Tian, Jie, Zhang, Minming. Building CT Radiomics-Based Models for Preoperatively Predicting Malignant Potential and Mitotic Count of Gastrointestinal Stromal Tumors. TRANSLATIONAL ONCOLOGY[J]. 2019, 12(9): 1229-1236, http://dx.doi.org/10.1016/j.tranon.2019.06.005.
[60] Fan, Li, Fang, MengJie, Li, ZhaoBin, Tu, WenTing, Wang, ShengPing, Chen, WuFei, Tian, Jie, Dong, Di, Liu, ShiYuan. Radiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass nodule. EUROPEAN RADIOLOGY[J]. 2019, 29(2): 889-897, http://ir.ia.ac.cn/handle/173211/25645.
[61] Zhang, Lu, Dong, Di, Li, Hailin, Tian, Jie, Ouyang, Fusheng, Mo, Xiaokai, Zhang, Bin, Luo, Xiaoning, Lian, Zhouyang, Pei, Shufang, Dong, Yuhao, Huang, Wenhui, Liang, Changhong, Liu, Jing, Zhang, Shuixing. Development and validation of a magnetic resonance imaging-based model for the prediction of distant metastasis before initial treatment of nasopharyngeal carcinoma: A retrospective cohort study. EBIOMEDICINE[J]. 2019, 40: 327-335, http://ir.ia.ac.cn/handle/173211/25002.
[62] Ma, Xiaoxiao, Zhang, Liwen, Huang, Dehui, Lyu, Jinhao, Fang, Mengjie, Hu, Jianxing, Zang, Yali, Zhang, Dekang, Shao, Hang, Ma, Lin, Tian, Jie, Dong, Di, Lou, Xin. Quantitative radiomic biomarkers for discrimination between neuromyelitis optica spectrum disorder and multiple sclerosis. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2019, 49(4): 1113-1121, http://ir.ia.ac.cn/handle/173211/24974.
[63] Fu, Sirui, Wei, Jingwei, Zhang, Jie, Dong, Di, Song, Jiangdian, Li, Yong, Duan, Chongyang, Zhang, Shuaitong, Li, Xiaoqun, Gu, Dongsheng, Chen, Xudong, Hao, Xiaohan, He, Xiaofeng, Yan, Jianfeng, Liu, Zhenyu, Tian, Jie, Lu, Ligong. Selection Between Liver Resection Versus Transarterial Chemoembolization in Hepatocellular Carcinoma: A Multicenter Study. CLINICAL AND TRANSLATIONAL GASTROENTEROLOGY[J]. 2019, 10(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000487054100001.
[64] Min, Xiangde, Li, Min, Dong, Di, Feng, Zhaoyan, Zhang, Peipei, Ke, Zan, You, Huijuan, Han, Fangfang, Ma, He, Tian, Jie, Wang, Liang. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2019, 115: 16-21, http://ir.ia.ac.cn/handle/173211/24569.
[65] Zhang, Lu, Zhou, Hongyu, Gu, Dongsheng, Tian, Jie, Zhang, Bin, Dong, Di, Mo, Xiaokai, Liu, Jing, Luo, Xiaoning, Pei, Shufang, Dong, Yuhao, Huang, Wenhui, Chen, Qiuyin, Liang, Changhong, Lian, Zhouyang, Zhang, Shuixing. Radiomic Nomogram: Pretreatment Evaluation of Local Recurrence in Nasopharyngeal Carcinoma based on MR Imaging. JOURNAL OF CANCER[J]. 2019, 10(18): 4217-4225, [66] Xu, Xiaojuan, Li, Hailin, Wang, Siwen, Fang, Mengjie, Zhong, Lianzhen, Fan, Wenwen, Dong, Di, Tian, Jie, Zhao, Xinming. Multiplanar MRI-Based Predictive Model for Preoperative Assessment of Lymph Node Metastasis in Endometrial Cancer. FRONTIERS IN ONCOLOGY[J]. 2019, 9: https://doaj.org/article/ea64702b33784c3cb0647bbde27124b3.
[67] Di Dong. Predicting EGFR Mutation Status in Lung Adenocarcinoma on CT Image Using Deep Learning. European Respiratory Journal (共同第一作者). 2019, [68] Liu, Zhenyu, Wang, Shuo, Dong, Di, Wei, Jingwei, Fang, Cheng, Zhou, Xuezhi, Sun, Kai, Li, Longfei, Li, Bo, Wang, Meiyun, Tian, Jie. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. THERANOSTICSnull. 2019, 9(5): 1303-1322, http://ir.ia.ac.cn/handle/173211/23573.
[69] Han Yuqi, Xie Zhen, Zang Yali, Zhang Shuaitong, Gu Dongsheng, Wei Jingwei, Li Chao, Chen Hongyan, Du Jiang, Dong Di, Tian Jie, Zhou Dabiao, Mori K, Hahn HK. Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas. MEDICAL IMAGING 2019: COMPUTER-AIDED DIAGNOSISnull. 2019, 10950: [70] Wei, Jingwei, Yang, Guoqiang, Hao, Xiaohan, Gu, Dongsheng, Tan, Yan, Wang, Xiaochun, Dong, Di, Zhang, Shuaitong, Wang, Le, Zhang, Hui, Tian, Jie. A multi-sequence and habitat-based MRI radiomics signature for preoperative prediction of MGMT promoter methylation in astrocytomas with prognostic implication. EUROPEAN RADIOLOGY[J]. 2019, 29(2): 877-888, [71] Wang, Shuo, Shi, Jingyun, Ye, Zhaoxiang, Dong, Di, Yu, Dongdong, Zhou, Mu, Liu, Ying, Gevaert, Olivier, Wang, Kun, Zhu, Yongbei, Zhou, Hongyu, Liu, Zhenyu, Tian, Jie. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. EUROPEAN RESPIRATORY JOURNAL[J]. 2019, 53(3): http://ir.ia.ac.cn/handle/173211/23571.
[72] 任继亮, 袁瑛, 董迪, 施奕倩, 陶晓峰. 术前表观扩散系数图纹理分析预测舌和口底鳞状细胞癌组织学分级的价值. 中华放射学杂志[J]. 2019, 53(4): 281-285, http://lib.cqvip.com/Qikan/Article/Detail?id=7001883801.
[73] Tan, Yan, Zhang, Shuaitong, Wei, Jingwei, Dong, Di, Wang, Xiaochun, Yang, Guoqiang, Tian, Jie, Zhang, Hui. A radiomics nomogram may improve the prediction of IDH genotype for astrocytoma before surgery. EUROPEAN RADIOLOGY[J]. 2019, 29(7): 3325-3337, http://ir.ia.ac.cn/handle/173211/24414.
[74] Xu, Min, Fang, Mengjie, Zou, Jian, Yang, Shudong, Yu, Dongdong, Zhong, Lianzhen, Hu, Chaoen, Zang, Yali, Di, Dong, Tian, Jie, Fang, Xiangming. Using biparametric MRI radiomics signature to differentiate between benign and malignant prostate lesions. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2019, 114: 38-44, http://ir.ia.ac.cn/handle/173211/24912.
[75] Lu, Wei, Zhong, Lianzhen, Dong, Di, Fang, Mengjie, Dai, Qi, Leng, Shaoyi, Zhang, Liwen, Sun, Wei, Tian, Jie, Zheng, Jianjun, Jin, Yinhua. Radiomic analysis for preoperative prediction of cervical lymph node metastasis in patients with papillary thyroid carcinoma. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2019, 118: 231-238, http://dx.doi.org/10.1016/j.ejrad.2019.07.018.
[76] Li, Zhicong, Li, Hailin, Wang, Shiyu, Dong, Di, Yin, Fangfang, Chen, An, Wang, Siwen, Zhao, Guangming, Fang, Mengjie, Tian, Jie, Wu, Sufang, Wang, Han. MR-Based Radiomics Nomogram of Cervical Cancer in Prediction of the Lymph-Vascular Space Invasion preoperatively. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2019, 49(5): 1420-1426, http://ir.ia.ac.cn/handle/173211/24926.
[77] Cheng, Sainan, Fang, Mengjie, Cui, Chen, Chen, Xiuyu, Yin, Gang, Prasad, Sanjay K, Dong, Di, Tian, Jie, Zhao, Shihua. LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results. EUROPEAN RADIOLOGY[J]. 2018, 28(11): 4615-4624, https://www.webofscience.com/wos/woscc/full-record/WOS:000446542300016.
[78] 孟闫凯, 张雨晨, 张翀达, 万丽娟, 张红梅, 董迪, 赵心明, 徐凯, 李纯明, 周纯武. 对比MRI平扫、增强图像的影像组学标签对直肠癌生存期的预测价值. 中华放射学杂志[J]. 2018, 52(5): 349-355, http://lib.cqvip.com/Qikan/Article/Detail?id=675303902.
[79] Zhu, Xinzhong, Dong, Di, Chen, Zhendong, Fang, Mengjie, Zhang, Liwen, Song, Jiangdian, Yu, Dongdong, Zang, Yali, Liu, Zhenyu, Shi, Jingyun, Tian, Jie. Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. EUROPEAN RADIOLOGY[J]. 2018, 28(7): 2772-2778, https://www.webofscience.com/wos/woscc/full-record/WOS:000434251800008.
[80] Song, Jiangdian, Shi, Jingyun, Dong, Di, Fang, Mengjie, Zhong, Wenzhao, Wang, Kun, Wu, Ning, Huang, Yanqi, Liu, Zhenyu, Cheng, Yue, Gan, Yuncui, Zhou, Yongzhao, Zhou, Ping, Chen, Bojiang, Liang, Changhong, Liu, Zaiyi, Li, Weimin, Tian, Jie. A New Approach to Predict Progression-free Survival in Stage IV EGFR-mutant NSCLC Patients with EGFR-TKI Therapy. CLINICAL CANCER RESEARCH[J]. 2018, 24(15): 3583-3592, https://www.webofscience.com/wos/woscc/full-record/WOS:000440600200014.
[81] Wei, Jingwei, Gu, Dongsheng, Dong, Di, Zhang, Shuaitong, Jin, Yushen, Tian, Jie. Preoperative prediction of microvascular invasion in HCC using radiomics on multisequence gadoxetic acid-enhanced MR images. CANCER RESEARCHnull. 2018, 78(13): http://ir.ia.ac.cn/handle/173211/24388.
[82] Han, Yuqi, Xie, Zhen, Zang, Yali, Zhang, Shuaitong, Gu, Dongsheng, Zhou, Mu, Gevaert, Olivier, Wei, Jingwei, Li, Chao, Chen, Hongyan, Du, Jiang, Liu, Zhenyu, Dong, Di, Tian, Jie, Zhou, Dabiao. Non-invasive genotype prediction of chromosome 1p/19q co-deletion by development and validation of an MRI-based radiomics signature in lower-grade gliomas. JOURNAL OF NEURO-ONCOLOGY[J]. 2018, 140(2): 297-306, http://ir.ia.ac.cn/handle/173211/25721.
[83] Yang, Lei, Dong, Di, Fang, Mengjie, Zhu, Yongbei, Zang, Yali, Liu, Zhenyu, Zhang, Hongmei, Ying, Jianming, Zhao, Xinming, Tian, Jie. Can CT-based radiomics signature predict KRAS/NRAS/BRAF mutations in colorectal cancer?. EUROPEAN RADIOLOGY[J]. 2018, 28(5): 2058-2067, https://www.webofscience.com/wos/woscc/full-record/WOS:000429104200030.
[84] Zhang, Shuaitong, Song, Guidong, Zang, Yali, Jia, Jian, Wang, Chao, Li, Chuzhong, Tian, Jie, Dong, Di, Zhang, Yazhuo. Non-invasive radiomics approach potentially predicts non-functioning pituitary adenomas subtypes before surgery. EUROPEAN RADIOLOGY[J]. 2018, 28(9): 3692-3701, https://www.webofscience.com/wos/woscc/full-record/WOS:000440984300014.
[85] Meng, Yankai, Zhang, Yuchen, Dong, Di, Li, Chunming, Liang, Xiao, Zhang, Chongda, Wan, Lijuan, Zhao, Xinming, Xu, Kai, Zhou, Chunwu, Tian, Jie, Zhang, Hongmei. Novel Radiomic Signature as a Prognostic Biomarker for Locally Advanced Rectal Cancer. JOURNAL OF MAGNETIC RESONANCE IMAGING[J]. 2018, 48(3): 605-614, [86] Zhang, Liwen, Chen, Bojiang, Liu, Xia, Song, Jiangdian, Fang, Mengjie, Hu, Chaoen, Dong, Di, Li, Weimin, Tian, Jie. Quantitative Biomarkers for Prediction of Epidermal Growth Factor Receptor Mutation in Non-Small Cell Lung Cancer. TRANSLATIONAL ONCOLOGY[J]. 2018, 11(1): 94-101, http://dx.doi.org/10.1016/j.tranon.2017.10.012.
[87] Li, Jing, Fang, Mengjie, Wang, Rui, Dong, Di, Tian, Jie, Liang, Pan, Liu, Jie, Gao, Jianbo. Diagnostic accuracy of dual-energy CT-based nomograms to predict lymph node metastasis in gastric cancer. EUROPEAN RADIOLOGY[J]. 2018, 28(12): 5241-5249, http://ir.ia.ac.cn/handle/173211/25723.
[88] Jie Tian. Can CT-Based Radiomic Signature Predict KRAS/NRAS/BRAF Mutations in Colorectal Cancer?. European Radiology. 2018, [89] Huang, Yanqi, He, Lan, Dong, Di, Yang, Caiyun, Liang, Cuishan, Chen, Xin, Ma, Zelan, Huang, Xiaomei, Yao, Su, Liang, Changhong, Tian, Jie, Liu, Zaiyi. Individualized prediction of perineural invasion in colorectal cancer: development and validation of a radiomics prediction model. CHINESE JOURNAL OF CANCER RESEARCH[J]. 2018, 30(1): 40-+, http://lib.cqvip.com/Qikan/Article/Detail?id=90726589504849564849484853.
[90] Wei, Wei, Wang, Ke, Tian, Kaibing, Liu, Zhenyu, Wang, Liang, Zhang, Junting, Tang, Zhenchao, Wang, Shuo, Dong, Di, Zang, Yali, Gao, Yuan, Wu, Zhen, Tian, Jie, IEEE. A Novel MRI-Based Radiomics Model for Predicting Recurrence in Chordoma. 2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)null. 2018, 139-142, [91] Chen, Xin, Fang, Mengjie, Dong, Di, Wei, Xinhua, Liu, Lingling, Xu, Xiangdong, Jiang, Xinqing, Tian, Jie, Liu, Zaiyi. A Radiomics Signature in Preoperative Predicting Degree of Tumor Differentiation in Patients with Non-small Cell Lung Cancer. ACADEMIC RADIOLOGY[J]. 2018, 25(12): 1548-1555, http://dx.doi.org/10.1016/j.acra.2018.02.019.
[92] Chen Xi, Zhu Yongbei, Zhou Hongyu, Tang Zhenchao, Wei Wei, Dong Di, Tian Jie, Wang Meiyun, Wang Shuo, Liu Zhenyu. Unsupervised Deep Learning Features for Lung Cancer Overall Survival Analysis. 2018, http://ir.ia.ac.cn/handle/173211/23575.
[93] Ren, Jiliang, Tian, Jie, Yuan, Ying, Dong, Di, Li, Xiaoxia, Shi, Yiqian, Tao, Xiaofeng. Magnetic resonance imaging based radiomics signature for the preoperative discrimination of stage I-II and III-IV head and neck squamous cell carcinoma. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2018, 106: 1-6, http://dx.doi.org/10.1016/j.ejrad.2018.07.002.
[94] Zhou, Hongyu, Dong, Di, Chen, Bojiang, Fang, Mengjie, Cheng, Yue, Gan, Yuncun, Zhang, Rui, Zhang, Liwen, Zang, Yali, Liu, Zhenyu, Zheng, Hairong, Li, Weimin, Tian, Jie. Diagnosis of Distant Metastasis of Lung Cancer: Based on Clinical and Radiomic Features. TRANSLATIONAL ONCOLOGY[J]. 2018, 11(1): 31-36, http://ir.siat.ac.cn:8080/handle/172644/14307.
[95] Liu, Zhenyu, Wang, Yinyan, Liu, Xing, Du, Yang, Tang, Zhenchao, Wang, Kai, Wei, Jingwei, Dong, Di, Zang, Yali, Dai, Jianping, Jiang, Tao, Tian, Jie. Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas. NEUROIMAGE-CLINICAL[J]. 2018, 19(19): 271-278, http://ir.ia.ac.cn/handle/173211/23184.
[96] Wang, Chao, Li, Meng, Liu, Xia, Liu, Zaiyi, Zang, Yali, Liu, Zhenyu, Dong, Di, Chang, Changhong, Tian, Jie, IEEE. Semi-automated Enhanced Breast Tumor Segmentation for CT Image. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)null. 2017, 648-651, [97] Tian Jie, Wang Shuo, Zhou Mu, Gevaert Olivier, Tang Zhenchao, Dong Di, Liu Zhenyu. A Multi-view Deep Convolutional Neural Networks for Lung Nodule Segmentation. 2017, http://ir.ia.ac.cn/handle/173211/23574.
[98] Zhong Wenzhao, Dong Di, Tian Jie, Liu Zaiyi, Song Jiangdian, Zang Yali, Li Weimin, Shi Jingyun. Development and validation of a radiomics nomogram for progression-free survival prediction in stage IV EGFR-mutant non-small cell lung cancer. SPIE Medical Imaging 2017null. 2017, http://ir.ia.ac.cn/handle/173211/12494.
[99] Liu, Muhan, Guo, Hongbo, Liu, Hongbo, Zhang, Zeyu, Chi, Chongwei, Hui, Hui, Dong, Di, Hu, Zhenhua, Tian, Jie. In vivo pentamodal tomographic imaging for small animals. BIOMEDICAL OPTICS EXPRESS[J]. 2017, 8(3): 1356-1371, https://www.webofscience.com/wos/woscc/full-record/WOS:000395942600007.
[100] Ma, Zelan, Fang, Mengjie, Huang, Yanqi, He, Lan, Chen, Xin, Liang, Cuishan, Huang, Xiaomei, Cheng, Zixuan, Dong, Di, Liang, Changhong, Xie, Jiajun, Tian, Jie, Liu, Zaiyi. CT-based radiomics signature for differentiating Borrmann type IV gastric cancer from primary gastric lymphoma. EUROPEAN JOURNAL OF RADIOLOGY[J]. 2017, 91(2017): 142-147, http://www.corc.org.cn/handle/1471x/2182005.
[101] 范丽, 方梦捷, 董迪, 涂文婷, 望云, 李琼, 萧毅, 田捷, 刘士远. 影像组学对磨玻璃结节型肺腺癌病理亚型的预测效能. 中华放射学杂志[J]. 2017, 51(12): 912-917, http://lib.cqvip.com/Qikan/Article/Detail?id=674141276.
[102] Shi Jingyun, Yu Dongdong, Zang Yali, Dong Di, Zhou Mu, Gevaert Olivier, Tian Jie. Developing a Radiomics Framework for Classifying Non-Small Cell Lung Carcinoma Subtypes. SPIE Medical Imaging 2017null. 2017, http://ir.ia.ac.cn/handle/173211/12493.
[103] Wang, Shuo, Zhou, Mu, Gevaert, Olivier, Tang, Zhenchao, Dong, Di, Liu, Zhenyu, Tian, Jie, IEEE. A Multi-view Deep Convolutional Neural Networks for Lung Nodule Segmentation. 2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)null. 2017, 1752-1755, [104] Jie Tian. Radiomics of Multiparametric MRI for Pretreatment Prediction of Progression-Free Survival in Advanced Nasopharyngeal Carcinoma. Clinical Cancer Research (共同第一作者). 2017, [105] Tian Jie, Hui Hui, Wang Shuo, Dong Di, Liu Xia, Yang Xin, Hu Chaoen. Brain vessels segmentation for light-sheet microscopy image using convolutional neural networks. SPIE Digital Librarynull. 2017, http://ir.ia.ac.cn/handle/173211/12265.
[106] Zhang, Bin, Tian, Jie, Dong, Di, Gu, Dongsheng, Dong, Yuhao, Zhang, Lu, Lian, Zhouyang, Liu, Jing, Luo, Xiaoning, Pei, Shufang, Mo, Xiaokai, Huang, Wenhui, Ouyang, Fusheng, Guo, Baoliang, Liang, Long, Chen, Wenbo, Liang, Changhong, Zhang, Shuixing. Radiomics Features of Multiparametric MRI as Novel Prognostic Factors in Advanced Nasopharyngeal Carcinoma. CLINICAL CANCER RESEARCH[J]. 2017, 23(15): 4259-4269, https://www.webofscience.com/wos/woscc/full-record/WOS:000406680300031.
[107] Wang, Shuo, Zhou, Mu, Liu, Zaiyi, Liu, Zhenyu, Gu, Dongsheng, Zang, Yali, Dong, Di, Gevaert, Olivier, Tian, Jie. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation. MEDICAL IMAGE ANALYSIS[J]. 2017, 40(40): 172-183, http://dx.doi.org/10.1016/j.media.2017.06.014.
[108] Shen, Wei, Zhou, Mu, Yang, Feng, Yu, Dongdong, Dong, Di, Yang, Caiyun, Zang, Yali, Tian, Jie. Multi-crop Convolutional Neural Networks for lung nodule malignancy suspiciousness classification. PATTERN RECOGNITION[J]. 2017, 61(61): 663-673, http://dx.doi.org/10.1016/j.patcog.2016.05.029.
[109] Ma, Xiaoke, Dong, Di. Evolutionary Nonnegative Matrix Factorization Algorithms for Community Detection in Dynamic Networks. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING[J]. 2017, 29(5): 1045-1058, http://dx.doi.org/10.1109/TKDE.2017.2657752.
[110] 张利文, 刘侠, 汪俊, 董迪, 宋江典, 臧亚丽, 田捷. 基于定量影像组学的肺肿瘤良恶性预测方法. 自动化学报[J]. 2017, 43(12): 2109-2114, [111] 张利文, 方梦捷, 臧亚丽, 朱永北, 董迪, 刘侠, 田捷. 影像组学的发展与应用. 中华放射学杂志[J]. 2017, 51(1): 75-77, http://lib.cqvip.com/Qikan/Article/Detail?id=671270734.
[112] Liang, Xiao, Zang, Yali, Dong, Di, Zhang, Liwen, Fang, Mengjie, Yang, Xin, Arranz, Alicia, Ripoll, Jorge, Hui, Hui, Tian, Jie. Stripe artifact elimination based on nonsubsampled contourlet transform for light sheet fluorescence microscopy. JOURNAL OF BIOMEDICAL OPTICS[J]. 2016, 21(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000388213300028.
[113] Song, Jiangdian, Liu, Zaiyi, Zhong, Wenzhao, Huang, Yanqi, Ma, Zelan, Dong, Di, Liang, Changhong, Tian, Jie. Non-small cell lung cancer: quantitative phenotypic analysis of CT images as a potential marker of prognosis. SCIENTIFIC REPORTS[J]. 2016, 6: [114] Liang, Cuishan, Huang, Yanqi, He, Lan, Chen, Xin, Ma, Zelan, Dong, Di, Tian, Jie, Liang, Changhong, Liu, Zaiyi. The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer. ONCOTARGET[J]. 2016, 7(21): 31401-31412, https://www.webofscience.com/wos/woscc/full-record/WOS:000377746600120.
[115] Fang, Mengjie, Dong, Di, Zeng, Chaoting, Liang, Xiao, Yang, Xin, Arranz, Alicia, Ripoll, Jorge, Hui, Hui, Tian, Jie. Polarization-sensitive optical projection tomography for muscle fiber imaging. SCIENTIFIC REPORTS[J]. 2016, 6: http://ir.ia.ac.cn/handle/173211/10665.
[116] Liang Xiao, Dong Di, Hui Hui, Zhang Liwen, Fang Mengjie, Tian Jie, Farkas DL, Nicolau DV, Leif RC. Brain vascular image enhancement based on gradient adjust with split Bregman. IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES IXnull. 2016, 9711: [117] Song Jiangdian, Tian Jie, Liu Zaiyi, Zang Yali, Huang Yanqi, Dong Di. Association between Tumor Heterogeneity and Progression-free Survival in Non-small Cell Lung Cancer Patients with EGFR Mutations Undergoing Tyrosine Kinase Inhibitors Therapy. Annual International Conference of the IEEE Engineering in Medicine and Biology Societynull. 2016, http://ir.ia.ac.cn/handle/173211/12477.
[118] Wang Jun, Liu Xia, Dong Di, Song Jiangdian, Xu Min, Zang Yali, Tian Jie, Patton J, Barbieri R, Ji J, Jabbari E, Dokos S, Mukkamala R, Guiraud D, Jovanov E, Dhaher Y, Panescu D, Vangils M, Wheeler B, Dhawan AP. Prediction of Malignant and Benign of Lung Tumor using a Quantitative Radiomic Method. 2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)null. 2016, 1272-1275, [119] Song, Jiangdian, Dong, Di, Huang, Yanqi, Liu, Zaiyi, Tian, Jie, IEEE. ASSOCIATION BETWEEN TUMOR HETEROGENEITY AND OVERALL SURVIVAL IN PATIENTS WITH NON-SMALL CELL LUNG CANCER. 2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)null. 2016, 1249-1252, [120] Ma, Xibo, Hui, Hui, Jin, Yushen, Dong, Di, Liang, Xiaolong, Yang, Xin, Tan, Ke, Dai, Zhifei, Cheng, Zhen, Tian, Jie. Enhanced immunotherapy of SM5-1 in hepatocellular carcinoma by conjugating with gold nanoparticles and its in vivo bioluminescence tomographic evaluation. BIOMATERIALS[J]. 2016, 87(87): 46-56, http://dx.doi.org/10.1016/j.biomaterials.2016.02.007.
[121] Yang Yujie, Dong Di, Shi Liangliang, Wang Jun, Hui Hui, Yang Xin, Tian Jie, Farkas DL, Nicolau DV, Nicolau RC. A preliminary study on a dual-modality OPT/micro-CT system. IMAGING, MANIPULATION, AND ANALYSIS OF BIOMOLECULES, CELLS, AND TISSUES XIIInull. 2015, 9328: [122] Liangliang Shi, Di Dong, Yujie Yang, Jun Wang, Alicia Arranz, Jorge Ripoll, Jie Tian. Coherent noise remover for Optical Projection Tomography. SPIE Medical Imagingnull. 2015, http://ir.ia.ac.cn/handle/173211/11165.
[123] Yujie Yang, Di Dong, Liangliang Shi, Jun Wang, Xin Yang, Jie Tian. Signal enhancement in Optical Projection Tomography via virtual High Dynamic Range imaging of single exposure. SPIE Medical Imagingnull. 2015, http://ir.ia.ac.cn/handle/173211/11167.
[124] Shi, Liangliang, Dong, Di, Yang, Yujie, Wang, Jun, Arranz, Alicia, Ripoll, Jorge, Tian, Jie, Gimi, B, Molthen, RC. Coherent noise remover for Optical Projection Tomography. MEDICAL IMAGING 2015: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGINGnull. 2015, 9417: [125] Yang, Yujie, Dong, Di, Shi, Liangliang, Wang, Jun, Yang, Xin, Tian, Jie, Gimi, B, Molthen, RC. Signal enhancement in optical projection tomography via virtual high dynamic range imaging of single exposure. MEDICAL IMAGING 2015: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGINGnull. 2015, 9417: [126] Tian Jie, Dong Di, Mu Wei. A new Pansharp based method for PET/CT image fusion. International Symposium on Biomedical Imaging (ISBI)null. 2014, 1140-1143, http://ir.ia.ac.cn/handle/173211/5496.
[127] Guo, Jin, Yang, Yujie, Dong, Di, Shi, Liangliang, Hui, Hui, Xu, Min, Tian, Jie, Liu, Xia, IEEE. A projection selection method to improve image quality in optical projection tomography. 2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)null. 2014, 206-209, [128] Arranz, Alicia, Dong, Di, Zhu, Shouping, Savakis, Charalambos, Tian, Jie, Ripoll, Jorge. In-vivo Optical Tomography of Small Scattering Specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster. SCIENTIFIC REPORTS[J]. 2014, 4: https://www.webofscience.com/wos/woscc/full-record/WOS:000346268300005.
[129] Dong, Di, Arranz, Alicia, Zhu, Shouping, Yang, Yujie, Shi, Liangliang, Wang, Jun, Shen, Chen, Tian, Jie, Ripoll, Jorge. Vertically scanned laser sheet microscopy. JOURNAL OF BIOMEDICAL OPTICS[J]. 2014, 19(10): 106001-1-106001-8, http://ir.ia.ac.cn/handle/173211/11158.
[130] 郭进, 刘侠, 董迪, 朱守平, 杨鑫, 田捷. 活体光学投影断层成像系统与应用. 自动化学报[J]. 2013, 39(12): 2043-2050, [131] Dong, Di, Zhu, Shouping, Qin, Chenghu, Kumar, Varsha, Stein, Jens V, Oehler, Stephan, Savakis, Charalambos, Tian, Jie, Ripoll, Jorge. Automated Recovery of the Center of Rotation in Optical Projection Tomography in the Presence of Scattering. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS[J]. 2013, 17(1): 198-204, https://www.webofscience.com/wos/woscc/full-record/WOS:000321142500023.
[132] 董迪. 光学投影断层成像方法研究与原型系统构建. 2013, http://www.irgrid.ac.cn/handle/1471x/977132.
[133] Dong Di, Guo Jin, Yang Yujie, Shi Liangliang, Peng Dong, Liu Zhenyu, Ripoll Jorge, Tian Jie, IEEE. Analysis of the Rotational Center Location Method in Optical Projection Tomography. 2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC)null. 2013, 3008-3011, [134] Arranz, Alicia, Dong, Di, Zhu, Shouping, Rudin, Markus, Tsatsanis, Christos, Tian, Jie, Ripoll, Jorge. Helical optical projection tomography. OPTICS EXPRESS[J]. 2013, 21(22): 25912-25925, https://www.webofscience.com/wos/woscc/full-record/WOS:000327007800053.
[135] Zhu, Shouping, Dong, Di, Birk, Udo Jochen, Rieckher, Matthias, Tavernarakis, Nektarios, Qu, Xiaochao, Liang, Jimin, Tian, Jie, Ripoll, Jorge. Automated Motion Correction for In Vivo Optical Projection Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING[J]. 2012, 31(7): 1358-1371, https://www.webofscience.com/wos/woscc/full-record/WOS:000305898500003.
[136] Hui Hui, Jie Tian, Min Xu, Di Dong. A projection selection method to improve image quality in optical projection tomography. Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS)null. 2012, 206 - 209, http://ir.ia.ac.cn/handle/173211/5495.
[137] Tian Jie, Dong Di. New in vivo optical molecular imaging modalities. URSI General Assembly and Scientific Symposium (URSIGASS)null. 2011, http://ir.ia.ac.cn/handle/173211/5438.
[138] Ma, Xibo, Tian, Jie, Qin, Chenghu, Yang, Xin, Zhang, Bo, Xue, Zhenwen, Zhang, Xing, Han, Dong, Dong, Di, Liu, Xueyan. Early detection of liver cancer based on bioluminescence tomography. APPLIED OPTICS[J]. 2011, 50(10): 1389-1395, http://www.irgrid.ac.cn/handle/1471x/975010.
[139] Dong, Di, Tian, Jie, Dai, Yakang, Yan, Guorui, Yang, Fei, Wu, Ping. Unified reconstruction framework for multi-modal medical imaging. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY[J]. 2011, 19(1): 111-126, http://www.irgrid.ac.cn/handle/1471x/975072.
[140] Dai, Yakang, Tian, Jie, Dong, Di, Yan, Guorui, Zheng, Hairong. Real-Time Visualized Freehand 3D Ultrasound Reconstruction Based on GPU. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE[J]. 2010, 14(6): 1338-1345, http://www.irgrid.ac.cn/handle/1471x/975051.
[141] Zheng Jian, Tian Jie, Dai Yakang, Zhang Xing, Dong Di, Xu Min, Dhooge J, McAleavey SA. Ultrasound-directed Robotic System for Thermal Ablation of Liver Tumors: a Preliminary Report. MEDICAL IMAGING 2010: ULTRASONIC IMAGING, TOMOGRAPHY, AND THERAPYnull. 2010, 7629: [142] Yan, Guorui, Tian, Jie, Zhu, Shouping, Qin, Chenghu, Dai, Yakang, Yang, Fei, Dong, Di, Wu, Ping. Fast Katsevich Algorithm Based on GPU for Helical Cone-Beam Computed Tomography. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE[J]. 2010, 14(4): 1053-1061, http://www.irgrid.ac.cn/handle/1471x/975018.
[143] Hao Hu MD, Lixin Gong MS, Di Dong PhD, Liang Zhu MD, Min Wang MD, Jie He MD, Lei Shu MD, Yiling Cai MD, Shilun Cai MD, Wei Su MD, Yunshi Zhong MD, Cong Li BS, Yongbei Zhu MS, Mengjie Fang MS, Lianzhen Zhong BS, Xin Yang PhD, Pinghong Zhou MD, Jie Tian PhD. Identifying early gastric cancer under magnifying narrow-band images via deep learning: a multicenter study. Gastrointestinal Endoscopy. http://dx.doi.org/10.1016/j.gie.2020.11.014.
发表著作
(1) Radiomics and Its Clinical Application: Artificial Intelligence and Medical Big Data, Academic Press, 2021-06, 第 2 作者
(2) 影像组学基础, 科学出版社, 2022-04, 第 3 作者

科研活动

   
科研项目
( 1 ) 针对小鼠全身成像的多模融合显微成像技术及应用研究, 主持, 国家级, 2016-01--2018-12
( 2 ) 基于时空信息融合的植物根系多尺度原位观测系统研制, 主持, 部委级, 2016-01--2017-12
( 3 ) 2017年中国科学院青年创新促进会, 主持, 部委级, 2017-01--2020-12
( 4 ) 基于OPT成像系统的双模融合成像功能研发(中国科学院仪器设备功能开发技术创新项目), 主持, 部委级, 2016-09--2017-08
( 5 ) 基于影像组学的肝细胞癌预后预测的关键科学问题研究(中国科学院国际合作重点项目), 主持, 部委级, 2017-01--2018-12
( 6 ) 基于影像组学和大数据的肺癌筛查新技术研究(肺癌筛查和干预技术及方案研究), 主持, 国家级, 2017-08--2020-07
( 7 ) 基于分子影像和影像组学的乳腺癌早诊、疗效评价与预后预测新技术研发, 参与, 国家级, 2017-08--2021-07
( 8 ) 基于影像组学的EGFR突变型晚期非小细胞肺癌靶向治疗疗效预测研究, 主持, 国家级, 2018-01--2021-12
( 9 ) 基于多模态MRI影像组学的脑胶质瘤智能影像诊断研究, 主持, 省级, 2018-12--2021-12
( 10 ) 基于多模态影像组学的胃癌新辅助化疗疗效预测研究, 主持, 国家级, 2020-01--2023-12
( 11 ) 基于影像和病理融合的胃肠道肿瘤微卫星不稳定(MSI)评估及免疫治疗疗效预测, 主持, 国家级, 2020-01--2022-12
( 12 ) 胃癌影像组学, 主持, 国家级, 2021-01--2023-12

指导学生

已指导学生

吴相君  硕士研究生  085211-计算机技术  

现指导学生

操润楠  硕士研究生  081104-模式识别与智能系统  

刘瑜佳  硕士研究生  085208-电子与通信工程  

张广昊  硕士研究生  085208-电子与通信工程  

赵洵  硕士研究生  081104-模式识别与智能系统