基本信息

崔淑珍  女    硕导 中国科学院上海光学精密机械研究所
电子邮件: cuishuzhen@siom.ac.cn
通信地址: 上海市嘉定区清河路390号
邮政编码:

研究领域

单频、窄线宽、随机光纤激光技术及非线性频率变换

招生信息

   
招生专业
080300-光学工程
招生方向
激光技术及非线性频率变换技术

教育背景

2019-08--2022-09   中国科学院大学   工学博士
2009-08--2012-07   山西大学   工学硕士
2005-09--2009-06   山西大学   理学学士
学历

博士研究生

学位
工学博士

工作经历

2012~至今,中国科学院上海光学精密机械研究所

工作简历
2012-07~现在, 中国科学院上海光学精密机械研究所, 工作

专利与奖励

   
专利成果
( 1 ) 高功率多单频光纤激光倍频系统和方法, 专利授权, 2021, 第 3 作者, 专利号: CN111725693B

( 2 ) 一种倍频激光产生装置, 发明专利, 2021, 第 3 作者, 专利号: CN112821176A

( 3 ) 相位调制解调的高功率倍频单频激光产生装置, 发明专利, 2020, 第 3 作者, 专利号: CN112103758A

( 4 ) 一种高重频脉冲光纤钠导星激光器系统, 专利授权, 2017, 第 4 作者, 专利号: CN107275916A

( 5 ) 锁模光纤激光器, 发明专利, 2014, 第 1 作者, 专利号: CN104064939A

出版信息

   
发表论文
[1] 郭梦婷, 田晋敏, 王璠, 王孟, 张磊, 崔淑珍, 于春雷, 胡丽丽. 基于自研锗铋共掺石英光纤的E+S波段放大输出. 中国激光[J]. 2023, 50(6): 207-208, http://lib.cqvip.com/Qikan/Article/Detail?id=7109613085.
[2] Zeng Xin, Cui Shuzhen, Jiang Huawei, Ruan Bowen, Cheng Xin, Zhou Jiaqi, Lin Zhiquan, Yang Xuezong, Chen Weibiao, Feng Yan. Single-frequency upconverted laser generation by phase summation. HIGH POWER LASER SCIENCE AND ENGINEERING[J]. 2023, 11(2): http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=7507463&detailType=1.
[3] Li, Xin, Zhou, Jiaqi, Cheng, Zhi, Cao, Xinru, Qi, Weiao, Li, Sha, Cui, Shuzhen, Jiang, Huawei, Feng, Yan. Generation of 978 nm dispersion-managed solitons from a polarization-maintaining Yb-doped figure-of-9 fiber laser. OPTICS LETTERS[J]. 2023, 48(11): 3051-3054, http://dx.doi.org/10.1364/OL.488150.
[4] Cheng, Xin, Lin, Zhiquan, Yang, Xuezong, Cui, Shuizhen, Zeng, Xin, Jiang, Huawei, Feng, Yan. High-power 1560 nm single-frequency erbium fiber amplifier core-pumped at 1480 nm. HIGH POWER LASER SCIENCE AND ENGINEERING[J]. 2023, 10(1): 18-25, http://dx.doi.org/10.1017/hpl.2023.6.
[5] Yatan Xiong, Jiaqi Zhou, Xinru Cao, Shuzhen Cui, Huawei Jiang, Yan Feng. Highly Discriminative Amplification of a Single Frequency Comb Line. Laser Photonics Rev.[J]. 2023, [6] Zhiquan Lin, shuzhen cui, jiang huawei, Xin Zeng, Xuezong Yang, Yan Feng. Efficient single-frequency 972 nm Yb-doped fiber amplifier with core pumping and elevated temperature. Optics Express[J]. 2023, [7] 郭梦婷, 田晋敏, 王璠, 阳求柏, 邵冲云, 王孟, 张磊, 崔淑珍, 于春雷, 胡丽丽. Bi掺杂高磷石英基光纤实现E波段放大. 发光学报[J]. 2022, 43(4): 478-481, http://lib.cqvip.com/Qikan/Article/Detail?id=7106995059.
[8] Qi, Weiao, Zhou, Jiaqi, Cao, Xinru, Cheng, Zhi, Jiang, Huawei, Cui, Shuzhen, Feng, Yan. Cascaded nonlinear optical gain modulation for coherent femtosecond pulse generation. OPTICS EXPRESS[J]. 2022, 30(6): 8889-8897, http://dx.doi.org/10.1364/OE.452637.
[9] Cheng, Xin, Dong, Jinyan, Zeng, Xin, Zhou, Jiaqi, Cui, Shuzhen, Qi, Weiao, Lin, Zhiquan, Jiang, Huawei, Feng, Yan. 130 W continuous-wave supercontinuum generation within a random Raman fiber laser. OPTICAL FIBER TECHNOLOGY[J]. 2022, 68: http://dx.doi.org/10.1016/j.yofte.2022.102825.
[10] Weiao Qi, Jiaqi Zhou, Shuzhen Cui, Xin Cheng, Xin Zeng, Yan Feng. Femtosecond Pulse Generation by Nonlinear Optical Gain Modulation. ADVANCED PHOTONICS RESEARCH[J]. 2022, 3(3): n/a-n/a, [11] Zeng, Xin, Cui, Shuzhen, Cheng, Xin, Feng, Yan. Spectral compression by phase doubling in second harmonic generation. OPTICSLETTERS[J]. 2022, 47(2): 222-225, [12] Zhou, Jiaqi, Qi, Weiao, Zeng, Xin, Cheng, Xin, Jiang, Huawei, Cui, Shuzhen, Feng, Yan. All-Polarization-Maintaining, Ultra-Compact Tm-Doped Fiber Laser Designed for Mid-Infrared Comb. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2022, 34(2): 89-92, http://dx.doi.org/10.1109/LPT.2021.3138858.
[13] Qi, Weiao, Zhou, Jiaqi, Cao, Xinru, Cheng, Zhi, Jiang, Huawei, Cui, Shuzhen, Feng, Yan. Numerical simulation of nonlinear optical gain modulation in a Raman fiber amplifier. OPTICS EXPRESS[J]. 2022, 30(19): 34848-34861, [14] Cui, Shuzhen, Zeng, Xin, Jiang, Huawei, Cheng, Xin, Yang, Xuezong, Zhou, Jiaqi, Feng, Yan. Robust single-frequency 589 nm fiber laser based on phase modulation and passive demodulation. OPTICS EXPRESS[J]. 2022, 30(6): 9112-9118, http://dx.doi.org/10.1364/OE.454139.
[15] Cheng, Xin, Cui, Shuzhen, Zeng, Xin, Zhou, Jiaqi, Feng, Yan. Spectral and RIN properties of a single-frequency Raman fiber amplifier co- pumped by ASE source. OPTICS EXPRESS[J]. 2021, 29(10): 15764-15771, [16] 崔淑珍, 曾鑫, 程鑫, 杨学宗, 冯衍. 基于级联拉曼激光倍频的10 W黄光光纤激光器. 中国激光[J]. 2021, 48(16): 50-56, http://lib.cqvip.com/Qikan/Article/Detail?id=7105798204.
[17] Cui, Shuzhen, Qian, Jiaping, Zeng, Xin, Cheng, Xin, Gu, Xijia, Feng, Yan. A watt-level yellow random laser via single-pass frequency doubling of a random Raman fiber laser. OPTICAL FIBER TECHNOLOGY[J]. 2021, 64: http://dx.doi.org/10.1016/j.yofte.2021.102552.
[18] Cheng, Xin, Pan, Weiwei, Zeng, Xin, Dong, Jinyan, Cui, Shuzhen, Feng, Yan. Relative intensity noise comparison of fiber laser and amplified spontaneous emission sources. OPTICAL FIBER TECHNOLOGY[J]. 2020, 54: http://dx.doi.org/10.1016/j.yofte.2019.102119.
[19] Zeng, Xin, Cui, Shuzhen, Cheng, Xin, Zhou, Jiaqi, Qi, Weiao, Feng, Yan. Resonant frequency doubling of phase-modulation-generated few-frequency fiber laser. OPTICS LETTERS[J]. 2020, 45(17): 4944-4947, http://dx.doi.org/10.1364/OL.401348.
[20] Zeng, Xin, Cui, Shuzhen, Qian, Jiaping, Cheng, Xin, Dong, Jinyan, Zhou, Jiaqi, Xu, Zhen, Feng, Yan. 10 W low-noise green laser generation by the single-pass frequency doubling of a single-frequency fiber amplifier. LASER PHYSICS[J]. 2020, 30(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000544624200001.
[21] Fan, T, Yang, X, Dong, J, Zhang, L, Cui, S, Qian, J, Dong, R, Deng, K, Zhou, T, Wei, K, Feng, Y, Chen, W. Remote Magnetometry With Mesospheric Sodium Based on Gated Photon Counting. JOURNALOFGEOPHYSICALRESEARCHSPACEPHYSICS[J]. 2019, 124(9): 7505-7512, https://www.webofscience.com/wos/woscc/full-record/WOS:000491755600010.
[22] Cui, Shuzhen, Zhang, Lei, Jiang, Huawei, Pan, Weiwei, Yang, Xuezong, Qin, Guanshi, Feng, Yan. High efficiency frequency doubling with a passive enhancement cavity. LASER PHYSICS LETTERS[J]. 2019, 16(3): [23] Dong, Jinyan, Zeng, Xin, Cui, Shuzhen, Zhou, Jiaqi, Feng, Yan. More than 20 W fiber-based continuous-wave single frequency laser at 780 nm. OPTICS EXPRESS[J]. 2019, 27(24): 35362-35367, [24] Fan, Tingwei, Zhang, Lei, Yang, Xuezong, Cui, Shuzhen, Zhou, Tianhua, Feng, Yan. Magnetometry using fluorescence of sodium vapor. OPTICS LETTERS[J]. 2018, 43(1): 1-4, https://www.webofscience.com/wos/woscc/full-record/WOS:000418610900001.
[25] Dong, Jinyan, Zhang, Lei, Jiang, Huawei, Yang, Xuezong, Pan, Weiwei, Cui, Shuzhen, Gu, Xijia, Feng, Yan. High order cascaded Raman random fiber laser with high spectral purity. OPTICS EXPRESS[J]. 2018, 26(5): 5275-5280, http://dx.doi.org/10.1364/OE.26.005275.
[26] Qian, Jiaping, Zhang, Lei, Jiang, Huawei, Cui, Shuzhen, Zhou, Jiaqi, Feng, Yan. 2 W single-frequency, low-noise 509 nm aser via single-pass frequency doubling o an ECDL-seeded Yb fiber amplifier. APPLIED OPTICS[J]. 2018, 57(29): 8733-8737, https://www.webofscience.com/wos/woscc/full-record/WOS:000446845800040.
[27] Pan, Weiwei, Zhang, Lei, Jiang, Huawei, Yang, Xuezong, Cui, Shuzhen, Feng, Yan. Ultrafast Raman fiber Laser with Random Distributed Feedback. LASER & PHOTONICS REVIEWS[J]. 2018, 12(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000430301500004.
[28] Yang, Xuezong, Zhang, Lei, Cui, Shuzhen, Fan, Tingwei, Dong, Jinyan, Feng, Yan. Sodium guide star laser pulsed at Larmor frequency (vol 42, 4351, 2017). OPTICS LETTERSnull. 2017, 42(24): 5149-5149, https://www.webofscience.com/wos/woscc/full-record/WOS:000418019100025.
[29] Zhang, Lei, Jiang, Huawei, Yang, Xuezong, Pan, Weiwei, Cui, Shuzhen, Feng, Yan. Nearly-octave wavelength tuning of a continuous wave fiber laser. SCIENTIFIC REPORTS[J]. 2017, 7: https://www.webofscience.com/wos/woscc/full-record/WOS:000394250000001.
[30] Yang, Xuezong, Zhang, Lei, Cui, Shuzhen, Fan, Tingwei, Dong, Jinyan, Feng, Yan. Sodium guide star laser pulsed at Larmor frequency. OPTICS LETTERS[J]. 2017, 42(21): 4351-4354, https://www.webofscience.com/wos/woscc/full-record/WOS:000414097200029.
[31] Cui, Shuzhen, Zhang, Lei, Jiang, Huawei, Feng, Yan. 33 W continuous-wave single-frequency green laser by frequency doubling of a single-mode YDFA. CHINESE OPTICS LETTERS[J]. 2017, 15(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000399384800012.
[32] Zhang, Lei, Jiang, Huawei, Cui, Shuzhen, Feng, Yan. Integrated ytterbium-Raman fiber amplifier. OPTICS LETTERS[J]. 2014, 39(7): 1933-1936, https://www.webofscience.com/wos/woscc/full-record/WOS:000333887800058.
[33] Wang JianHua, Cui ShuZhen, Hu JinMeng, Cao Fen, Fang Yong, Lu HuiLing. Experimental and Numerical Investigation of Single Frequency Amplifier with Photonic Bandgap Fiber at 1178 nm. CHINESE PHYSICS LETTERS[J]. 2014, 31(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000337500700032.
[34] Zhang, Lei, Jiang, Huawei, Cui, Shuzhen, Hu, Jinmeng, Feng, Yan. Versatile Raman fiber laser for sodium laser guide star. LASER & PHOTONICS REVIEWS[J]. 2014, 8(6): 889-895, http://dx.doi.org/10.1002/lpor.201400055.
[35] Zhang, Lei, Cui, Shuzhen, Liu, Chi, Zhou, Jun, Feng, Yan. 170 W, single-frequency, single-mode, linearly-polarized, Yb-doped all-fiber amplifier. OPTICS EXPRESS[J]. 2013, 21(5): 5456-5462, https://www.webofscience.com/wos/woscc/full-record/WOS:000316103300037.
[36] Wang, Jianhua, Cui, Shuzhen, Si, Lei, Chen, Jinbao, Feng, Yan. All-fiber single-mode actively Q-switched laser at 1120 nm. OPTICS EXPRESS[J]. 2013, 21(1): 289-294, https://www.webofscience.com/wos/woscc/full-record/WOS:000315988100053.
[37] 刘奎, 崔淑珍, 杨荣国, 张俊香, 郜江瑞. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier. CHINESE PHYSICS LETTERS[J]. 2012, 29(6): 28-30, https://www.webofscience.com/wos/woscc/full-record/WOS:000305481400008.
[38] 崔淑珍, 刘奎, 郜江瑞. Ⅱ类光学参量放大器中多横模的共振. 量子光学学报[J]. 2012, 202-207, http://lib.cqvip.com/Qikan/Article/Detail?id=1001857041.
[39] 刘奎, 崔淑珍, 张海龙, 张俊香, 郜江瑞. Noise Suppression of a Single Frequency Fiber Laser. CHINESE PHYSICS LETTERS[J]. 2011, 28(7): 156-159, https://www.webofscience.com/wos/woscc/full-record/WOS:000293141800042.

科研活动

   
科研项目
( 1 ) 多材料体系宽带有源光纤研究, 参与, 国家任务, 2020-11--2023-10
( 2 ) 单频激光注入的超短脉冲拉曼光纤放大器技术研究, 参与, 国家任务, 2021-01--2024-12
( 3 ) 通信用高功率蓝绿光脉冲激光器研制, 参与, 国家任务, 2022-12--2025-11
( 4 ) 基于调制-自解调的高重频单频绿光光纤激光技术, 负责人, 国家任务, 2024-01--2026-12