General Information

Jige Chen

Shanghai Advanced Research Institute, Chinese Academy of Sciences

Room 303, Building Z, 239 Zhangheng Road, Pudong New District, Shanghai, China


Brief Introduction

Jige Chen is an associate professor at Shanghai Advanced Research Institute, Chinese Academy of Sciences. His research field is focused on Condensed Matter Physics and Statistical Physics, which involves ab initio molecular dynamics (AIMD) and classical molecular dynamics (MD) simulations of condensed matter at a finite temperature. His research interests include Nanofluidics, Lattice Dynamics and Complex System, etc.

He has received 2 funds from the Natural Science Foundation of China, 3 funds from the Natural Science Foundation of Shanghai, 1 fund from the Chinese Academy of Sciences, 1 fund from the China Scholarship Council, 1 fund from the Swiss Confederation, and participated in 1 fund from the National Key Research and Development Program of China. He is an evaluation expert for the Shanghai Science and Technology Award. He has served as a reviewer for various physics/chemistry journals like Nano Lett., Nanoscale, J. Phys. Chem., Phys. Rev. E, EPL, ACS AMI, Adv. Mater., Small, etc.

He graduated from Xiamen University (2002-2011) and acquired his doctorate degree. Furthermore, he is a Lindau Alumni of the Lindau Nobel Laureate Meeting (2010), and has worked as a postdoctoral fellow at Shanghai Institute of Applied Physics (2012-2014), a visiting fellow at ICTP, Trieste, Italy (2016), a postdoctoral fellow at ETH, Zurich, Switzerland (2017-2018), and an associate professor at Shanghai Institute of Applied Physics (2014-2018), and an associate professor at Shanghai Advanced Research Institute since 2018.

Education Background

2002.09 – 2006.06  Xiamen University                                  B. Sc. 

2006.06 – 2011.12   Xiamen University                                 Ph. D. 

Work Experience

2012.01 – 2014.01  Shanghai Institute of Applied Physics    Postdoc.

2016.04 – 2016.05  ICTP, Trieste, Italy                                  Visiting Scholar

2017.09 – 2018.09  ETH, Zurich, Switzerland                        Postdoc.

2014.01 – 2018.10  Shanghai Institute of Applied Physics     Assoc. Prof.

2018.10 –                Shanghai Advanced Research Institute  Assoc. Prof.

Selected Publications

(Corresponding Author*, Co-first Author#)


01. W. Du, Y. Wang, J. Yang, and J. Chen*, Two Rhombic Ice Phases from Aqueous Salt Solutions under Graphene Confinement, Phys. Rev. E 109, L062103 (2024). (Letter)

02. W. Fan and J. Chen*, Two-state Diffusive Mobility of Slow and Fast Transport of Water in Narrow Nanochannels, Phys. Rev. E 101, 010101(R) (2020). (Rapid Communication)

03. W. Wang, T. Xu, J. Chen#, J. Shangguan, et al., Solid–liquid–gas Reaction Accelerated by Gas Molecule Tunnelling-like Effect, Nat. Mater. 21, 859 (2022).

04. Y. Wang, J. Chen*, From Normal to Anomalous Diffusion of Water Molecules in Narrow Carbon Nanotubes with Defects, Gases, and Salts, EPL 139, 51002 (2022). 

05. Y. Lu, J. Chen*, Adjustable Diffusion Enhancement of Water Molecules in a Nanoscale Water Bridge, Nanoscale 13, 1000 (2021). 

06. J. Chen*, C. Wang,  N. Wei, R. Wan, Y. Gao, 3D Flexible Water Channel: Stretchability of Nanoscale Water Bridge, Nanoscale 8, 5676 (2016). 

Lattice Dynamics

01. J. Yang, W. Du, Y. Wang, N. Wei, and J. Chen*, Decoupled Thermal and Electric Response to External Excitations in Graphene, Phys. Rev. B 108, 144301 (2023).

02. Y. Wang and J. Chen*, Temperature-dependent Anomalous Energy Transport in Finite-length Quasi-one-dimensional MoS2: Crossover from Phonons to Solitons, Phys. Rev. B 104, 224306 (2021).

03. J. Chen*, S. Chen, and Y. Gao, Supersonic Thermal Excitation-induced Shock Wave in Black Phosphorene, Phys. Rev. B 95, 134301 (2017).

04. J. Wang and J. Chen*, Suppressed-to-enhanced Thermal Transport in a Fermi-Pasta-Ulam Superlattice: Mediation Roles of Solitons and Phonons, Phys. Rev. E 101, 042207 (2020).

05. J. Chen*, Phonon-Induced Ratchet Motion of a Water Nanodroplet on a Supported Black Phosphorene, J. Phys. Chem. Lett. 11, 4298 (2020)

06. J. Chen*, S. Chen, and Y. Gao, Anisotropy Enhancement of Thermal Energy Transport in Supported Black Phosphorene, J. Phys. Chem. Lett. 7, 2518 (2016).

Complex System

01. J. Chen* and H. Zhao, Pattern Recognition with Weighted Complex Networks, Phys. Rev. E 78, 056107 (2008).

02. C. Wang, F. Yu, Y. Liu, X. Li, J. Chen, J. Thiyagalingam, and A. Sepe*, Deploying the Big Data Science Center at the Shanghai Synchrotron Radiation Facility: The First Superfacility Platform in China, Mach. Learn.: Sci. Technol. 2, 035003 (2021).

Full Publication List


Received Funds

PI Funds

01. Novel Dynamics of Water Molecules in Nanochannels

      Chinese Academy of Sciences, 307GJHZ2022065FN (2023-2025).

02. Lattice Phonons Mediated Transport Phenomenon of Water Molecules at Solid-Liquid Interface

      Natural Science Foundation of Shanghai, 19ZR1463200 (2019-2022).

03. Interfacial Water Transport Phenomenon at Nanoscale and Its Applications

      Natural Science Foundation of Shanghai, 14ZR1448100 (2014-2017).

04. Thermal Transport Behavior of Water in Carbon Nanotubes

      Natural Science Foundation of Shanghai, 13R21418200 (2013-2014).

05. Thermal Transport of Water Molecules at Solid-Liquid Interface

      National Natural Science Foundation of China, 11405245 (2015-2017).

06. ICTP Visiting Scholar for the Physics of Complex Systems

      National Natural Science Foundation of China, 11611240136 (2016).

07. Exchange Scholarship Program

      China Scholarship Council, 201600160106 (2017-2018).

08. Schweizer Bundes Exzellenz Stipendium

      Federal Commission for Scholarships for Foreign Students, FCS20170475 (2017-2018).

Participating Funds

01. Full-stack Working Condition for Catalytic Simulation and Intelligent Software Design

      National Key R&D Program of China, 2023YFA1506900 (2023-2028).

Media Highlights