基本信息
宋春桥 男 中国科学院南京地理与湖泊研究所
电子邮件: cqsong@niglas.ac.cn
通信地址: 江苏省南京市北京东路73号
邮政编码: 210008
电子邮件: cqsong@niglas.ac.cn
通信地址: 江苏省南京市北京东路73号
邮政编码: 210008
招生信息
招生专业
070503-地图学与地理信息系统070501-自然地理学070520-自然资源学
招生方向
湖泊水文环境遥感全球变化
教育背景
2011-08--2014-07 香港中文大学 博士2008-09--2011-06 中国科学院地理科学与资源研究所 硕士2004-09--2008-06 武汉大学 本科
工作经历
工作简历
2014-10~2017-11,加州大学洛杉矶分校, 博士后
教授课程
remote sensing of environmentGIS
专利与奖励
专利成果
[1] 宋春桥, 詹鹏飞. 湖滨带虚拟站的湖库时序水位重建方法. CN: CN111192282A, 2020-05-22.[2] 刘凯, 范晨雨, 宋春桥, 黄滢. 基于遥感影像和地形数据的大区域尺度黄土塬面提取方法. CN: CN111178372A, 2020-05-19.[3] 刘凯, 宋春桥, 马荣华. 一种独立于实测数据的河道型水库水下地形建模方法. CN: CN111177118A, 2020-05-19.[4] 宋春桥, 吴倩浛, 刘凯, 马荣华. 基于遥感影像与地形数据的原真地貌采矿破坏区探测方法. CN: CN110598553A, 2019-12-20.[5] 宋春桥, 吴倩浛, 刘凯, 马荣华. 基于遥感大数据平台的湖泊长时序连续水域变化重建方法. CN: CN110569733A, 2019-12-13.[6] 宋春桥, 张闻松, 刘凯, 马荣华. 基于高时频遥感影像序列的新建水库自动识别方法. CN: CN110569734A, 2019-12-13.[7] 刘凯, 宋春桥, 柯灵红, 马荣华. 基于湖泊汇流关系的内流湖盆区流域自动划分方法. CN: CN110147423A, 2019-08-20.[8] 刘凯, 汤国安, 宋春桥, 马荣华. 基于遥感影像和地形数据的区域尺度侵蚀沟自动提取方法. 中国: CN107657618A, 2018-02-02.
出版信息
发表论文
[1] Song, Lijuan, Song, Chunqiao, Luo, Shuangxiao, Chen, Tan, Liu, Kai, Zhang, Yunlin, Ke, Linghong. Integrating ICESat-2 altimetry and machine learning to estimate the seasonal water level and storage variations of national-scale lakes in China. REMOTE SENSING OF ENVIRONMENT[J]. 2023, 294: http://dx.doi.org/10.1016/j.rse.2023.113657.[2] Feng, Ye, Yang, Leiku, Zhan, Pengfei, Luo, Shuangxiao, Chen, Tan, Liu, Kai, Song, Chunqiao. Synthesis of the ICESat/ICESat-2 and CryoSat-2 observations to reconstruct time series of lake level. INTERNATIONAL JOURNAL OF DIGITAL EARTH[J]. 2023, 16(1): 183-209, [3] Peipei Cui, Tan Chen, Yingjie Li, Kai Liu, Dapeng Zhang, Chunqiao Song. Comparison and Assessment of Different Land Cover Datasets on the Cropland in Northeast China. Remote Sensing[J]. 2023, 15(5134): 1-26, https://doi.org/10.3390/rs15215134.[4] Zhan, Pengfei, Song, Chunqiao, Liu, Kai, Chen, Tan, Ke, Linghong, Luo, Shuangxiao, Fan, Chenyu. Can we estimate the lake mean depth and volume from the deepest record and auxiliary geospatial parameters?. JOURNAL OF HYDROLOGY[J]. 2023, 617: http://dx.doi.org/10.1016/j.jhydrol.2022.128958.[5] Liang Xinge, Song Chunqiao, Liu Kai, Chen Tan, Fan Chenyu. Reconstructing Centennial-Scale Water Level of Large Pan-Arctic Lakes Using Machine Learning Methods. JOURNAL OF EARTH SCIENCE[J]. 2023, 34(4): 1218-1230, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=7517897&detailType=1.[6] 宋利娟, 景海涛, 徐嘉慧, 陈探, 张大鹏, 宋春桥. 联合哨兵卫星系列雷达与光学影像的洞庭湖水域面积变化高时空分辨率监测. 遥感学报[J]. 2023, 27(11): 2516-2529, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=7610829&detailType=1.[7] Qianhan Wu, Linghong Ke, Jida Wang, Tamlin M. Pavelsky, George H. Allen, Yongwei Sheng, Xuejun Duan, Yunqiang Zhu, Jin Wu, Lei Wang, Kai Liu, Tan Chen, Wensong Zhang, Chenyu Fan, Bin Yong, Chunqiao Song. Satellites reveal hotspots of global river extent change. NATURE COMMUNICATIONS[J]. 2023, 14(1): 1-13, http://dx.doi.org/10.1038/s41467-023-37061-3.[8] Zeng, Fanxuan, Song, Chunqiao, Cao, Zhigang, Xue, Kun, Lu, Shanlong, Chen, Tan, Liu, Kai. Monitoring inland water via Sentinel satellite constellation: A review and perspective. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING. 2023, 204: 340-361, http://dx.doi.org/10.1016/j.isprsjprs.2023.09.011.[9] Chen, Tan, Song, Chunqiao, Zhan, Pengfei, Fan, Chenyu. Densifying and Optimizing the Water Level Series for Large Lakes from Multi-Orbit ICESat-2 Observations. REMOTE SENSING[J]. 2023, 15(3): http://dx.doi.org/10.3390/rs15030780.[10] 梁新歌, 王涵, 赵爽, 宋春桥. 21世纪以来泛北极湖泊水位变化时空特征及原因探讨. 湖泊科学[J]. 2023, 35(6): 2111-2122, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=7594745&detailType=1.[11] Ke, Linghong, Song, Chunqiao, Wang, Jida, Sheng, Yongwei, Ding, Xiaoli, Yong, Bin, Ma, Ronghua, Liu, Kai, Zhan, Pengfei, Luo, Shuangxiao. Constraining the contribution of glacier mass balance to the Tibetan lake growth in the early 21st century. REMOTE SENSING OF ENVIRONMENT[J]. 2022, 268: http://dx.doi.org/10.1016/j.rse.2021.112779.[12] Song, Chunqiao, Jiang, Xingan, Fan, Chenyu, Li, Linsen. High-resolution circa-2020 map of urban lakes in China. SCIENTIFIC DATA. 2022, 9(1): http://dx.doi.org/10.1038/s41597-022-01874-6.[13] 张闻松, 宋春桥. 中国湖泊分布与变化:全国尺度遥感监测研究进展与新编目. 遥感学报[J]. 2022, 26(1): 92-103, http://lib.cqvip.com/Qikan/Article/Detail?id=7106596102.[14] Liu, Kai, Song, Chunqiao. Modeling lake bathymetry and water storage from DEM data constrained by limited underwater surveys. JOURNAL OF HYDROLOGY[J]. 2022, 604: http://dx.doi.org/10.1016/j.jhydrol.2021.127260.[15] Zhan, Pengfei, Song, Chunqiao, Luo, Shuangxiao, Ke, Linghong, Liu, Kai, Chen, Tan. Investigating different timescales of terrestrial water storage changes in the northeastern Tibetan Plateau. JOURNAL OF HYDROLOGY[J]. 2022, 608: http://dx.doi.org/10.1016/j.jhydrol.2022.127608.[16] Chen, Tan, Song, Chunqiao, Luo, Shuangxiao, Ke, Linghong, Liu, Kai, Zhu, Jingying. Monitoring global reservoirs using ICESat-2: Assessment on spatial coverage and application potential. JOURNAL OF HYDROLOGY[J]. 2022, 604: http://dx.doi.org/10.1016/j.jhydrol.2021.127257.[17] Jiang, Xingan, Fan, Chenyu, Liu, Kai, Chen, Tan, Cao, Zhigang, Song, Chunqiao. Centenary covariations of water salinity and storage of the largest lake of Northwest China reconstructed by machine learning. JOURNAL OF HYDROLOGY[J]. 2022, 612: http://dx.doi.org/10.1016/j.jhydrol.2022.128095.[18] Luo, Shuangxiao, Song, Chunqiao, Ke, Linghong, Zhan, Pengfei, Fan, Chenyu, Liu, Kai, Chen, Tan, Wang, Jida, Zhu, Jingying. Satellite Laser Altimetry Reveals a Net Water Mass Gain in Global Lakes With Spatial Heterogeneity in the Early 21st Century. GEOPHYSICAL RESEARCH LETTERS[J]. 2022, 49(3): https://www.doi.org/10.1029/2021GL096676.[19] Chen, Tan, Song, Chunqiao, Zhan, Pengfei, Yao, Jiepeng, Li, Yunliang, Zhu, Jingying. Remote sensing estimation of the flood storage capacity of basin-scale lakes and reservoirs at high spatial and temporal resolutions. SCIENCE OF THE TOTAL ENVIRONMENT[J]. 2022, 807: http://dx.doi.org/10.1016/j.scitotenv.2021.150772.[20] 王哲, 刘凯, 詹鹏飞, 王纯, 范辰媛, 宋春桥, 汤国安. 近三十年青藏高原内流区湖泊岸线形态的时空演变. 地理研究[J]. 2022, 41(4): 980-996, http://lib.cqvip.com/Qikan/Article/Detail?id=7107116266.[21] 冯祺宇, 刘凯, 范晨雨, 宋春桥. 中国八大沙漠区湖泊时空分布数据集(2000-2019). 全球变化数据学报(中英文)[J]. 2022, 6(1): 45-52, http://lib.cqvip.com/Qikan/Article/Detail?id=7108213415.[22] C Song, C Fan, J Zhu, J Wang, Y Sheng, K Liu, T Chen, P Zhan, S Luo, C Yuan, L Ke. A comprehensive geospatial database of nearly 100 000 reservoirs in China. EARTH SYSTEM SCIENCE DATA[J]. 2022, 14: https://doaj.org/article/ed27e15f800844409c182693ab6d4eaa.[23] Song, Chunqiao, Luo, Shuangxiao, Liu, Kai, Chen, Tan, Zhang, Pengfei, Fan, Chenyu. Widespread declines in water salinity of the endorheic Tibetan Plateau lakes. ENVIRONMENTAL RESEARCH COMMUNICATIONS[J]. 2022, 4(9): [24] Chenyu Fan, Kai Liu, Shuangxiao Luo, Tan Chen, Jian Cheng, Pengfei Zhan, Chunqiao Song. Detection of surface water temperature variations of Mongolian lakes benefiting from the spatially and temporally gap-filled MODIS data. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION[J]. 2022, 114: 103073, http://dx.doi.org/10.1016/j.jag.2022.103073.[25] Luo, Shuangxiao, Song, Chunqiao, Zhan, Pengfei, Liu, Kai, Chen, Tan, Li, Wenkai, Ke, Linghong. Refined estimation of lake water level and storage changes on the Tibetan Plateau from ICESat/ICESat-2. CATENA[J]. 2021, 200: https://www.webofscience.com/wos/woscc/full-record/WOS:000620777400039.[26] Fan, Chenyu, Song, Chunqiao, Liu, Kai, Ke, Linghong, Xue, Bin, Chen, Tan, Fu, Congsheng, Cheng, Jian. Century-Scale Reconstruction of Water Storage Changes of the Largest Lake in the Inner Mongolia Plateau Using a Machine Learning Approach. WATER RESOURCES RESEARCH[J]. 2021, 57(2): http://dx.doi.org/10.1029/2020WR028831.[27] Fan, Chenyu, Song, Chunqiao, Li, Wenkai, Liu, Kai, Cheng, Jian, Fu, Congsheng, Chen, Tan, Ke, Linghong, Wang, Jida. What drives the rapid water-level recovery of the largest lake (Qinghai Lake) of China over the past half century?. JOURNAL OF HYDROLOGY[J]. 2021, 593: http://dx.doi.org/10.1016/j.jhydrol.2020.125921.[28] 姚杰鹏, 杨磊库, 陈探, 宋春桥. 基于Sentinel-1,2和Landsat 8时序影像的鄱阳湖湿地连续变化监测研究. 遥感技术与应用[J]. 2021, 36(4): 760-776, [29] 詹鹏飞, 刘凯, 张玉超, 马荣华, 宋春桥. 青藏高原不同气候子区典型湖泊多时间尺度变化的遥感对比研究. 遥感技术与应用[J]. 2021, 36(1): 90-102, http://lib.cqvip.com/Qikan/Article/Detail?id=7104556127.[30] Zhu, Jingying, Song, Chunqiao, Ke, Linghong, Liu, Kai, Chen, Tan. Remote Sensing Investigation of the Offset Effect between Reservoir Impoundment and Glacier Meltwater Supply in Tibetan Highland Catchment. WATER[J]. 2021, 13(9): http://dx.doi.org/10.3390/w13091307.[31] Cheng, Jian, Song, Chunqiao, Liu, Kai, Ke, Linghong, Chen, Tan, Fan, Chenyu. Regional assessment of the potential risks of rapid lake expansion impacting on the Tibetan human living environment. ENVIRONMENTAL EARTH SCIENCES[J]. 2021, 80(4): http://dx.doi.org/10.1007/s12665-021-09470-4.[32] 於佳宁, 刘凯, 张冰玥, 黄滢, 范晨雨, 宋春桥, 汤国安. 中国区域TanDEM-X 90 m DEM高程精度评价及其适用性分析. 地球信息科学学报[J]. 2021, 23(4): 646-657, http://lib.cqvip.com/Qikan/Article/Detail?id=7104644985.[33] Wang, Lei, Song, Chunqiao, Conradt, Tobias, Rasmy, Mohamed, Li, Xiuping. Editorial: Climatic and Associated Cryospheric and Hydrospheric Changes on the Third Pole. FRONTIERS IN EARTH SCIENCE[J]. 2021, 8: https://doaj.org/article/5c75045760fd45bc9e090d79e7dd1ad5.[34] Fu, Congsheng, Wu, Huawu, Zhu, Zichun, Song, Chunqiao, Xue, Bin, Wu, Haohao, Ji, Zhenming, Dong, Linyao. Exploring the potential factors on the striking water level variation of the two largest semi-arid-region lakes in northeastern Asia. CATENA[J]. 2021, 198: http://dx.doi.org/10.1016/j.catena.2020.105037.[35] 程俭, 刘昌华, 刘凯, 武建双, 范晨雨, 薛滨, 马荣华, 宋春桥. 2004年以来青海湖快速扩张对人居设施与草地的潜在影响. 湖泊科学[J]. 2021, 33(3): 922-934, http://lib.cqvip.com/Qikan/Article/Detail?id=7104515181.[36] Chen, Tan, Song, Chunqiao, Ke, Linghong, Wang, Jida, Liu, Kai, Wu, Qianhan. Estimating seasonal water budgets in global lakes by using multi-source remote sensing measurements. JOURNAL OF HYDROLOGY[J]. 2021, 593: http://dx.doi.org/10.1016/j.jhydrol.2020.125781.[37] Song, Chunqiao, Sheng, Yongwei, Zhan, Shengan, Wang, Jida, Ke, Linghong, Liu, Kai. Impact of amplified evaporation due to lake expansion on the water budget across the inner Tibetan Plateau. INTERNATIONAL JOURNAL OF CLIMATOLOGY[J]. 2020, 40(4): 2091-2105, https://www.webofscience.com/wos/woscc/full-record/WOS:000490776400001.[38] Qianhan Wu, Chunqiao Song, Kai Liu, Linghong Ke. Integration of TanDEM-X and SRTM DEMs and Spectral Imagery to Improve the Large-Scale Detection of Opencast Mining Areas. REMOTE SENSING[J]. 2020, 12(9): http://dx.doi.org/10.3390/rs12091451.[39] Yi, Shuang, Song, Chunqiao, Heki, Kosuke, Kang, Shichang, Wang, Qiuyu, Chang, Le. Satellite-observed monthly glacier and snow mass changes in southeast Tibet: implication for substantial meltwater contribution to the Brahmaputra. CRYOSPHERE[J]. 2020, 14(7): 2267-2281, https://doaj.org/article/dc0addc18b134a67a9e692af3a414c1c.[40] 宋春桥, 詹鹏飞, 马荣华. 湖泊水情遥感研究进展. 湖泊科学[J]. 2020, 32(5): 1406-1420, [41] Liu, Kai, Song, Chunqiao, Ke, Linghong, Jiang, Ling, Ma, Ronghua. Automatic watershed delineation in the Tibetan endorheic basin: A lake-oriented approach based on digital elevation models. GEOMORPHOLOGY[J]. 2020, 358: http://dx.doi.org/10.1016/j.geomorph.2020.107127.[42] Deng, Xinyuan, Song, Chunqiao, Liu, Kai, Ke, Linghong, Zhang, Wensong, Ma, Ronghua, Zhu, Jingying, Wu, Qianhan. Remote sensing estimation of catchment-scale reservoir water impoundment in the upper Yellow River and implications for river discharge alteration. JOURNAL OF HYDROLOGY[J]. 2020, 585: https://www.webofscience.com/wos/woscc/full-record/WOS:000544230000051.[43] Ke, Linghong, Song, Chunqiao, Yong, Bin, Lei, Yanbin, Ding, Xiaoli. Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau. REMOTE SENSING OF ENVIRONMENT[J]. 2020, 242: http://dx.doi.org/10.1016/j.rse.2020.111777.[44] Liu, Kai, Song, Chunqiao, Wang, Jida, Ke, Linghong, Zhu, Yunqiang, Zhu, Jingying, Ma, Ronghua, Luo, Zhu. Remote Sensing-Based Modeling of the Bathymetry and Water Storage for Channel-Type Reservoirs Worldwide. WATER RESOURCES RESEARCH[J]. 2020, 56(11): http://dx.doi.org/10.1029/2020WR027147.[45] 罗竹, 刘凯, 张春亢, 邓心远, 马荣华, 宋春桥. DEM在湖泊水文变化研究中的应用进展. 地球信息科学学报[J]. 2020, 22(7): 1510-1521, http://lib.cqvip.com/Qikan/Article/Detail?id=7102447869.[46] Zhan, Pengfei, Song, Chunqiao, Wang, Jida, Li, Wenkai, Ke, Linghong, Liu, Kai, Chen, Tan. Recent Abnormal Hydrologic Behavior of Tibetan Lakes Observed by Multi-Mission Altimeters. REMOTE SENSING[J]. 2020, 12(18): https://doaj.org/article/fe7a9299cc5146d7a3e0d3a59be78139.[47] Zhu, Jingying, Song, Chunqiao, Wang, Jida, Ke, Linghong. China's inland water dynamics: The significance of water body types. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2020, 117(25): 13876-13878, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322035/.[48] Qiu, Bo, Li, Wenkai, Wang, Xuegian, Shang, Lunyu, Song, Chunqiao, Guo, Weidong, Zhang, Yongguang. Satellite-observed solar-induced chlorophyll fluorescence reveals higher sensitivity of alpine ecosystems to snow cover on the Tibetan Plateau. AGRICULTURAL AND FOREST METEOROLOGY[J]. 2019, 271: 126-134, http://dx.doi.org/10.1016/j.agrformet.2019.02.045.[49] Liu, Kai, Song, Chunqiao, Ke, Linghong, Jiang, Ling, Pan, Yuanyuan, Ma, Ronghua. Global open-access DEM performances in Earth's most rugged region High Mountain Asia: A multi-level assessment. GEOMORPHOLOGY[J]. 2019, 338: 16-26, http://dx.doi.org/10.1016/j.geomorph.2019.04.012.[50] Zhan, Shengan, Song, Chunqiao, Wang, Jida, Sheng, Yongwei, Quan, Jiping. A Global Assessment of Terrestrial Evapotranspiration Increase Due to Surface Water Area Change. EARTHS FUTURE[J]. 2019, 7(3): 266-282, http://dx.doi.org/10.1029/2018EF001066.[51] Li, Meng, Wu, Jianshuang, Song, Chunqiao, He, Yongtao, Niu, Ben, Fu, Gang, Tarolli, Paolo, Tietjen, Britta, Zhang, Xianzhou. Temporal Variability of Precipitation and Biomass of Alpine Grasslands on the Northern Tibetan Plateau. REMOTE SENSING[J]. 2019, 11(3): http://dx.doi.org/10.3390/rs11030360.[52] Luo, Shuangxiao, Song, Chunqiao, Liu, Kai, Ke, Linghong, Ma, Ronghua. An Effective Low-Cost Remote Sensing Approach to Reconstruct the Long-Term and Dense Time Series of Area and Storage Variations for Large Lakes. SENSORS[J]. 2019, 19(19): http://dx.doi.org/10.3390/s19194247.[53] Chunqiao Song, Linghong Ke, Hang Pan, Shengan Zhan, Kai Liu, Ronghua Ma. Long-term surface water changes and driving cause in Xiong'an, China: from dense Landsat time series images and synthetic analysis. 科学通报:英文版[J]. 2018, 63(11): 708-716, http://lib.cqvip.com/Qikan/Article/Detail?id=675629454.[54] Wensong Zhang, Hang Pan, Chunqiao Song, Linghong Ke, Jida Wang, Ronghua Ma, Xinyuan Deng, Kai Liu, Jingying Zhu, Qianhan Wu. Identifying Emerging Reservoirs along Regulated Rivers Using Multi-Source Remote Sensing Observations. REMOTE SENSING[J]. 2018, 11(1): https://doaj.org/article/d065c8cf24b9418290582e3204593d66.[55] Song, Chunqiao, Ke, Linghong, Pan, Hang, Zhan, Shengan, Li, Kai, Ma, Ronghua. Long-term surface water changes and driving cause in Xiong'an, China: from dense Landsat time series images and synthetic analysis. SCIENCE BULLETIN[J]. 2018, 63(11): 708-716, http://lib.cqvip.com/Qikan/Article/Detail?id=675629454.[56] Wu Qianhan, Liu Kai, Song Chunqiao, Wang Jida, Ke Linghong, Ma Ronghua, Zhang Wensong, Pan Hang, Deng Xinyuan. Remote Sensing Detection of Vegetation and Landform Damages by Coal. SUSTAINABILITY[J]. 2018, 10(11): http://www.irgrid.ac.cn/handle/1471x/2554400.[57] Wang, Jida, Song, Chunqiao, Reager, John T, Yao, Fangfang, Famiglietti, James S, Sheng, Yongwei, MacDonald, Glen M, Brun, Fanny, Schmied, Hannes Mueller, Marston, Richard A, Wada, Yoshihide. Recent global decline in endorheic basin water storages. NATURE GEOSCIENCE[J]. 2018, 11(12): 926-+, http://dx.doi.org/10.1038/s41561-018-0265-7.[58] Liu, Kai, Ding, Hu, Tang, Guoan, Song, Chunqiao, Liu, Yiwen, Jiang, Ling, Zhao, Bangyuan, Gao, Yunfei, Ma, Ronghua. Large-scale mapping of gully-affected areas: An approach integrating Google Earth images and terrain skeleton information. GEOMORPHOLOGY[J]. 2018, 314: 13-26, http://dx.doi.org/10.1016/j.geomorph.2018.04.011.[59] Liu Kai, Ding Hu, Tang Guoan, Song Chunqiao, Liu Yiwen, Jiang Ling, Zhao Bangyuan, Gao Yunfei, Ma Ronghua. Large-scale mapping of gully-affected areas: An approach integrating. GEOMORPHOLOGY[J]. 2018, 314: 13-26, http://www.irgrid.ac.cn/handle/1471x/2554302.[60] Song Chunqiao, Ke Linghong, Pan Hang, Zhan Shengan, Li Kai, Ma Ronghua. Long-term surface water changes and driving cause in Xiong'an, China:. SCIENCE BULLETIN[J]. 2018, 63(11): 708-716, http://www.irgrid.ac.cn/handle/1471x/2554503.[61] Wu, Qianhan, Liu, Kai, Song, Chunqiao, Wang, Jida, Ke, Linghong, Ma, Ronghua, Zhang, Wensong, Pan, Hang, Deng, Xinyuan. Remote Sensing Detection of Vegetation and Landform Damages by Coal Mining on the Tibetan Plateau. SUSTAINABILITY[J]. 2018, 10(11): https://doaj.org/article/a41db6e3c2e34bcda5b660b5975e4c6f.[62] Yi, Shuang, Song, Chunqiao, Wang, Qiuyu, Wang, Linsong, Heki, Kosuke, Sun, Wenke. The potential of GRACE gravimetry to detect the heavy rainfall-induced impoundment of a small reservoir in the upper Yellow River. WATER RESOURCES RESEARCH[J]. 2017, 53(8): 6562-6578, https://www.webofscience.com/wos/woscc/full-record/WOS:000411202000013.[63] Feng, Yunfei, Wu, Jianshuang, Zhang, Jing, Zhang, Xianzhou, Song, Chunqiao. Identifying the Relative Contributions of Climate and Grazing to Both Direction and Magnitude of Alpine Grassland Productivity Dynamics from 1993 to 2011 on the Northern Tibetan Plateau. REMOTE SENSING[J]. 2017, 9(2): https://doaj.org/article/56be53882d1b4f2fb184639c3cbceb17.[64] Nie, Yong, Sheng, Yongwei, Liu, Qiao, Liu, Linshan, Liu, Shiyin, Zhang, Yili, Song, Chunqiao. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. REMOTE SENSING OF ENVIRONMENT[J]. 2017, 189: 1-13, http://dx.doi.org/10.1016/j.rse.2016.11.008.[65] Wada, Yoshihide, Reager, John T, Chao, Benjamin F, Wang, Jida, Lo, MinHui, Song, Chunqiao, Li, Yuwen, Gardner, Alex S. Recent Changes in Land Water Storage and its Contribution to Sea Level Variations. SURVEYS IN GEOPHYSICS. 2017, 38(1): 131-152, http://dx.doi.org/10.1007/s10712-016-9399-6.[66] Ye, Qinghua, Zong, Jibiao, Tian, Lide, Cogley, J Graham, Song, Chunqiao, Guo, Wanqin. Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s-2000-13. JOURNAL OF GLACIOLOGY[J]. 2017, 63(238): 273-287, http://ir.itpcas.ac.cn/handle/131C11/8307.[67] Yang, Kehan, Yao, Fangfang, Wang, Jida, Luo, Jiancheng, Shen, Zhanfeng, Wang, Chao, Song, Chunqiao. Recent dynamics of alpine lakes on the endorheic Changtang Plateau from multi-mission satellite data. JOURNAL OF HYDROLOGY[J]. 2017, 552: 633-645, http://dx.doi.org/10.1016/j.jhydrol.2017.07.024.[68] Madson, Austin, Sheng, Yongwei, Song, Chunqiao. ICESat-derived lithospheric flexure as caused by an endorheic lake's expansion on the Tibetan Plateau and the comparison to modeled flexural responses. JOURNALOFASIANEARTHSCIENCES[J]. 2017, 148: 142-152, http://dx.doi.org/10.1016/j.jseaes.2017.08.028.[69] Song, Chunqiao, Sheng, Yongwei, Wang, Jida, Ke, Linghong, Madson, Austin, Nie, Yong. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas. GEOMORPHOLOGY[J]. 2017, 280: 30-38, http://dx.doi.org/10.1016/j.geomorph.2016.12.002.[70] Wu, Jianshuang, Feng, Yunfei, Zhang, Xianzhou, Wurst, Susanne, Tietjen, Britta, Tarolli, Paolo, Song, Chunqiao. Grazing exclusion by fencing non-linearly restored the degraded alpine grasslands on the Tibetan Plateau. SCIENTIFIC REPORTS[J]. 2017, 7(1): https://doaj.org/article/6d667e0d51494640921816f2810b698e.[71] Sheng, Yongwei, Song, Chunqiao, Wang, Jida, Lyons, Evan A, Knox, Benjamin R, Cox, Joshua S, Gao, Feng. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. REMOTE SENSING OF ENVIRONMENT[J]. 2016, 185: 129-141, http://dx.doi.org/10.1016/j.rse.2015.12.041.[72] Chengqun Yu, Xianzhou Zhang, Jing Zhang, Shaowei Li, Chunqiao Song, Yuzhi Fang, Susanne Wurst, Jianshuang Wu. Grazing Exclusion to Recover Degraded Alpine Pastures Needs Scientific Assessments across the Northern Tibetan Plateau. SUSTAINABILITY[J]. 2016, 8(11): https://doaj.org/article/73e7f46fc7144ea7a26f06374e4f1095.[73] Song, Chunqiao, Ke, Linghong, Richards, Keith S, Cui, Yuanzheng. Homogenization of surface temperature data in High Mountain Asia through comparison of reanalysis data and station observations. INTERNATIONAL JOURNAL OF CLIMATOLOGY[J]. 2016, 36(3): 1088-1101, https://www.webofscience.com/wos/woscc/full-record/WOS:000371541400004.[74] Song, Chunqiao, Sheng, Yongwei. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis. CLIMATIC CHANGE[J]. 2016, 135(3-4): 493-507, https://www.webofscience.com/wos/woscc/full-record/WOS:000375466700010.[75] Song, Chunqiao, Sheng, Yongwei, Ke, Linghong, Nie, Yong, Wang, Jida. Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes. JOURNAL OF HYDROLOGY[J]. 2016, 540: 504-514, http://dx.doi.org/10.1016/j.jhydrol.2016.06.054.[76] Song, Chunqiao, Huang, Bo, Ke, Linghong, Ye, Qinghua. Precipitation variability in High Mountain Asia from multiple datasets and implication for water balance analysis in large lake basins. GLOBAL AND PLANETARY CHANGE[J]. 2016, 145: 20-29, http://dx.doi.org/10.1016/j.gloplacha.2016.08.005.[77] Cui, Yuanzheng, Lin, Jintai, Song, Chunqiao, Liu, Mengyao, Yan, Yingying, Xu, Yuan, Huang, Bo. Rapid growth in nitrogen dioxide pollution over Western China, 2005-2013. ATMOSPHERIC CHEMISTRY AND PHYSICS[J]. 2016, 16(10): 6207-6221, https://doaj.org/article/238f76cd61ad40738349891039d18ac6.[78] Ke, Linghong, Ding, Xiaoli, Song, Chunqiao. Heterogeneous changes of glaciers over the western Kunlun Mountains based on ICESat and Landsat-8 derived glacier inventory. REMOTE SENSING OF ENVIRONMENT[J]. 2015, 168: 13-23, http://dx.doi.org/10.1016/j.rse.2015.06.019.[79] Song, Chunqiao, Ye, Qinghua, Cheng, Xiao. Shifts in water-level variation of Namco in the central Tibetan Plateau from ICESat and CryoSat-2 altimetry and station observations. SCIENCE BULLETIN[J]. 2015, 60(14): 1287-1297, https://www.sciengine.com/doi/10.1007/s11434-015-0826-8.[80] Song, Chunqiao, Ye, Qinghua, Sheng, Yongwei, Gong, Tongliang. Combined ICESat and CryoSat-2 Altimetry for Accessing Water Level Dynamics of Tibetan Lakes over 2003-2014. WATER[J]. 2015, 7(9): 4685-4700, http://www.irgrid.ac.cn/handle/1471x/1186655.[81] Song, Chunqiao, Ke, Linghong, Huang, Bo, Richards, Keith S. Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: From a climate perspective?. GLOBAL AND PLANETARY CHANGE[J]. 2015, 124: 1-9, http://dx.doi.org/10.1016/j.gloplacha.2014.11.001.[82] Song, Chunqiao, Huang, Bo, Ke, Linghong. Heterogeneous change patterns of water level for inland lakes in High Mountain Asia derived from multi-mission satellite altimetry. HYDROLOGICAL PROCESSES[J]. 2015, 29(12): 2769-2781, https://www.webofscience.com/wos/woscc/full-record/WOS:000355701700009.[83] Ke, Linghong, Ding, Xiaoli, Song, Chunqiao. Estimation of mass balance of Dongkemadi glaciers with multiple methods based on multi-mission satellite data. QUATERNARY INTERNATIONAL[J]. 2015, 371: 58-66, http://dx.doi.org/10.1016/j.quaint.2015.02.043.[84] Song, Chunqiao, Huang, Bo, Ke, Linghong, Richards, Keith S. Seasonal and abrupt changes in the water level of closed lakes on the Tibetan Plateau and implications for climate impacts. JOURNAL OF HYDROLOGY[J]. 2014, 514: 131-144, http://dx.doi.org/10.1016/j.jhydrol.2014.04.018.[85] Song, Chunqiao, Huang, Bo, Ke, Linghong, Richards, Keith S. Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING. 2014, 92: 26-37, http://dx.doi.org/10.1016/j.isprsjprs.2014.03.001.[86] Song, Chunqiao, Huang, Bo, Ke, Linghong. Inter-annual changes of alpine inland lake water storage on the Tibetan Plateau: Detection and analysis by integrating satellite altimetry and optical imagery. HYDROLOGICAL PROCESSES[J]. 2014, 28(4): 2411-2418, https://www.webofscience.com/wos/woscc/full-record/WOS:000330743000069.[87] Song, Chunqiao, Ke, Linghong. Recent Dramatic Variations of China's Two Largest Freshwater Lakes: Natural Process or Influenced by the Three Gorges Dam?. ENVIRONMENTAL SCIENCE & TECHNOLOGY. 2014, 48(3): 2086-2087, https://www.webofscience.com/wos/woscc/full-record/WOS:000331015100089.[88] Ke Linghong, Song Chunqiao. Remotely sensed surface temperature variation of an inland saline lake over the central Qinghai-Tibet Plateau. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING[J]. 2014, 98: 157-167, http://dx.doi.org/10.1016/j.isprsjprs.2014.09.007.[89] Song, Chunqiao, Huang, Bo, Richards, Keith, Ke, Linghong, Vu Hien Phan. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes?. WATER RESOURCES RESEARCH[J]. 2014, 50(4): 3170-3186, http://dx.doi.org/10.1002/2013WR014724.[90] Song, Chunqiao, Huang, Bo, Ke, Linghong. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. REMOTE SENSING OF ENVIRONMENT[J]. 2013, 135: 25-35, http://dx.doi.org/10.1016/j.rse.2013.03.013.[91] Huang, Bo, Zhang, Hankui, Song, Huihui, Wang, Juan, Song, Chunqiao. Unified fusion of remote-sensing imagery: generating simultaneously high-resolution synthetic spatialtemporalspectral earth observations. REMOTE SENSING LETTERS[J]. 2013, 4(6): 561-569, https://www.webofscience.com/wos/woscc/full-record/WOS:000316087000005.[92] Ke, Linghong, Ding, Xiaoli, Song, Chunqiao. Reconstruction of Time-Series MODIS LST in Central Qinghai-Tibet Plateau Using Geostatistical Approach. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS[J]. 2013, 10(6): 1602-1606, https://www.webofscience.com/wos/woscc/full-record/WOS:000326966700067.[93] 钟新科, 刘洛, 宋春桥, 游松财. 基于气候适宜度评价的湖南春玉米优播期分析. 中国农业气象[J]. 2012, 33(1): 78-85, http://lib.cqvip.com/Qikan/Article/Detail?id=40980369.[94] 宋春桥, 游松财, 沈振西, 柯灵红, 钟新科. 藏北地区草地补播及放牧制度对草地覆盖影响的遥感监测研究. 草地学报[J]. 2011, 19(1): 58-62, http://lib.cqvip.com/Qikan/Article/Detail?id=36550799.[95] 宋春桥, 游松财, 柯灵红. 面向发生的地学数据分类方案及其元数据扩展研究. 地理信息世界[J]. 2010, 8(4): 22-28, http://lib.cqvip.com/Qikan/Article/Detail?id=35128692.[96] 宋春桥, 吴文会, 刘禹鑫. 普及地图在政府部门信息发布中的应用. 测绘与空间地理信息[J]. 2008, 31(5): 183-186, http://lib.cqvip.com/Qikan/Article/Detail?id=28632575.[97] Chenyu Fan, Kai Liu, Shuangxiao Luo, Tan Chen, Jian Cheng, Pengfei Zhan, Chunqiao Song. Detection of surface water temperature variations of Mongolian lakes benefiting from the spatially and temporally gap-filled MODIS data. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION. http://dx.doi.org/10.1016/j.jag.2022.103073.[98] Qianhan Wu, Linghong Ke, Jida Wang, Tamlin M. Pavelsky, George H. Allen, Yongwei Sheng, Xuejun Duan, Yunqiang Zhu, Jin Wu, Lei Wang, Kai Liu, Tan Chen, Wensong Zhang, Chenyu Fan, Bin Yong, Chunqiao Song. Author Correction: Satellites reveal hotspots of global river extent change. NATURE COMMUNICATIONS. 14(1): http://dx.doi.org/10.1038/s41467-023-38302-1.
发表著作
(1) GIS for Paleo-limnological Studies, Elsevier, 2017-07, 第 3 作者(2) Comprehensive Geographic Information Systems, Elsevier, 2017-07, 第 5 作者
科研活动
科研项目
( 1 ) 中组部"****"青年项目资助, 主持, 国家级, 2018-01--2020-12