基本信息
陈艳艳 女 硕导 中国科学院山西煤炭化学研究所
电子邮件: chenyanyan@sxicc.ac.cn
通信地址: 山西省太原桃园南路27号
邮政编码: 030001
电子邮件: chenyanyan@sxicc.ac.cn
通信地址: 山西省太原桃园南路27号
邮政编码: 030001
研究领域
多相催化,理论模拟,量子化学
招生信息
招生专业
070304-物理化学
招生方向
多相催化,量化计算,理论模拟
教育背景
2006-09--2011-05 中国科学院山西煤炭化学研究所 博士研究生2002-09--2006-07 四川师范大学 学士
学历
研究生
学位
博士
专利与奖励
奖励信息
(1) 三晋英才, 省级, 2018(2) 中科院优秀学生奖, , 研究所(学校), 2011(3) 中科院优秀学生奖, , 研究所(学校), 2009(4) 中科院优秀学生奖, , 研究所(学校), 2008
出版信息
发表论文
[1] Hongbin Wu, Mei Dong, Zhangfeng Qin, Jianguo Wang, Yanyan Chen, Weibin Fan. Thermodynamic and kinetic studies of aromatization of propane over H-ZSM-5 in the presence of methanol. CHEMICAL ENGINEERING SCIENCE[J]. 2024, 288: http://dx.doi.org/10.1016/j.ces.2024.119830.[2] Tianqing Zhou, Shaoze Wang, Chaojian Zhang, Yue Yao, Yanyan Chen, Shuxiang Lu, Xiaoyuan Liao. Preparation of Ti-MOFs for efficient adsorptive desulfurization: Synthesis, characterization, and adsorption mechanisms. FUEL. 2023, 339: http://dx.doi.org/10.1016/j.fuel.2023.127396.[3] Xiaoyue Li, Penghui Li, Yingjie Li, Haitang Liu, Zongzheng Yang, Yanyan Chen, Xiaoyuan Liao. Photocatalytic production of H2O2 and its in situ sterilization over Zn-based ZIFs materials. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING. 2023, 11(5): http://dx.doi.org/10.1016/j.jece.2023.110594.[4] Yinghao Zhao, Hualan Zhou, Mengzhen Song, ZeXin Xu, Zhiwei Sun, Qianhui Xu, Yanyan Chen, Xiaoyuan Liao. Interface engineering of Ti-MOFs: Adsorption of anionic, cationic and neutral dyes in wastewater. JOURNAL OF MOLECULAR STRUCTURE. 2023, 1283: http://dx.doi.org/10.1016/j.molstruc.2023.135268.[5] Li, Yingjie, Li, Penghui, Zhang, Chaojian, He, Kai, Chen, Yanyan, Liao, Xiaoyuan. Dual Zn source strategy for synthesizing ZIFs: zero discharge, less raw material, high output, and better adsorptive performance. CRYSTENGCOMM[J]. 2023, 25(30): 4325-4332, http://dx.doi.org/10.1039/d3ce00499f.[6] Qiu, Ping, Yao, Yue, Lu, Shuxiang, Chen, Lungang, Chen, Yanyan, Liao, Xiaoyuan. Decorating Ti-MOF with noble metal as highly efficient photocatalysts: Fine-tuning the valence band to co-production of 2,5-diformylfuran and H2. FUEL[J]. 2023, 351: http://dx.doi.org/10.1016/j.fuel.2023.129043.[7] Chen, YanYan, Wu Hongbin, Wang Sen, Shi Dezhi, Dong Mei, Qin zhangfeng, Wang Jianguo, Fan Weibin. Reaction mechanism of co-coupling conversion of propane and methanol over H-ZSM-5 zeolite. Journal of Catalysis[J]. 2023, 425: 260-268, [8] Song, Mengzhen, Han, Jingru, Wang, Yingzhi, Chen, Lungang, Chen, YanYan, Liao, Xiaoyuan. Effects and Mechanisms of Cu Species in Fe-MOFs on Fenton-Like Catalytic Activity and Stability. ACS APPLIED MATERIALS & INTERFACES[J]. 2023, 15(30): 36201-36213, http://dx.doi.org/10.1021/acsami.3c05928.[9] Zhou, Qiuming, Chen, Yanyan, Fan, Sheng, Wang, Sen, Qin, Zhangfeng, Dong, Mei, Wang, Jianguo, Fan, Weibin. Development and catalytic mechanism of a highly efficient Pt/K? catalyst for n-Heptane aromatization. FUEL[J]. 2023, 337: http://dx.doi.org/10.1016/j.fuel.2022.126874.[10] Lijun Ban, Haitao Li, Jianghong Zhao, Yin Zhang, Xin Huang, Xia Guo, Yongxiang Zhao, Yanyan Chen, Tiancun Xiao. Synergistic effects of CuZnMg-based catalysts for enhanced catalysis in alkyne-aldehyde coupling reactions. APPLIED SURFACE SCIENCE. 2023, 640: http://dx.doi.org/10.1016/j.apsusc.2023.158412.[11] Huang, Wenxiu, Liu, Weimeng, Yang, Zongzheng, Chen, YanYan, Li, Guangbi, Liao, Xiaoyuan. MIL-88A anchoring on different morphological g-C3N4 for enhanced Fenton performance. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2022, 329: http://dx.doi.org/10.1016/j.micromeso.2021.111531.[12] Song, Mengzhen, Shao, Huijuan, Chen, Yi, Deng, Xiangyang, Chen, Yanyan, Yao, Yue, Lu, Shuxiang, Liao, Xiaoyuan. Visible light-driven H2O2 synthesis over Au/C3N4: medium-sized Au nanoparticles exhibiting suitable built-in electric fields and inhibiting reverse H2O2 decomposition. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2022, 24(48): 29557-29569, [13] Wang, Sen, Zhang, Li, Wang, Pengfei, Liu, Xingchen, Chen, Yanyan, Qin, Zhangfeng, Dong, Mei, Wang, Jianguo, He, Lin, Olsbye, Unni, Fan, Weibin. Highly effective conversion of CO2 into light olefins abundant in ethene. CHEM[J]. 2022, 8(5): 1376-1394, http://dx.doi.org/10.1016/j.chempr.2022.01.004.[14] Sun, Chunyan, Duan, Zhichang, Wang, Peijie, Zhang, Xiangrui, Huang, Mengru, Cao, Feng, Lin, Wensong, Wang, Hui, Chen, Yanyan, Shi, XueRong. Modulation of graphene and graphdiyne by metaln (n=1-5) adsorption and nucleation and the effect on hydrogen evolution reaction. APPLIED SURFACE SCIENCE[J]. 2022, 580: http://dx.doi.org/10.1016/j.apsusc.2021.152197.[15] Ma, Hong, Liao, Jian, Wei, Zhihong, Tian, Xinxin, Li, Junfen, Chen, YanYan, Wang, Sen, Wang, Hao, Dong, Mei, Qin, Zhangfeng, Wang, Jianguo, Fan, Weibin. Trimethyloxonium ion - a zeolite confined mobile and efficient methyl carrier at low temperatures: a DFT study coupled with microkinetic analysis. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2022, 12(10): 3328-3342, http://dx.doi.org/10.1039/d2cy00207h.[16] Xue, Yanfeng, Chen, Yanyan, Shi, Linxia, Wu, Haotian, Zhang, Chao, Cheng, Minghuang, Li, Hongbin, Li, Wanjun, Niu, Yulan. Lignite-Based N-Doped Porous Carbon as an Efficient Adsorbent for Phenol Adsorption. PROCESSES[J]. 2022, 10(9): http://dx.doi.org/10.3390/pr10091746.[17] Sun, Chunyan, Huang, Simin, Huang, Mengru, Zhang, Xiangrui, Xu, Shusheng, Wang, Hui, Chen, Yanyan, Shi, XueRong. Single-metal-atom catalysts supported on graphdiyne catalyze CO oxidation. DALTON TRANSACTIONS[J]. 2021, 50(31): 10867-10879, http://dx.doi.org/10.1039/d1dt00934f.[18] Wang, Xiayang, Fan, Honglei, Shen, Pengyuan, Yao, Yue, Chen, Yanyan, Lu, Shuxiang, Teng, Botao, Liao, Xiaoyuan. Utilizing Ti-MOF crystals' defects to promote their adsorption and the mechanism investigation. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2021, 327: http://dx.doi.org/10.1016/j.micromeso.2021.111402.[19] Chen, Yanyan, Wang, Sen, Wei, Zhihong, Li, Junfen, Dong, Mei, Qin, Zhangfeng, Wang, Jianguo, Fan, Weibin. Unraveling the Relationship between Zeolite Structure and MTO Product Distribution by Theoretical Study of the Reaction Mechanism. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2021, 125(48): 26472-26483, http://dx.doi.org/10.1021/acs.jpcc.1c07692.[20] Yang, Li, Fan, Chao, Luo, Li, Chen, Yanyan, Wu, Zhiwei, Qin, Zhangfeng, Dong, Mei, Fan, Weibin, Wang, Jianguo. Preparation of Pd/SiO2 Catalysts by a Simple Dry Ball-Milling Method for Lean Methane Oxidation and Probe of the State of Active Pd Species. CATALYSTS[J]. 2021, 11(6): [21] Zhu, Shanhui, Chen, Yanyan, Gao, Xiaoqing, Lv, Zexiang, He, Yue, Wang, Jianguo, Fan, Weibin. Kraft lignin derived S and O co-doped porous graphene for metal-free benzylic alcohol oxidation. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2020, 10(9): 2786-2796, [22] Shi, XueRong, Huang, Simin, Huang, Yue, Zhang, Yajing, Zong, Shibiao, Xu, Shusheng, Chen, Yanyan, Ma, Pan. Atomic structures and electronic properties of Ni or N modified Cu/diamond interface. JOURNAL OF PHYSICS-CONDENSED MATTER[J]. 2020, 32(22): https://www.webofscience.com/wos/woscc/full-record/WOS:000518914600001.[23] Li, Cheng, Deng, Kai, Li, Jinxia, Sun, Chunyan, Ma, Pan, Chen, Yanyan, Shi, XueRong. First-principles study of the surface structure and stability of BC5. MATERIALS RESEARCH EXPRESS[J]. 2020, 7(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000520092600001.[24] Chen, Yanyan, Zhao, Xunhua, Qin, Zhangfeng, Wang, Sen, Wei, Zhihong, Li, Junfen, Dong, Mei, Wang, Jianguo, Fan, Weibin. Insight into the Methylation of Alkenes and Aromatics with Methanol over Zeolite Catalysts by Linear Scaling Relations. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2020, 124(25): 13789-13798, https://www.webofscience.com/wos/woscc/full-record/WOS:000545668100030.[25] Wang, Sen, Chen, Yanyan, Qin, Zhangfeng, Zhao, TianSheng, Fan, Subing, Dong, Mei, Li, Junfen, Fan, Weibin, Wang, Jianguo. Origin and evolution of the initial hydrocarbon pool intermediates in the transition period for the conversion of methanol to olefins over H-ZSM-5 zeolite. JOURNAL OF CATALYSIS[J]. 2019, 369: 382-395, http://dx.doi.org/10.1016/j.jcat.2018.11.018.[26] Wang, Sen, Guo, Shujia, Luo, Yaoya, Qin, Zhangfeng, Chen, Yanyan, Dong, Mei, Li, Junfen, Fan, Weibin, Wang, Jianguo. Direct synthesis of acetic acid from carbon dioxide and methane over Cu-modulated BEA, MFI, MOR and TON zeolites: a density functional theory study. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2019, 9(23): 6613-6626, [27] Sun, Lulu, Zhu, Zhiguo, Su, Ting, Liao, Weiping, Hao, Dongmei, Chen, Yanyan, Zhao, Yuchao, Ren, Wanzhong, Ge, Hui, Lu, Hongying. Novel acidic eutectic mixture as peroxidase mimetics for oxidative desulfurization of model diesel. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2019, 255: http://dx.doi.org/10.1016/j.apcatb.2019.117747.[28] Ma, Hong, Chen, Yanyan, Wei, Zhihong, Wang, Sen, Qin, Zhangfeng, Dong, Mei, Li, Junfen, Wang, Jianguo, Fan, Weibin. Reaction Mechanism for Direct Cyclization of Linear C-5, C-6, and C-7 Alkenes over H-ITQ-13 Zeolite Investigated Using Density Functional Theory. CHEMPHYSCHEM[J]. 2018, 19(4): 496-503, https://www.webofscience.com/wos/woscc/full-record/WOS:000425458200018.[29] Wang, Sen, Li, Shiying, Zhang, Li, Qin, Zhangfeng, Chen, Yanyan, Dong, Mei, Li, Junfen, Fan, Weibin, Wang, Jianguo. Mechanistic insights into the catalytic role of various acid sites on ZSM-5 zeolite in the carbonylation of methanol and dimethyl ether. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2018, 8(12): 3193-3204, https://www.webofscience.com/wos/woscc/full-record/WOS:000435659500021.[30] Wang, Sen, Wang, Pengfei, Qin, Zhangfeng, Chen, Yanyan, Dong, Mei, Li, Junfen, Zhang, Kan, Liu, Ping, Wang, Jianguo, Fang, Weibin. Relation of Catalytic Performance to the Aluminum Siting of Acidic Zeolites in the Conversion of Methanol to Olefins, Viewed via a Comparison between ZSM-5 and ZSM-11. ACS CATALYSIS[J]. 2018, 8(6): 5485-5505, http://dx.doi.org/10.1021/acscatal.8b01054.[31] Yang, Huanhuan, Chen, Yanyan, Cui, Xiaojing, Wang, Guofu, Cen, Youliang, Deng, Tiansheng, Yan, Wenjun, Gao, Jie, Zhu, Shanhui, Olsbye, Unni, Wang, Jianguo, Fan, Weibin. A Highly Stable Copper-Based Catalyst for Clarifying the Catalytic Roles of Cu-0 and Cu+ Species in Methanol Dehydrogenation. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2018, 57(7): 1836-1840, https://www.webofscience.com/wos/woscc/full-record/WOS:000424212300013.[32] Ma, Hong, Chen, Yanyan, Wang, Sen, Wei, Zhihong, Qin, Zhangfeng, Dong, Mei, Li, Junfen, Fan, Weibin, Wang, Jianguo. Reaction mechanism for the conversion of methanol to olefins over H-ITQ-13 zeolite: a density functional theory study. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2018, 8(2): 521-533, https://www.webofscience.com/wos/woscc/full-record/WOS:000423483200012.[33] Jia, Lingyu, Liu, Xingchen, Qiao, Yan, Pedersen, Christian Marcus, Zhang, Zhenzhou, Ge, Hui, Wei, Zhihong, Chen, Yanyan, Wen, Xiaodong, Hou, Xianglin, Wang, Yingxiong. Mechanism of the self-condensation of GlcNH(2): insights from in situ NMR spectroscopy and DFT study. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2017, 202: 420-429, http://dx.doi.org/10.1016/j.apcatb.2016.09.058.[34] Wei, Zhihong, Chen, YanYan, Li, Junfen, Guo, Wenping, Wang, Sen, Dong, Mei, Qin, Zhangfeng, Wang, Jianguo, Jiao, Haijun, Fan, Weibin. Stability and Reactivity of Intermediates of Methanol Related Reactions and C-C Bond Formation over H-ZSM-5 Acidic Catalyst: A Computational Analysis. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2016, 120(11): 6075-6087, [35] Li, Liping, Chen, Yanyan, Xu, Shutao, Li, Junfen, Dong, Mei, Liu, Zhongwen, Jiao, Haijun, Wang, Jianguo, Fan, Weibin. Oriented control of Al locations in the framework of Al-Ge-ITQ-13 for catalyzing methanol conversion to propene. JOURNAL OF CATALYSIS[J]. 2016, 344: 242-251, http://dx.doi.org/10.1016/j.jcat.2016.09.007.[36] Wei, Zhihong, Chen, YanYan, Li, Junfen, Wang, Pengfei, Jing, Buqin, He, Yue, Dong, Mei, Jiao, Haijun, Qin, Zhangfeng, Wang, Jianguo, Fan, Weibin. Methane formation mechanism in the initial methanol-to-olefins process catalyzed by SAPO-34. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2016, 6(14): 5526-5533, https://www.webofscience.com/wos/woscc/full-record/WOS:000379438000028.[37] Wang, Sen, Chen, Yanyan, Wei, Zhihong, Qin, Zhangfeng, Liang, Tingyu, Dong, Mei, Li, Junfen, Fan, Weibin, Wang, Jianguo. Evolution of Aromatic Species in Supercages and Its Effect on the Conversion of Methanol to Olefins over H-MCM-22 Zeolite: A Density Functional Theory Study. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2016, 120(49): 27964-27979, [38] Chen, YanYan, Wei, Zhihong, Wang, Sen, Li, Junfen, Dong, Mei, Qin, Zhangfeng, Wang, Jianguo, Jiao, Haijun, Fan, Weibin. Kinetics and thermodynamics of polymethylbenzene formation over zeolites with different pore sizes for understanding the mechanisms of methanol to olefin conversion - a computational study. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2016, 6(14): 5326-5335, http://www.corc.org.cn/handle/1471x/2374585.[39] Olsbye, U, Svelle, S, Lillerud, K P, Wei, Z H, Chen, Y Y, Li, J F, Wang, J G, Fan, W B. The formation and degradation of active species during methanol conversion over protonated zeotype catalysts. CHEMICAL SOCIETY REVIEWSnull. 2015, 44(20): 7155-7176, http://dx.doi.org/10.1039/c5cs00304k.[40] 王森, 陈艳艳, 卫智虹, 秦张峰, 李俊汾, 董梅, 樊卫斌, 王建国. 分子筛骨架结构和酸性对其甲醇制烯烃(MTO)催化性能影响研究进展. 燃料化学学报[J]. 2015, 43(10): 1202-1214, http://lib.cqvip.com/Qikan/Article/Detail?id=666649678.[41] Wang, Sen, Chen, Yanyan, Wei, Zhihong, Qin, Zhangfeng, Ma, Hong, Dong, Mei, Li, Junfen, Fan, Weibin, Wang, Jianguo. Polymethylbenzene or Alkene Cycle? Theoretical Study on Their Contribution to the Process of Methanol to Olefins over H-ZSM-5 Zeolite. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2015, 119(51): 28482-28498, https://www.webofscience.com/wos/woscc/full-record/WOS:000367561700028.[42] Wang, Sen, Wei, Zhihong, Chen, Yanyan, Qin, Zhangfeng, Ma, Hong, Dong, Mei, Fan, Weibin, Wang, Jianguo. Methanol to Olefins over H-MCM-22 Zeolite: Theoretical Study on the Catalytic Roles of Various Pores. ACS CATALYSIS[J]. 2015, 5(2): 1131-1144, https://www.webofscience.com/wos/woscc/full-record/WOS:000349275300072.[43] Li, Junfen, Wei, Zhihong, Chen, Yanyan, Jing, Buqin, He, Yue, Dong, Mei, Jiao, Haijun, Li, Xuekuan, Qin, Zhangfeng, Wang, Jianguo, Fan, Weibin. A route to form initial hydrocarbon pool species in methanol conversion to olefins over zeolites. JOURNAL OF CATALYSIS[J]. 2014, 317: 277-283, http://dx.doi.org/10.1016/j.jcat.2014.05.015.[44] Wang, Sen, Chen, Yanyan, Wei, Zhihong, Qin, Zhangfeng, Chen, Paling, Ma, Hong, Dong, Mei, Li, Junfen, Fan, Weibin, Wang, Jianguo. Theoretical Insights into the Mechanism of Olefin Elimination in the Methanol-to-Olefin Process over HZSM-5, HMOR, HBEA, and HMCM-22 Zeolites. JOURNAL OF PHYSICAL CHEMISTRY A[J]. 2014, 118(39): 8901-8910, https://www.webofscience.com/wos/woscc/full-record/WOS:000342651200003.[45] 卫智虹, 陈艳艳, 王森, 李俊汾, 董梅, 秦张峰, 王建国, 樊卫斌. 酸性分子筛上甲醇催化转化反应机理研究进展. 燃料化学学报[J]. 2013, 41(8): 897-910, http://lib.cqvip.com/Qikan/Article/Detail?id=47078174.[46] Chen, YanYan, Dong, Mei, Wang, Jianguo, Jiao, Haijun. Mechanisms and Energies of Water Gas Shift Reaction on Fe-, Co-, and Ni-Promoted MoS2 Catalysts. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2012, 116(48): 25368-25375, https://www.webofscience.com/wos/woscc/full-record/WOS:000311921900025.[47] Chen, YanYan, Dong, Mei, Qin, Zhangfeng, Wen, XiaoDong, Fan, Weibin, Wang, Jianguo. A DFT study on the adsorption and dissociation of methanol over MoS2 surface. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL[J]. 2011, 338(1-2): 44-50, http://dx.doi.org/10.1016/j.molcata.2011.01.024.[48] 陈艳艳. MoSx催化CO加氢制低碳醇反应机理的量化研究. 2011, http://ir.sxicc.ac.cn/handle/314002/4727.[49] Chen, YanYan, Zhao, Xunhua, Wen, XiaoDong, Shi, XueRong, Dong, Mei, Wang, Jianguo, Jiao, Haijun. Mechanistic aspect of ethanol synthesis from methanol under CO hydrogenation condition on MoSx cluster model catalysts. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL[J]. 2010, 329(1-2): 77-85, http://dx.doi.org/10.1016/j.molcata.2010.06.021.[50] Chen, YanYan, Dong, Mei, Wang, Jianguo, Jiao, Haijun. On the Role of a Cobalt Promoter in a Water-Gas-Shift Reaction on Co-MoS2. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2010, 114(39): 16669-16676, https://www.webofscience.com/wos/woscc/full-record/WOS:000282209800076.[51] Shi, XueRong, Wang, ShengGuang, Hu, Jia, Wang, Hui, Chen, YanYan, Qin, Zhangfeng, Wang, Jianguo. Density functional theory study on water-gas-shift reaction over molybdenum disulfide. APPLIED CATALYSIS A-GENERAL[J]. 2009, 365(1): 62-70, http://dx.doi.org/10.1016/j.apcata.2009.05.050.[52] Qiuming Zhou, Yanyan Chen, Sheng Fan, Sen Wang, Zhangfeng Qin, Mei Dong, Jianguo Wang, Weibin Fan. Development and catalytic mechanism of a highly efficient Pt/Kβ catalyst for n-Heptane aromatization. FUEL. http://dx.doi.org/10.1016/j.fuel.2022.126874.[53] Xiaoyue Li, Penghui Li, Yingjie Li, Haitang Liu, Zongzheng Yang, Yanyan Chen, Xiaoyuan Liao. Photocatalytic production of H2O2 and its in situ sterilization over Zn-based ZIFs materials. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING. http://dx.doi.org/10.1016/j.jece.2023.110594.
科研活动
科研项目
( 1 ) 分子筛结构与酸性控制甲醇制烯烃反应机理的量化研究, 负责人, 国家任务, 2012-01--2014-12( 2 ) 分子筛孔道限阈效应对甲醇定向转化的中间体及反应机制影响的研究, 负责人, 国家任务, 2016-01--2018-12( 3 ) 甲醇助丙烷活化制芳烃的多尺度模拟和微动力学研究, 负责人, 研究所自选, 2022-03--2024-02( 4 ) 丙烷与甲醇耦合制芳烃的多尺度模拟和微动力学研究, 负责人, 地方任务, 2023-01--2025-12
指导学生
已指导学生
王森 博士研究生 070304-物理化学
马宏 博士研究生 070304-物理化学