基本信息
陈思鲁  男  博导  中国科学院宁波材料技术与工程研究所
电子邮件: chensilu@nimte.ac.cn
通信地址: 宁波市镇海区中官西路1219号
邮政编码: 315201

研究领域

  • 高速高精运动系统控制

  • 数据驱动智能参数调试

  • 工业机器人应用技术

  • 新一代机器人设计



招生信息

   
招生专业
080201-机械制造及其自动化
080202-机械电子工程
招生方向
机器人与智能制造装备技术
高速高精运动控制技术

教育背景

2005-08--2010-01   新加坡国立大学   博士
2001-08--2005-06   新加坡国立大学   学士
学位

2010年 新加坡国立大学 工学博士;2005年 新加坡国立大学 电气工程学士。

工作经历

2010年至2011年,任新加坡综合制造技术有限公司研发部高级工程师;2011年至2017年,任新加坡制造技术研究院机电研究室研究科学家;2017年起,任中国科学院宁波材料技术与工程研究所下属先进制造技术研究所的研究员、中国科学院大学的博士生导师,2022年3月起,兼任中国科学院大学宁波材料工程学院机械教研室副主任。在工业自动化设备的高速高精运动系统控制方面有10多年的研发经验。针对传统自动化设备的间接传动部件干扰复杂、轨迹规划粗略、定结构控制下精度低等问题,提出了摩擦、推力波动等干扰的数据驱动建模方法、继电反馈下的运动系统整体动力学模型参数辨识方法、适用于通用运动控制架构的轨迹修正和前馈控制方法,以及基于数据驱动的控制器参数调节方法;针对新一代设备中刚柔耦合运动系统动力学建模难、控制带宽低、机构瞬时内应力大等问题,提出了刚柔耦合压电系统的迟滞-蠕变-动力学复建模和分频参数辨识方法、带自适应跃度的多轴联动鲁棒控制方法,以及机械-控制参数集成成优化方法,实现了大工作空间、变轨迹、变载荷下的高速高精运动。在高速高精运动控制领域已经发表SCI文章50余篇,会议论文60余篇,合著英文专著一本,授权发明专利10项。


学术兼职

  1. IEEE/ASME 机械电子汇刊 技术编委,2022-至今

  2. International Journal of Intelligent Robotics and Applications 编委,2022-至今

  3. IEEE/ASME 先进智能机电国际会议 编委,2018-至今

  4. 27届 IEEE/ASME 先进智能机电国际会议 组委会成员,美国波士顿,2024

  5. 第18届 IEEE ICIEA 国际会议 组委会委员,中国宁波,2023

  6. 第25届 IEEE/ASME 先进智能机电国际会议 组委会成员,日本札幌,2022

  7. International Journal of Intelligent Robotics and Applications  客座编委,2020

  8. 第8届 IEEE CIS-RAM国际会议 组委会成员,中国宁波,2017

专利与奖励

   
专利成果
[1] 李荣, 肖涛, 陈思鲁, 李俊杰, 仇斌权, 罗竞波, 张驰, 杨桂林. 轮辋平面度检测方法. CN: CN114088024A, 2022-02-25.
[2] 熊次远, 杨桂林, 张驰, 陈思鲁, 方灶军. 一种基于偏置平行四边形机构的四自由度并联机器人. CN: CN215660246U, 2022-01-28.
[3] 杨桂林, 赵杰, 熊次远, 陈思鲁, 陈庆盈, 张驰. 一种四自由度并联机构. CN: CN113547509A, 2021-10-26.
[4] 陈思鲁, 万红宇, 郑天江, 蒋德鑫, 张驰, 杨桂林. 一种五轴机床几何误差补偿方法. CN: CN113325802A, 2021-08-31.
[5] 张启平, 方灶军, 陈思鲁, 李俊杰, 廉宏远, 陈庆盈, 张弛, 杨桂林. 一种提高自由曲面打磨表面均匀性的方法. CN: CN111438635B, 2021-08-17.
[6] 郑天江, 蒋德鑫, 杨桂林, 陈思鲁, 张驰, 万红宇, 余宏涛. 一种两转一移并联机构及机械设备. CN: CN113211418A, 2021-08-06.
[7] 陈思鲁, 姜超, 万红宇, 余宏涛, 杨淼, 张驰, 杨桂林. 一种柔性关节及双驱龙门直角坐标平台. CN: CN112008755B, 2021-07-16.
[8] 陈思鲁, 肖涛, 李俊杰, 李荣, 赵夙, 仇斌权, 罗竞波, 翟锰钢, 张驰, 杨桂林. 一种工件校形方法及工件校形装置. CN: CN113042577A, 2021-06-29.
[9] 乔海, 张驰, 戴明志, 李荣, 张杰, 陈思鲁, 杨桂林. 一种MOS器件漏电流瞬态采样装置. CN: CN212134921U, 2020-12-11.
[10] 陈思鲁, 万红宇, 刘艺莎, 张驰, 杨桂林. 一种重载机器人标定方法. CN: CN111775153A, 2020-10-16.
[11] 乔海, 张驰, 戴明志, 李荣, 张杰, 陈思鲁, 杨桂林. 一种MOS器件漏电流瞬态采样装置及方法. CN: CN111398855A, 2020-07-10.
[12] 王冲冲, 杨桂林, 陈庆盈, 辛强, 方灶军, 张驰, 陈思鲁. 一种机械臂阻抗控制方法. CN: CN110962129A, 2020-04-07.
[13] 张杰, 梁雨生, 袁黎明, 张驰, 陈思鲁, 杨桂林, 周杰. 永磁转子以及球形电机. CN: CN110247493A, 2019-09-17.
获得奖励

(1) 第四届中国机器人学术年会最佳海报奖,2023 

(2)第16届ICIRA会议最佳学生论文候选奖,2023 

(3)宁波材料所优秀导师,2021 

(4)新加坡国立大学博士研究生全额奖学金,2005 

(5)新加坡教育部本科全额奖学金,2000 

(6)福建省人民政府庄采芳奖学金,2000

出版信息

至今,已经在相关的优秀期刊和知名国际会议发表文章100余篇,合著英文学术专著1部,其中在Automatica和IEEE各个专业汇刊,如控制论、工业电子、工业信息学、机械电子、控制系统技术、仪器与测量汇刊及其他SCI期刊已发表文章50余篇.

[59] W. Ge, S. Chen, H. Hu, T. Zheng, Z. Fang, C. Zhang, and G. Yang, “Detection and localization strategy based on yolo for robot sorting under complex lighting conditions,” International Journal of Intelligent Robotics and Applications, pp. 1–13, 2023.

[58] H. Hu, S. Chen, J. Zhao, J. Luo, S. Jia, J. Zhou, J. Zhang, C. Xiong, C. Zhang, and G. Yang, “Robust adaptive control of a bimanual 3T1R parallel robot with gray-box-model and prescribed performance function,” IEEE/ASME Transactions on Mechatronics, 2023.

[57] J. Luo, S. Chen, C. Zhang, C.-Y. Chen, and G. Yang, “Efficient kinematic calibration for articulated robot based on unit dual quaternion,” IEEE Transactions on Industrial Informatics, 2023.

[56] H. Wan, S. Chen, C. Zhang, C.-Y. Chen, and G. Yang, “Compliant control of flexible joint by dual-disturbance observer and predictive feedforward,” IEEE/ASME Transactions on Mechatronics, 2023.

[55] L. Yuan, S. Chen, C. Zhang, and G. Yang, “Structured controller synthesis through block-diagonal factorization and parameter space optimization,” Automatica, vol. 147, p. 110 709, 2023.

[54] C. Zhang, N. Sang, S. Qiu, S. Chen, R. Li, M. Yang, and G. Yang, “A dual-sided hybrid excitation eddy current damper with high-conductivity and high-permeability secondary plate for vibration suppression enhancement,” Journal of Vibration Engineering & Technologies, vol. 11, no. 3, pp. 1229–1240, 2023.

[53] Z. Zhang, S. Chen, J. Luo, C. Zhang, Z. Piao, and G. Yang, “Motorized measurement of deformation on surface of revolution with 2-D laser profiler,” IEEE Transactions on Instrumentation and Measurement, vol. 72, pp. 1–10, 2023.

[52] J. Zhao, G. Yang, H. Shi, S. Chen, C.-Y. Chen, and C. Zhang, “Virtual passive-joint space based time optimal trajectory planning for a 4-DOF parallel manipulator,” IEEE Robotics and Automation Letters, 2023.

[51] Y. Zhu, S. Chen, C. Zhang, Z. Piao, and G. Yang, “Development of adaptive safety constraint by predicting trajectories of closest points between human and co-robot,” Journal of Intelligent Manufacturing, pp. 1–10, 2023.

[50] S. Chen, Y. Zhu, Y. Liu, C. Zhang, Z. Piao, and G. Yang, “A “look-backward-and-forward” adaptation strategy for assessing parameter estimation error of human motion prediction model,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2629–2636, 2022.

[49] X. Huang, C. Zhang, R. Li, J. Chen, S.-l. Chen, and G. Yang, “Decoupled identification and compensation of nonlinear hysteresis cascading with linear dynamic in a moving magnet voice coil actuator,” Review of Scientific Instruments, vol. 93, no. 3, 2022.

[48] J. Luo, S. Chen, X. Fan, C. Xiong, T. Zheng, C. Zhang, and G. Yang, “Kinematic calibration of a 4PPa-2PaR parallel mechanism with subchains on limbs,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–11, 2022.

[47] B. Qiu, S. Chen, Y. Gu, C. Zhang, and G. Yang, “Concurrent layout and trajectory optimization for robot workcell toward energy-efficient and collision-free automation,” The International Journal of Advanced Manufacturing Technology, vol. 122, no. 1, pp. 263–275, 2022.

[46] B. Ren, Z. Zhang, C. Zhang, and S. Chen, “Motion trajectories prediction of lower limb exoskeleton based on long short-term memory (LSTM) networks,” in Actuators, MDPI, vol. 11, 2022, p. 73.

[45] H. Wan, S. Chen, T. Zheng, D. Jiang, C. Zhang, and G. Yang, “Piecewise modeling and compensation of geometric errors in five-axis machine tools by local product of exponentials formula,” The International Journal of Advanced Manufacturing Technology, vol. 121, no. 5-6, pp. 2987–3004, 2022.

[44] Y. Wan, S. Chen, L. Yuan, C. Zhang, Y. Zhang, and G. Yang, “Modeling and synchronized control of a dual-drive “checkerboard” gantry with composite adaptive feedforward and RISE feedback,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 4, pp. 2044–2052, 2022.

[43] L. Yuan, S. Chen, C. Zhang, and G. Yang, “Parameter space optimization for robust controller synthesis with structured feedback gain,” IEEE Transactions on Cybernetics, 2022.

[42] A. Zhai, H. Zhang, J. Wang, G. Lu, J. Li, and S. Chen, “Adaptive neural synchronized impedance control for cooperative manipulators processing under uncertain environments,” Robotics and Computer Integrated Manufacturing, vol. 75, p. 102 291, 2022.

[41] C. Zhang, X. Huang, M. Yang, S.-L. Chen, J. Chen, and G. Yang, “Design and positioning control of a flexure-based nano-positioning stage driven by Halbach array voice coil actuator,” International Journal of Precision Engineering and Manufacturing, vol. 23, no. 3, pp. 281–290, 2022.

[40] C. Zhang, H. Yu, M. Yang, S. Chen, and G. Yang, “Nonlinear kinetostatic modeling and analysis of a large range 3-PPR planar compliant parallel mechanism,” Precision Engineering, vol. 74, pp. 264–277, 2022.

[39] C. Zhang, H. Yu, M. Yang, S. Chen, and G. Yang, “Nonlinear stiffness and kinetostatic modeling of a large-range 3-degree-of-freedom planar compliant parallel mechanism,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 236, no. 7, pp. 3672–3682, 2022.

[38] T. Zhang, Q. Du, G. Yang, C. Wang, C.-Y. Chen, C. Zhang, S. Chen, and Z. Fang, “Assembly configuration representation and kinematic modeling for modular reconfigurable robots based on graph theory,” Symmetry, vol. 14, no. 3, p. 433, 2022.

[37] J. Zhao, C. Wu, G. Yang, C.-Y. Chen, S. Chen, C. Xiong, and C. Zhang, “Kinematics analysis and workspace optimization for a 4-DOF 3T1R parallel manipulator,” Mechanism and Machine Theory, vol. 167, p. 104 484, 2022.

[36] S. Chen, H. Wan, C. Jiang, L. Ye, H. Yu, M. Yang, C. Zhang, G. Yang, and J. Wu, “Kinetostatic modeling of dual-drive H-type gantry with exchangeable flexure joints,” Journal of Mechanisms and Robotics, vol. 13, no. 4, p. 040 909, 2021.

[35] B. Ren, Y. Wang, J. Chen, and S. Chen, “A novel nonlinear disturbance observer embedded second-order finite time tracking-based controller for robotic manipulators,” Journal of Computing and Information Science in Engineering, vol. 21, no. 6, p. 061 005, 2021.

[34] M. Yang, C. Zhang, X. Huang, S. Chen, and G. Yang, “A long-stroke nanopositioning stage with annular flexure guides,” IEEE/ASME Transactions on Mechatronics, vol. 27, no. 3, pp. 1570–1581, 2021.

[33] C. Zhang, X. Huang, M. Yang, S. Chen, and G. Yang, “Design of a long stroke nanopositioning stage with self-damping actuator and flexure guide,” IEEE Transactions on Industrial Electronics, vol. 69, no. 10, pp. 10 417–10 427, 2021.

[32] L. Liu, H. Yun, Q. Li, X. Ma, S.-L. Chen, and J. Shen, “Fractional order based modeling and identification of coupled creep and hysteresis effects in piezoelectric actuators,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 2, pp. 1036–1044, 2020.

[31] F. Zhang, S. Chen, Y. He, G. Ye, C. Zhang, and G. Yang, “A kinematic calibration method of a 3T1R 4-degree-of-freedom symmetrical parallel manipulator,” Symmetry, vol. 12, no. 3, p. 357, 2020.

[30] J. Zhang, L. Yuan, S.-L. Chen, Y. Liang, X. Huang, C. Zhang, and G. Yang, “A survey on design of reaction spheres and associated speed and orientation measurement technologies,” ISA Transactions, vol. 99, pp. 417–431, 2020.

[29] X. Li, S.-L. Chen, C. S. Teo, and K. K. Tan, “Enhanced sensitivity shaping by data-based tuning of disturbance observer with non-binomial filter,” ISA Transactions, vol. 85, pp. 284–292, 2019.

[28] K. K. Tan, X. Li, S.-L. Chen, C. S. Teo, and T. H. Lee, “Disturbance compensation by reference profile alteration with application to tray indexing,” IEEE Transactions on Industrial Electronics, vol. 66, no. 12, pp. 9406–9416, 2019.

[27] K. Yang, G. Yang, S.-L. Chen, Y. Wang, W. Shen, T. Zheng, Z. Fang, and C. Wang, “Enhanced stiffness modeling and identification method for a cable-driven spherical joint module,” IEEE Access, vol. 7, pp. 137 875–137 886, 2019.

[26] K. Yang, G. Yang, S.-L. Chen, Y. Wang, C. Zhang, Z. Fang, T. Zheng, and C. Wang, “Study on stiffnessoriented cable tension distribution for a symmetrical cable-driven mechanism,” Symmetry, vol. 11, no. 9, p. 1158, 2019.

[25] H. Yu, C. Zhang, B. Yang, S.-L. Chen, Z. Fang, R. Li, and G. Yang, “The design and kinetostatic modeling of 3ppr planar compliant parallel mechanism based on compliance matrix method,” Review of Scientific Instruments, vol. 90, no. 4, 2019.

[24] L. Yuan, J. Zhang, S.-L. Chen, Y. Liang, J. Chen, C. Zhang, and G. Yang, “Design and optimization of a magnetically levitated inductive reaction sphere for spacecraft attitude control,” Energies, vol. 12, no. 8, p. 1553, 2019.

[23] N. Kamaldin, S.-L. Chen, C. S. Teo, W. Lin, and K. K. Tan, “A novel adaptive jerk control with application to large workspace tracking on a flexure-linked dual-drive gantry,” IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5353–5363, 2018.

[22] Q. Li, L. Liu, X. Ma, S.-L. Chen, H. Yun, and S. Tang, “Development of multitarget acquisition, pointing, and tracking system for airborne laser communication,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1720–1729, 2018.

[21] J. Ma, S.-L. Chen, W. Liang, C. S. Teo, A. Tay, A. Al Mamun, and K. K. Tan, “Robust decentralized controller synthesis in flexure-linked h-gantry by iterative linear programming,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1698–1708, 2018.

[20] J. Wang, W. Wang, C.-H. Wu, S.-L. Chen, J.-H. Fu, and G.-D. Lu, “A plane projection based method for base frame calibration of cooperative manipulators,” IEEE Transactions on Industrial Informatics, vol. 15, no. 3, pp. 1688–1697, 2018.

[19] S.-L. Chen, X. Li, C. S. Teo, and K. K. Tan, “Composite jerk feedforward and disturbance observer for robust tracking of flexible systems,” Automatica, vol. 80, pp. 253–260, 2017.

[18] X. Li, S.-L. Chen, C. S. Teo, and K. K. Tan, “Data-based tuning of reduced-order inverse model in both disturbance observer and feedforward with application to tray indexing,” IEEE Transactions on Industrial Electronics, vol. 64, no. 7, pp. 5492–5501, 2017.

[17] W. Liang, S. Huang, S. Chen, and K. K. Tan, “Force estimation and failure detection based on disturbance observer for an ear surgical device,” ISA Transactions, vol. 66, pp. 476–484, 2017.

[16] J. Ma, S.-L. Chen, N. Kamaldin, C. S. Teo, A. Tay, A. Al Mamun, and K. K. Tan, “A novel constrained h2 optimization algorithm for mechatronics design in flexure-linked biaxial gantry,” ISA Transactions, vol. 71, pp. 467–479, 2017.

[15] J. Ma, S.-L. Chen, N. Kamaldin, C. S. Teo, A. Tay, A. Al Mamun, and K. K. Tan, “Integrated mechatronic design in the flexure-linked dual-drive gantry by constrained linear–quadratic optimization,” IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 2408–2418, 2017.

[14] J. Ma, S.-L. Chen, C. S. Teo, C. J. Kong, A. Tay, W. Lin, and A. Al Mamun, “A constrained linear quadratic optimization algorithm toward jerk-decoupling cartridge design,” Journal of the Franklin Institute, vol. 354, no. 1, pp. 479–500, 2017.

[13] S.-L. Chen, N. Kamaldin, T. J. Teo, W. Liang, C. S. Teo, G. Yang, and K. K. Tan, “Toward comprehensive modeling and large-angle tracking control of a limited-angle torque actuator with cylindrical Halbach,” IEEE/ASME Transactions on Mechatronics, vol. 21, no. 1, pp. 431–442, 2016.

[12] T. J. Teo, H. Zhu, S.-L. Chen, G. Yang, and C. K. Pang, “Principle and modeling of a novel moving coil linear-rotary electromagnetic actuator,” IEEE Transactions on Industrial Electronics, vol. 63, no. 11, pp. 6930–6940, 2016.

[11] K. K. Tan, W. Liang, S. Huang, L. P. Pham, S. Chen, C. W. Gan, and H. Y. Lim, “Precision control of piezoelectric ultrasonic motor for myringotomy with tube insertion,” Journal of Dynamic Systems, Measurement, and Control, vol. 137, no. 6, p. 064 504, 2015.

[10] X. Li, S.-L. Chen, C. S. Teo, K. K. Tan, and T. H. Lee, “Data-driven modeling of control valve stiction using revised binary-tree structure,” Industrial & Engineering Chemistry Research, vol. 54, no. 1, pp. 330– 337, 2015.

[9] S.-L. Chen, T. Teo, and G Yang, “Control of a novel linear-rotary actuator for high-speed pick-and-place application,” Australian Journal of Electrical and Electronics Engineering, vol. 11, no. 3, pp. 289–296, 2014.

[8] L. Liu, K. K. Tan, S.-L. Chen, S. Huang, and T. H. Lee, “SVD-based preisach hysteresis identification and composite control of piezo actuators,” ISA Transactions, vol. 51, no. 3, pp. 430–438, 2012.

[7] L. Liu, K. K. Tan, S. Chen, C. S. Teo, and T. H. Lee, “Discrete composite control of piezoelectric actuators for high-speed and precision scanning,” IEEE Transactions on Industrial Informatics, vol. 9, no. 2, pp. 859–868, 2012.

[6] L. Liu, K. K. Tan, C. S. Teo, S.-L. Chen, and T. H. Lee, “Development of an approach toward comprehensive identification of hysteretic dynamics in piezoelectric actuators,” IEEE Transactions on Control Systems Technology, vol. 21, no. 5, pp. 1834–1845, 2012.

[5] S.-L. Chen, K. K. Tan, and S. Huang, “Identification of coulomb friction-impeded systems with a triplerelay feedback apparatus,” IEEE Transactions on Control Systems Technology, vol. 20, no. 3, pp. 726–737, 2011.

[4] S.-L. Chen, K. K. Tan, and S. Huang, “Friction modeling and compensation of servomechanical systems with dual-relay feedback approach,” IEEE Transactions on Control Systems Technology, vol. 17, no. 6, pp. 1295–1305, 2009.

[3] S.-L. Chen, K. K. Tan, and S. Huang, “Limit cycles induced in type-1 linear systems with PID-type of relay feedback,” International Journal of Systems Science, vol. 40, no. 12, pp. 1229–1239, 2009.

[2] S.-L. Chen, K. K. Tan, S. Huang, and C. S. Teo, “Modeling and compensation of ripples and friction in permanent-magnet linear motor using a hysteretic relay,” IEEE/ASME Transactions on Mechatronics, vol. 15, no. 4, pp. 586–594, 2009.

[1] S.-L. Chen, K. K. Tan, and S. Huang, “Two-layer binary tree data-driven model for valve stiction,” Industrial & Engineering Chemistry Research, vol. 47, no. 8, pp. 2842–2848, 2008. 

发表著作
(1) Precision Motion Systems: Modeling, Control and Applications, Butterworth-Heinemannn, 2019-09, 第 4 作者

科研活动

回国以来,已主持国家重点研发计划“智能机器人”专项课题、国家自然科学基金联合基金、面上项目、中科院国际合作重点项目、浙江省“领雁”计划攻关重点项目、宁波市科技创新2025重大专项等科研项目。

科研项目
( 1 ) 基于直驱力矩电机的多轴联动加工中心, 负责人, 地方任务, 2019-04--2021-12
( 2 ) 面向工业机器人生产线的工艺包开发, 负责人, 国家任务, 2017-12--2020-11
( 3 ) 基于可置换柔性连接的双驱龙门平台动力学建模和高速高精运动控制方法研究, 负责人, 国家任务, 2019-01--2022-12
( 4 ) 大型重载机器人平台技术, 负责人, 地方任务, 2019-04--2021-12
( 5 ) 轻量化协作机器人设计方法与控制技术研究, 负责人, 国家任务, 2021-01--2024-12
( 6 ) 航天薄壁件超声波喷丸校形机器人关键技术与系统研发, 负责人, 地方任务, 2022-01--2024-12
特邀报告
(1)工业机器人的力控技术   2019第十届高效加工智能自动化高峰论坛   2019-03-08
(2)刚柔耦合运动系统的高速高精运动控制方法研究   第二届中科院“材料与未来”青年科学家论坛   2018-07-02

合作情况

基于国家重点研发计划课题与地方重点科技项目,与浙江大学、新松机器人、中科院沈阳自动化所、蓝箭航天、敏实集团、宁波伟立机器人、宁波金凯机床等单位建立了项目合作关系。

指导学生

现指导在读博士、硕士研究生10余名。

毕业学生去向

胡华 硕士研究生 2023 理想汽车

葛武杰 硕士研究生 2023 宁波银行股份有限公司

张志辉 硕士研究生 2023 舜宇仪器有限公司

刘童剑 硕士研究生 2023 中国葛洲坝集团电力有限责任公司

张子栋 硕士研究生 2023 浙江孚邦科技有限公司

朱禹帆 硕士研究生 2023 南京未来脑科技有限公司

许佳杰 硕士研究生 2023 中国联通杭州分公司

贾锶 硕士研究生 2023 广州市增城区新塘中学


袁黎明 博士研究生 2022 中国科学院宁波材料所 博士后

仇斌权 硕士研究生 2022 重庆生物智能制造研究院

叶刘颖 硕士研究生 2022 上海联影医疗科技股份有限公司

范孝男 硕士研究生 2022 杭州芯控智能科技有限公司

万云飞 硕士研究生 2022 中航光电科技股份有限公司


万红宇 硕士研究生 2021 中国科学院大学 攻读博士学位 

肖涛 硕士研究生 2021 华为技术有限公司 

刘艺莎 硕士研究生 2021 杭州芯控智能科技有限公司


张逢宣 硕士研究生 2020 华为技术有限公司 

姜超 硕士研究生 2020 美的集团