电子邮件: wangchuang@ia.ac.cn
通信地址: 北京市海淀区中关村东路95号智能大厦611
邮政编码:
研究领域
Research Interests:
Machine learning theory; probabilistic graphical models; high-dimensional signal and information processing; and physics-inspired optimization algorithms.
Working topics:
1. Theoretical aspects of machine learning with a special interest in the interdisciplinary field between high-dimensional statistics and statistical physics;
2. Online learning and continuous learning;
3. Graph neural networks and probabilistic graphical models.
招生信息
招生专业
招生方向
教育与工作经历
中国科学院自动化研究所,副研究员,2019-08-23 至今
哈佛大学 工程与应用科学学院 电子工程方向,Research Associate,2018-02-01 至 2019-08-31
哈佛大学 工程与应用科学学院 电子工程方向,Postdoctoral Fellow,015-02-01 至 2018-01-31
中国科学院理论物理研究所,博士,2010-09-01 至 2015-01-31
东北师范大学,学士,2006-09-01 至 2010-08-31
教授课程
课程
出版信息
Conference:
[C.7] Chuang Wang, Hong Hu, Yue M. Lu, A Solvable High-Dimensional Model of GAN, Advances in Neural Information Processing Systems (NeurIPS), 2019
[C.6] Chuang Wang, Yue M. Lu, The scaling limit of high-dimensional online independent component analysis, Advances in Neural Information Processing Systems
(NIPS), 2017 (Spotlight talk)
[C.5] Chuang Wang, Yonina C. Eldar and Yue M. Lu, Subspace estimation from incomplete observations: a precise high-dimensional analysis,
Signal Processing with Adaptive Sparse Structured Representations (SPARS), Lisbon, Portugal, 2017 (Oral talk)
[C.4] Chuang Wang, Yue M. Lu, Online learning for sparse PCA in high dimensions: exact dynamics and phase transitions,
2016 IEEE Information Theory Workshop (ITW), 186-190, 2016
[C.3] Chuang Wang, A. Agaskar and Yue M. Lu, "Randomized Kaczmarz algorithm for inconsistent linear systems: an exact MSE analysis,"
International Conference on Sampling Theory and Applications (SampTA), Washington, DC, 2015, pp. 498-502.
[C.2] A. Agaskar, Chuang Wang, Yue M. Lu, Randomized Kaczmarz algorithms: Exact MSE analysis and optimal sampling probabilities,
IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2014 (Best Student Award Paper)
[C.1] Chuang Wang, Haijun Zhou, Simplifying generalized belief propagation on redundant region graphs,
Journal of Physics: Conference Series, 473, 012004 (2013)
Journal:
[J.8] Chuang Wang, Yue M. Lu, The scaling limit of high-dimensional online independent component analysis,
Journal of Statistical Mechanics: Theory and Experiment, 2019 (accepted, JCR Q1)
[J.7] Chuang Wang, Yonina C. Eldar, Yue M. Lu, Subspace Estimation from Incomplete Observations: A High-Dimensional Analysis,
IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 6, pp. 1240-1252, 2018 (JCR Q1)
[J.6] Chuang Wang, Jonathan Mattingly, Yue M. Lu, Scaling Limit: Exact and Tractable Analysis of Online Learning Algorithms with Applications to
Regularized Regression and PCA, 2017, arXiv:1712.04332 (Preprint)
[J.5] G. D. Ferraro, Chuang Wang, Haijun Zhou, E. Aurell, On one-step replica symmetry breaking in the Edwards-Anderson spin glass model,
Journal of Statistical Mechanics: Theory and Experiment, vol.7, pp.073305 (JCR Q1)
[J.4] Chuang Wang, Shaomeng Qin, Haijun Zhou, Topologically invariant tensor renormalization group method for the Edwards-Anderson spin glasses model,
Physical Review B 90, vol.17, pp. 174201, 2014 (JCR Q1)
[J.3] Haijun Zhou, Chuang Wang, Region graph partition function expansion and approximate free energy landscapes: Theory and some numerical results,
Journal of Statistical Physics, vol. 148, pp. 513, 2012 (JCR Q2)
[J.2] Haijun Zhou, Chuang Wang, Zedong Bi, Jinqing Xiao, Partition function expansion on region graphs and message-passing equations,
Journal of Statistical Mechanics: Theory and Experiment, vol.12., pp. L12001 (JCR Q1)
[J.1] Haijun Zhou, Chuang Wang, Ground-state configuration space heterogeneity of random finite-connectivity spin glasses and random constraint satisfaction
problems, Journal of Statistical Mechanics: Theory and Experiment, vol 10, pp. P10010, 2010 (JCR Q1)
指导学生
硕士研究生
2019 刘文卓 (已转博:导师刘成林)
2020 孟令寰
2021 王天
2022 宋思清