基本信息

邓冰清  女   工程科学学院

电子邮件: dengbingqing@ucas.ac.cn

通信地址: 北京市中国科学院大学雁栖湖校区
邮政编码:101408

研究领域

主要采用高性能并行数值模拟程序对不可压缩湍流的理论、模型和控制方法进行研究。具体研究领域包括湍流边界层中的相干结构和湍流控制、海-气-湍流相互作用、旋转湍流等。目前已在包括流体力学顶级期刊J. Fluid Mech.(9篇)在内的流体力学主流期刊上发表SCI论文19篇,成果被Annu. Rev. Fluid Mech. 等综述期刊和J. Fluid Mech.等流体力学顶级期刊详细评述。

招生信息

080103-流体力学

湍流模拟实验室长期招收博士研究生、硕士研究生以及博士后(包括特别研究助理)从事湍流模拟、理论模型和控制研究。

湍流被誉为“经典物理学最后的疑团”,湍流研究具有重要的科学价值。同时,湍流在航天航空、航海、风电等工业领域有重要的应用背景,我们在湍流数值模拟中使用的高性能并行计算方法也是开发工业软件的重要元素。

欢迎有流体力学和计算机编程基础的同学加入我们。


教育背景

2009-09--2014-07   清华大学   博士学位(清华大学优秀博士毕业生) 

2005-08--2009-07   清华大学   学士学位(清华大学优良本科毕业生)

工作经历

2022--现在,中国,中国科学院大学工程科学学院,副教授,博导 

2019--2021,美国,University of Minnesota,Twin Cities,研究员 

2014--2019,美国,University of Minnesota,Twin Cities,博士后

研究方向

湍流相干结构与减阻控制

低速海洋航行器和亚音速飞机的高阻力主要来源于壁湍流相干结构诱导的摩擦阻力,因此可以通过控制湍流相干结构降低壁湍流阻力。从近壁流向涡结构的产生机制和与外区大尺度非线性作用机制出发,揭示了主动控制抑制相干结构、实现减阻的机制,并基于发现的机理提出了强化反向控制方案使减阻率提升50%。成果在包括J. Fluid Mech.在内的期刊上发表SCI论文5篇。





波浪影响下的湍流

波浪运动与海洋小尺度湍流的相互作用能显著影响海洋表层内物质和能量垂直输运。忽略波浪与小尺度风致剪切湍流相互作用产生的Langmuir环流会严重影响中尺度海洋预测模型的准确度,因此需要建立准确的包含Langmuir环流效应的湍流模型。在数值模拟结果中发现了Langmiur环流的自相似性和Langmuir环流作用下小尺度湍流的空间非均匀性,发展并验证了朗缪尔湍流大涡模拟所需的平均速度模型、壁面摩擦力模型、小尺度湍流模型,相关研究在J.Fluid Mech.发表论文5篇。


近海面湍流边界层

近海面湍流边界层受海洋温度锋面和波浪等海洋表面分布的影响,导致近海面湍流的水汽通量、热通量可能偏离经典湍流边界层中的经典壁面律,进而影响基于经典壁面速度律的区域天气预测模型和近海面电磁蒸发波导预测模型的准确性。采用高保真度数值模拟方法,发现了近海面湍流速度分布偏离经典壁面律的现象,揭示了海洋温度锋面、破碎波和非破碎波对近海面湍流的速度律影响机制,在J. Geophys. Res. Atmos和J. Fluid Mech.上发表论文3篇。


期刊SCI论文

[1] Deng, BingQing, Yang, Zixuan, Shen, Lian. Bottom wall shear stress fluctuations in shallow-water Langmuir turbulence. JOURNAL OF FLUID MECHANICS[J]. 2022, 942: http://dx.doi.org/10.1017/jfm.2022.343. 

[2] Deng, BingQing, Zhao, MingXiang, Wang, Qing, Shen, Lian. Numerical Study of Near-Surface Jet in the Atmospheric Surface Layer Over an Oceanic Temperature Front. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES[J]. 2021, 126(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000629772000002. [3] Li, Binglin, Yang, Zixuan, Zhang, Xing, He, Guowei, Deng, BingQing, Shen, Lian. Using machine learning to detect the turbulent region in flow past a circular cylinder. JOURNAL OF FLUID MECHANICS[J]. 2020, 905: https://www.webofscience.com/wos/woscc/full-record/WOS:000583498500001. 

[4] Deng BingQing, Yang Zixuan, Xuan Anqing, Shen Lian. Localizing effect of Langmuir circulations on small-scale turbulence in shallow water. JOURNAL OF FLUID MECHANICS[J]. 2020, 893: https://www.webofscience.com/wos/woscc/full-record/WOS:000526359400001. 

[5] Xuan, Anqing, Deng, BingQing, Shen, Lian. Numerical study of effect of wave phase on Reynolds stresses and turbulent kinetic energy in Langmuir turbulence. JOURNAL OF FLUID MECHANICS[J]. 2020, 904: https://www.webofscience.com/wos/woscc/full-record/WOS:000575823700001. 

[6] Yang, Z, Deng, B Q, Wang, B C, Shen, L. On the self-constraint mechanism of the cross-stream secondary flow in a streamwise-rotating channel. PHYSICS OF FLUIDS[J]. 2020, 32(10): https://www.webofscience.com/wos/woscc/full-record/WOS:000582127700003. 

[7] Cao, Tao, Deng, BingQing, Shen, Lian. A simulation-based mechanistic study of turbulent wind blowing over opposing water waves. JOURNAL OF FLUID MECHANICS[J]. 2020, 901: http://dx.doi.org/10.1017/jfm.2020.591. [8] Yang, Zixuan, Deng, BingQing, Wang, BingChen, Shen, Lian. Sustaining mechanism of Taylor-Gortler-like vortices in a streamwise-rotating channel flow. PHYSICAL REVIEW FLUIDS[J]. 2020, 5(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000527140000004. 

[9] Xuan, Anqing, Deng, BingQing, Shen, Lian. Study of wave effect on vorticity in Langmuir turbulence using wave-phase-resolved large-eddy simulation. JOURNAL OF FLUID MECHANICS[J]. 2019, 875: 173-224, https://www.webofscience.com/wos/woscc/full-record/WOS:000475893800001. 

[10] Deng, BingQing, Yang, Zixuan, Xuan, Anqing, Shen, Lian. Influence of Langmuir circulations on turbulence in the bottom boundary layer of shallow water. JOURNAL OF FLUID MECHANICS[J]. 2019, 861: 275-308, https://www.webofscience.com/wos/woscc/full-record/WOS:000527261700017. 

[11] Yang, Zixuan, Deng, BingQing, Wang, BingChen, Shen, Lian. Letter: The effects of streamwise system rotation on pressure fluctuations in a turbulent channel flow. PHYSICS OF FLUIDS[J]. 2018, 30(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000446155900001. 

[12] Yang, Zixuan, Deng, BingQing, Shen, Lian. Direct numerical simulation of wind turbulence over breaking waves. JOURNAL OF FLUID MECHANICS[J]. 2018, 850: 120-155, https://www.webofscience.com/wos/woscc/full-record/WOS:000437912100001. 

[13] Deng BingQing, Hu Yi, Guo Xin, Dalrymple Robert A, Shen Lian. Numerical study on the dissipation of water waves over a viscous fluid-mud layer. Computers and Fluids[J]. 2017, 158: 107-119, http://dx.doi.org/10.1016/j.compfluid.2017.04.015.

[14] Deng, BingQing, Huang, WeiXi, Xu, ChunXiao. Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at Re=1000. JOURNAL OF TURBULENCE[J]. 2016, 17(8): 758-786, https://www.webofscience.com/wos/woscc/full-record/WOS:000380171300002. 

[15] Xuan, Anqing Elliott, Deng, Bingqing, Cao, Tao, Shen, Lian. Numerical study on the effects of progressive gravity waves on turbulence. JOURNAL OF HYDRODYNAMICS[J]. 2016, 28(6): 1011-1017, http://lib.cqvip.com/Qikan/Article/Detail?id=671307749. 

[16] Deng, BingQing, Xu, ChunXiao, Huang, WeiXi, Cui, GuiXiang. Strengthened opposition control for skin-friction reduction in wall-bounded turbulent flows. JOURNAL OF TURBULENCE[J]. 2014, 15(2): 122-143, https://www.webofscience.com/wos/woscc/full-record/WOS:000335931900002. 

[17] Xu ChunXiao, Deng BingQing, Huang WeiXi, Cui GuiXiang. Coherent structures in wall turbulence and mechanism for drag reduction control. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2013, 56(6): 1053-1061, https://www.webofscience.com/wos/woscc/full-record/WOS:000319072700002. 

[18] Deng BingQing, Xu ChunXiao, Huang WeiXi, Cui GuiXiang. Effect of active control on optimal structures in wall turbulence. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY[J]. 2013, 56(2): 290-297, https://www.webofscience.com/wos/woscc/full-record/WOS:000314709000007. 

[19] Deng, BQ, Xu, CX. Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence. JOURNAL OF FLUID MECHANICS[J]. 2012, 710: 234-259,