基本信息
陈滔  男  硕导  中国科学院上海技术物理研究所
电子邮件: chentao@sitp.ac.cn
通信地址: 上海市虹口区玉田路500号22号楼803
邮政编码:

研究领域

固体激光技术、非线性光学、激光应用技术

招生信息

   
招生专业
080300-光学工程
招生方向
激光技术
非线性光学
激光应用技术

教育背景

2009-09--2014-06   浙江大学   博士
2005-09--2009-06   浙江大学   学士

工作经历

   
工作简历
2019-01~现在, 中国科学院上海技术物理研究所, 副研究员
2014-07~2018-12,中国科学院上海技术物理研究所, 助理研究员

出版信息

   
期刊论文
[1] Xue Shen, Wei Kong, Peng Chen, Tao Chen, Genghua Huang, Rong Shu. A Shipborne Photon-Counting Lidar for Depth-Resolved Ocean Observation. Remote Sensing[J]. 2022, [2] Changsheng Tan, Wei Kong, Genghua Huang, Jia Hou, Shaolei Jia, Tao Chen, Rong Shu. Design and Demonstration of a Novel Long-Range Photon-Counting 3D Imaging LiDAR with 32 × 32 Transceivers. Remote Sensing[J]. 2022, [3] Chen, Tao, Chen, Xin, Zhou, Chenglin, Huang, Genghua, He, Zhiping, Shu, Rong. 150 kHz, 300 ps green laser frequency doubled from a linearly polarized passively Q-switched Nd:YAG/Cr4+:YAG microchip oscillator and a Nd: YVO4 amplifier. OPTICS AND LASER TECHNOLOGY[J]. 2022, 147: http://dx.doi.org/10.1016/j.optlastec.2021.107708.
[4] Changsheng Tan, Wei Kong, Genghua Huang, Jia Hou, Yongfeng Liu, Tao Chen, Xialin Liu, Rong Shu. Long-Range Daytime 3D Imaging Lidar With Short Acquisition Time Based on 64×64 Gm-APD Array. IEEE PHOTONICS JOURNAL[J]. 2022, https://ieeexplore.ieee.org/document/9756326.
[5] Tao Chen, Wenjie Le, Wei Kong, Xin Chen, Genghua Huang, Rong Shu. Eye-Safe Aerosol and Cloud Lidar Based on Free-Space Intracavity Upconversion Detection. Remote Sensing[J]. 2022, [6] Zalevsky, Zeev, Buller, Gerald S, Chen, Tao, Cohen, Moshik, BartonGrimley, Rory. Light detection and ranging (lidar): introduction. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS. 2021, 38(11): LID1-LID2, [7] 钟宇民, 孔伟, 裘燕青, 陈滔, 黄庚华. 应用于激光光谱探测的多通道时间分辨单光子探测系统设计. 光子学报[J]. 2021, 50(12): 194-203, http://lib.cqvip.com/Qikan/Article/Detail?id=7106372770.
[8] Chen, Xin, Chen, Tao, Kong, Wei, Huang, Genghua, He, Zhiping, Shu, Rong. Amplified frequency double-shifting loop enabled frequency-stepped pulse train for direct time domain CO2 measurement. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS[J]. 2021, 38(10): D1-D7, http://dx.doi.org/10.1364/JOSAB.425720.
[9] Yue, Wenjie, Chen, Tao, Kong, Wei, Ji, Zhongpeng, Yin, Lu, Huang, Genghua, He, Zhiping, Shu, Rong. Flexible wavelength generation from a Yb-doped fiber laser incorporating multifunctional acousto-optic tunable filter. OPTICS LETTERS[J]. 2021, 46(5): 1041-1044, http://dx.doi.org/10.1364/OL.419267.
[10] Zalevsky, Zeev, Buller, Gerald S, Chen, Tao, Cohen, Moshik, BartonGrimley, Rory. Light detection and ranging (lidar): introduction. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION. 2021, 38(11): LID1-LID2, [11] Chen, Tao, Chen, Xin, Zhou, Chenglin, Li, Ming, Shu, Rang. Single-longitudinal-mode-operated, passively Q-switched Nd:YAG/Cr4+:YAG microchip laser with > 100 kHz repetition rate and < 400 ps pulse width. APPLIED OPTICS[J]. 2020, 59(13): 4191-4197, [12] Chen, Xin, Kong, Wei, Chen, Tao, Liu, Hao, Huang, Genghua, Shu, Rong. High-repetition-rate, sub-nanosecond and narrow-bandwidth fiber-laser-pumped green laser for photon-counting shallow-water bathymetric Lidar. RESULTS IN PHYSICS[J]. 2020, 19: http://dx.doi.org/10.1016/j.rinp.2020.103563.
[13] Liang, Xindong, Liu, Hao, Chen, Tao, Kong, Wei, Hong, Guanglie. Calibration and Improved Speckle Statistics of IM-CW Lidar for Atmospheric CO(2)Measurements. ATMOSPHERE[J]. 2020, 11(7): http://dx.doi.org/10.3390/atmos11070737.
[14] 游峰, 陈滔, 孔伟, 刘豪, 舒嵘, 胡以华. 基于FPGA和DDS的声光调制器驱动电路的实现. 压电与声光[J]. 2019, 41(1): 30-33, http://lib.cqvip.com/Qikan/Article/Detail?id=7001255730.
[15] Liao, Feng, Wang, Yu, Peng, Tao, Peng, Jian, Gu, Zhaoqi, Yu, Huakang, Chen, Tao, Yu, Jiaxin, Gu, Fuxing. Highly Efficient Nonlinear Optical Conversion in Waveguiding GaSe Nanoribbons with Pump Pulses Down to a Femto-Joule Level. ADVANCED OPTICAL MATERIALS[J]. 2018, 6(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000426604700004.
[16] Chen, Tao, Kong, Wei, Liu, Hao, Shu, Rong. Frequency-stepped pulse train generation in an amplified frequency-shifted loop for oxygen A-band spectroscopy. OPTICS EXPRESS[J]. 2018, 26(26): 34753-34762, https://www.webofscience.com/wos/woscc/full-record/WOS:000454149000108.
[17] Chen, Tao, Liu, Hao, Kong, Wei, Shu, Rong. Amplification assisted difference frequency generation for efficient mid-infrared conversion based on monolithic tandem lithium niobate superlattice. PHOTONICS RESEARCH[J]. 2017, 5(4): 355-361, http://lib.cqvip.com/Qikan/Article/Detail?id=71908874504849554852484953.
[18] You, Feng, Chen, Tao, Kong, Wei, Liu, Hao, Hu, Yihua, Shu, Rong. Frequency Doubling of a Pulsed Wavelength-Agile Erbium-Doped Fiber MOPA for Oxygen A-Band Spectroscopy. IEEE PHOTONICS JOURNAL[J]. 2017, 9(5): https://doaj.org/article/db1be2a644eb422884ecea1332c55eab.
[19] Hu, Chengzhi, Yue, Wenjie, Chen, Tao, Jiang, Peipei, Wu, Bo, Shen, Yonghang. Watt-level mid-infrared radiation via self-seeded difference-frequency generation from a pre-chirp managed femtosecond Yb-fiber amplifier. APPLIED OPTICS[J]. 2017, 56(6): 1574-1578, https://www.webofscience.com/wos/woscc/full-record/WOS:000394341600002.
[20] Kong, Wei, Li, Jiatang, Liu, Hao, Chen, Tao, Hong, Guanglie, Shu, Rong, Lv, D, Lv, Y, Bao, W. Differential absorption lidar observation on small-time-scale features of water vapor in the atmospheric boundary layer. LIDAR IMAGING DETECTION AND TARGET RECOGNITION 2017null. 2017, 10605: [21] Chen, Tao, Liu, Hao, Kong, Wei, Shu, Rong. Burst-mode-operated, sub-nanosecond fiber MOPA system incorporating direct seed-packet shaping. OPTICS EXPRESS[J]. 2016, 24(18): 20963-20972, https://www.webofscience.com/wos/woscc/full-record/WOS:000386091300102.
[22] Jiang, Peipei, Hu, Chengzhi, Chen, Tao, Wu, Pinghui, Wu, Bo, Wen, Ruhua, Shen, Yonghang. High Power Yb Fiber Laser With Picosecond Bursts and the Quasi-Synchronously Pumping for Efficient Midinfrared Laser Generation in Optical Parametric Oscillator. IEEE PHOTONICS JOURNAL[J]. 2016, 8(3): https://doaj.org/article/acbac954032b4271b0a5f7023bf2fafd.
[23] Chen, Tao, Shu, Rong, Ge, Ye, Chen, Zhuo. Optimization of the idler wavelength tunable cascaded optical parametric oscillator based on chirp-assisted aperiodically poled lithium niobate crystal. CHINESE PHYSICS B[J]. 2016, 25(1): http://dx.doi.org/10.1088/1674-1056/25/1/014209.
[24] Chen, Tao, Wu, Jun, Xu, Weiming, He, Zhiping, Qian, Liqun, Shu, Rong. Linearly polarized, dual wavelength frequency-modulated continuous-wave fiber laser for simultaneous coherent distance and speed measurements. LASER PHYSICS LETTERS[J]. 2016, 13(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000378845600005.
[25] 陈滔. Optimization of the idler wavelength tunable cascaded optical parametric oscillators based on chirp-assisted aperiodically poled lithium niobate crystal. Chin. Phys. B. 2016, [26] Chen, Tao, Liu, Hao, Kong, Wei, Shu, Rong. Optimization of the Tunable Nanosecond Cascaded Optical Parametric Oscillators Based on Monolithic Tandem Lithium Niobate Superlattices. IEEE PHOTONICS JOURNAL[J]. 2016, 8(3): https://doaj.org/article/01746987c3844095b4f89f8ee19b390a.
[27] Jiang, Peipei, Chen, Tao, Wu, Bo, Yang, Dingzhong, Hu, Chengzhi, Wu, Pinghui, Shen, Yonghang. Compact high power mid-infrared optical parametric oscillator pumped by a gain-switched fiber laser with "figure-of-h" pulse shape. OPTICS EXPRESS[J]. 2015, 23(3): 2633-2638, https://www.webofscience.com/wos/woscc/full-record/WOS:000349688800084.
[28] Wei KaiHua, Jiang PeiPei, Wu Bo, Chen Tao, Shen YongHang. Fiber laser pumped burst-mode operated picosecond mid-infrared laser. CHINESE PHYSICS B[J]. 2015, 24(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000350829700037.
[29] Xu, Zhida, Lu, Meng, Jin, Hyunjong, Chen, Tao, Bond, Tiziana C. Nanomaterials for Optical Sensing and Sensors: Plasmonics, Raman, and Optofluidics (2015,162537,2015). JOURNAL OF NANOMATERIALSnull. 2015, 2015: https://www.webofscience.com/wos/woscc/full-record/WOS:000361238100001.
[30] Hu, Chengzhi, Chen, Tao, Jiang, PeiPei, Wu, Bo, Su, Jianjia, Shen, Yonghang. Broadband high-power mid-IR femtosecond pulse generation from an ytterbium-doped fiber laser pumped optical parametric amplifier. OPTICS LETTERS[J]. 2015, 40(24): 5774-5777, https://www.webofscience.com/wos/woscc/full-record/WOS:000366681600020.
[31] Chen, Tao, Liu, Hao, Huang, Yuxiang, Shu, Rong. High-efficiency PPMgLN-based mid-infrared optical parametric oscillator pumped by a MOPA-structured fiber laser with long pulse duration. LASER PHYSICS[J]. 2015, 25(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000365351200010.
[32] Liu, Hao, Chen, Tao, Shu, Rong, Hong, Guanglie, Zheng, Long, Ge, Ye, Hu, Yihua. Wavelength-locking-free 1.57 mu m differential absorption lidar for CO2 sensing. OPTICS EXPRESS[J]. 2014, 22(22): 27675-27680, https://www.webofscience.com/wos/woscc/full-record/WOS:000344004900115.
[33] Chen, Tao, Jiang, Peipei, Wu, Bo, Shu, Rong, Hu, Chengzhi, Shen, Yonghang. Temperature insensitive, high-power cascaded optical parametric oscillator based on an aperiodically poled lithium niobate crystal. OPTICS EXPRESS[J]. 2014, 22(22): 26900-26907, https://www.webofscience.com/wos/woscc/full-record/WOS:000344004900042.
[34] Chen, Tao, Wu, Bo, Jiang, Peipei, Yang, Dingzhong, Shen, Yonghang. High Power Efficient 3.81 mu m Emission From a Fiber Laser Pumped Aperiodically Poled Cascaded Lithium Niobate. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2013, 25(20): 2000-2002, https://www.webofscience.com/wos/woscc/full-record/WOS:000325175300004.
[35] 陈滔. High-power PPMgLN-based optical parametric oscillator pumped by a linearly polarized, semi-fiber-coupled acousto-optic Q-switched fiber master oscillation power amplifier. Appl. Opt.. 2013, [36] Chen, Tao, Wei, Kaihua, Jiang, Peipei, Wu, Bo, Shen, Yonghang. High-power multichannel PPMgLN-based optical parametric oscillator pumped by a master oscillation power amplification-structured Q-switched fiber laser. APPLIED OPTICS[J]. 2012, 51(28): 6881-6885, https://www.webofscience.com/wos/woscc/full-record/WOS:000309544600024.
[37] Chen, Tao, Wu, Bo, Liu, Wei, Jiang, Peipei, Kong, Jian, Shen, Yonghang. Efficient parametric conversion from 1.06 to 3.8 mu m by an aperiodically poled cascaded lithium niobate. OPTICS LETTERS[J]. 2011, 36(6): 921-923, https://www.webofscience.com/wos/woscc/full-record/WOS:000288322800049.

科研活动

   
科研项目
( 1 ) 精准线性跳频工作模式的高重频、窄线宽中红外激光光源研究, 负责人, 国家任务, 2019-01--2022-12

指导学生

已指导学生

陈新  博士研究生  080901-物理电子学