基本信息
陈健  男  博导  中国科学院空天信息创新研究院
电子邮件: chenjian@mail.ie.ac.cn
通信地址: 北京市海淀区北四环西路19号
邮政编码: 100190

研究领域

生物传感技术
微流控技术
单细胞分析

招生信息

   
招生专业
0809Z1-生物电子学
招生方向
生物传感技术
微机械电子系统
单细胞分析

教育背景

2007-09--2011-09   加拿大多伦多大学   博士
学历
研究生
学位
博士

工作经历

   
工作简历
2020-12~现在, 中国科学院空天信息创新研究院(原中科院电子所), 研究员
2014-04~2020-10,中国科学院电子学研究所, 副研究员
2011-11~2014-03,中国科学院电子学研究所, 助理研究员
社会兼职
2018-06-19-今,中国仪器仪表学会微纳器件与系统技术分会第三届理事会, 理事
2017-08-30-今,中国生物工程学会生命科学仪器专业委员会, 委员
2016-09-29-今,北京市青年联合会, 委员
2016-06-30-今,中国中医药信息学会临床研究分会, 常务理事
2015-12-31-今,中国研究型医院学会血管医学专业委员会, 委员
2015-12-31-今,The 6th International Conference on Optofluidics (Optofluidics 2016)技术委员会, 委员
2014-12-31-今,国家自然科学基金委员会, 同行评阅人
2014-12-31-今,863 计划海洋技术领域, 同行专家
2013-12-31-今,北京市科学技术委员会, 同行评议专家

教授课程

科研实践Ⅰ
文献阅读
微流控芯片系统
文献阅读-9班
生物芯片技术前沿

专利与奖励

   
奖励信息
(1) 单细胞生物物理/化学特性高通量定量检测方法和仪器, 二等奖, 部委级, 2020
(2) 中国科学院青年创新促进会优秀会员, 部委级, 2019
(3) 国家优秀青年科学基金获得者, 国家级, 2019
(4) 中国科学院电子学研究所菁英青年人才, , 研究所(学校), 2017
(5) 高精度硅基谐振式压力传感器关键技术及应用, 二等奖, 部委级, 2017
(6) 基于微流控芯片的单细胞电学特性高通量检测技术及应用, 三等奖, 部委级, 2017
(7) 中国科学院前沿科学重点研究计划青年拔尖科学家, , 部委级, 2016
(8) 中国科学院青年创新促进会会员, , 部委级, 2015
(9) 北京市科技新星, , 省级, 2014
(10) 中国科学院电子学研究所优秀青年人才, , 研究所(学校), 2013
专利成果
[1] 陈健, 梁红雁, 张毅, 谭惠文, 陈德勇, 王军波. 基于电学及荧光信号的微流控芯片和血细胞分析装置. CN202010226537.5, 2021-10-26.

[2] 陈健, 梁红雁, 张毅, 谭惠文, 陈德勇, 王军波. 细胞核电学性能检测装置及方法. CN202010073004.8, 2021-10-12.

[3] 陈健, 张婷, 陈德勇, 王军波. 基于光源调制的高分辨率单细胞蛋白定量检测装置及方法. CN202110952702.X, 2021-08-19.

[4] 陈健, 梁红雁, 张毅, 谭惠文, 陈德勇, 王军波. 一种细胞及细胞核生物电学特性检测装置及方法. CN202110198721.8, 2021-06-25.

[5] 陈健, 梁红雁, 张毅, 谭惠文, 陈德勇, 王军波. 基于电学信号的微流控芯片和血细胞分析装置及方法. CN202010226539.4, 2021-05-15.

[6] 陈健, 张毅, 谭惠文, 梁红雁, 陈德勇, 王军波. 检测细胞膜电势的装置及其检测方法. CN: CN112683950A, 2021-04-20.

[7] 陈健, 张毅, 谭惠文, 梁红雁, 陈德勇, 王军波. 基于压缩通道的单细胞生物电参量检测装置及检测方法. CN: CN111596134A, 2020-08-28.

出版信息

   
发表论文
[1] Duan, Yumo, Zhong, Anxiang, Lu, Yulan, Chen, Jian, Chen, Deyong, Wang, Junbo. A MEMS Electrochemical Seismometer Based on the Integrated Structure of Centrosymmetric Four Electrodes. MICROMACHINES[J]. 2022, 13(3): http://dx.doi.org/10.3390/mi13030354.
[2] Sun, XiaoHao, Wang, Ke, Wu, HengAn, Chen, Jian, Long, Rong. Finite element simulation of a viscoelastic cell entering a cylindrical channel: Effects of frictional contact. MECHANICS OF MATERIALS[J]. 2022, 167: http://dx.doi.org/10.1016/j.mechmat.2022.104263.
[3] Yu, Jie, Lu, Yulan, Xie, Bo, Meng, Qinggang, Yu, Zongze, Qin, Jiaxin, Chen, Jian, Wang, Junbo, Chen, Deyong. An Electrostatic Comb Excitation Resonant Pressure Sensor for High Pressure Applications. IEEE SENSORS JOURNAL[J]. 2022, [4] Cheng, Chao, Yao, Jiahui, Lu, Yulan, Wang, Junbo, Chen, Deyong, Chen, Jian. A Resonant Differential Pressure Microsensor With Stress Isolation and Au-Au Bonding in Packaging. IEEE TRANSACTIONS ON ELECTRON DEVICES. 2022, [5] Yao, Jiahui, Cheng, Chao, Lu, Yulan, Xie, Bo, Chen, Jian, Chen, Deyong, Wang, Junbo. A Low-Temperature-Sensitivity Resonant Pressure Microsensor Based on Eutectic Bonding. IEEE SENSORS JOURNAL[J]. 2022, [6] Wang, Minruihong, Liang, Hongyang, Chen, Xiao, Chen, Deyong, Wang, Junbo, Zhang, Yuan, Chen, Jian. Developments of Conventional and Microfluidic Flow Cytometry Enabling High-Throughput Characterization of Single Cells. Biosensors[J]. 2022, 12: 443-, [7] Wang, Minruihong, Zhang, Jie, Tan, Huiwen, Chen, Deyong, Lei, Ying, Li, Yueying, Wang, Junbo, Chen, Jian. nherent Single-Cell Bioelectrical Parameters of Thousands of Neutrophils, Eosinophils and Basophils Derived from Impedance Flow Cytometry. Cytometry Part A[J]. 2022, [8] Liu, Bowen, Liang, Tian, Qi, Wenjie, Anxiang Zhong, Chen, Mingwei, Lu, Yulan, Chen, Jian, Chen, Deyong, Junbo Wang. A New Electrochemical Angular Micro-Accelerometer with Integrated Sensitive Electrodes Perpendicular to Flow Channels. Microsystems & Nanoengineering[J]. 2022, [9] Yang, Hongyu, Yang, Guang, Zhang, Ting, Chen, Deyong, Wang, Junbo, Chen, Jian. Development of Droplet Microfluidics Capable of Quantitative Estimation of Single-Cell Multiplex Proteins. JOURNAL OF MICROMECHANICS AND MICROENGINEERING[J]. 2022, 32: [10] Agafonov, Vadim, Kompaniets, Iuliia, Liu, Bowen, Chen, Jian. Modeling of the Electrochemical Motion Sensor Conversion Factor at High Frequencies. MICROMACHINES[J]. 2022, 13(2): http://dx.doi.org/10.3390/mi13020153.
[11] Zhang, Sen, Zheng, Yu, Lu, Yulan, Xie, Bo, Chen, Deyong, Wang, Junbo, Chen, Jian. A Resonant Low-Pressure Microsensor with Low Temperature Disturbance. IEEE SENSORS JOURNAL[J]. 2022, [12] Tan, Huiwen, Wang, Minruihong, Zhang, Yi, Huang, Xukun, Chen, Deyong, Li, Yueying, Wu, MinHsien, Wang, Ke, Wang, Junbo, Chen, Jian. Inherent bioelectrical parameters of hundreds of thousands of single leukocytes based on impedance flow cytometry. CYTOMETRY PART A. 2022, [13] Wang, Ke, Liu, Yan, Chen, Deyong, Wang, Junbo, Chen, Jian. Development of Microfluidic System Enabling High-Throughput Characterization of Multiple Biophysical Parameters of Single Cells. IEEE TRANSACTIONS ON ELECTRON DEVICES. 2022, [14] Li, Yadong, Cheng, Chao, Lu, Yulan, Xie, Bo, Chen, Jian, Wang, Junbo, Chen, Deyong. A High-Sensitivity Resonant Differential Pressure Microsensor Based on Bulk Micromachining. IEEE SENSORS JOURNAL[J]. 2021, 21(7): 8927-8934, https://www.webofscience.com/wos/woscc/full-record/WOS:000626579600016.
[15] Cheng, Chao, Li, Yadong, Yao, Jiahui, Lu, Yulan, Xiang, Chao, Chen, Jian, Chen, Deyong, Wang, Junbo. A Resonant Differential Pressure Microsensor With Temperature and Static Pressure Compensations. IEEE SENSORS JOURNAL[J]. 2021, 21(18): 19881-19888, http://dx.doi.org/10.1109/JSEN.2021.3099130.
[16] Liang, Tian, Wang, Junbo, Chen, Deyong, Liu, Bowen, She, Xu, Xu, Chao, Qi, Wenjie, Agafonov, Vadim, Egorov, Egor, Chen, Jian. A MEMS-Based Electrochemical Angular Accelerometer With a Force-Balanced Negative Feedback. IEEE SENSORS JOURNAL[J]. 2021, 21(14): 15972-15978, http://dx.doi.org/10.1109/JSEN.2021.3075748.
[17] Wang, Ke, Liu, Yan, Sun, Xiaohao, Chen, Deyong, Cai, Xinxia, Wang, Junbo, Chen, Jian. Quantification of Single-Cell Cortical Tension Using Multiple Constriction Channels. IEEE SENSORS JOURNAL[J]. 2021, 21(6): 7260-7267, https://www.webofscience.com/wos/woscc/full-record/WOS:000636053600013.
[18] Jiang, Mei, Wang, Xiaojie, Zhao, Xiaoting, Teng, Yu, Chen, Jian, Wang, Junbo, Yue, Wentao. Classification of tumor subtypes leveraging constriction-channel based impedance flow cytometry and optical imaging. CYTOMETRY PART A[J]. 2021, http://dx.doi.org/10.1002/cyto.a.24358.
[19] Liu, Bowen, Wang, Junbo, Chen, Deyong, Liang, Tian, Xu, Chao, Qi, Wenjie, She, Xu, Agafonov, Vadim M, Shabalina, Anna S, Chen, Jian. An Electrochemical Angular Micro-Accelerometer Based on Miniaturized Planar Electrodes Positioned in Parallel. IEEE SENSORS JOURNAL[J]. 2021, 21(19): 21305-21313, http://dx.doi.org/10.1109/JSEN.2021.3102240.
[20] Xiang, Chao, Lu, Yulan, Cheng, Chao, Wang, Junbo, Chen, Deyong, Chen, Jian. A Resonant Pressure Microsensor with a Wide Pressure Measurement Range. MICROMACHINES[J]. 2021, 12(4): https://doaj.org/article/b74c8f7e9f074df48c5328429de78e28.
[21] Xu, Chao, Wang, Junbo, Chen, Deyong, Chen, Jian, Liu, Bowen, Qi, Wenjie, Liang, Tian, She, Xu. The MEMS-Based Electrochemical Seismic Sensor With Integrated Sensitive Electrodes by Adopting Anodic Bonding Technology. IEEE SENSORS JOURNAL[J]. 2021, 21(18): 19833-19839, http://dx.doi.org/10.1109/JSEN.2021.3096496.
[22] Chen Jian. MEMS-Based Electrochemical Seismometer with a Sensing Unit Integrated Four Electrodes. Micromachines. 2021, [23] She, Xu, Wang, Junbo, Chen, Deyong, Chen, Jian, Xu, Chao, Qi, Wenjie, Liu, Bowen, Liang, Tian. MEMS-Based Electrochemical Seismometer Relying on a CAC Integrated Three-Electrode Structure. SENSORS[J]. 2021, 21(3): https://doaj.org/article/ec1d4359d00e45dba26330454c19bb9a.
[24] Zhang, Sen, Zheng, Yu, Lu, Yulan, Xie, Bo, Chen, Deyong, Wang, Junbo, Chen, Jian. A Micromachined Resonant Micro-Pressure Sensor. IEEE SENSORS JOURNAL[J]. 2021, 21(18): 19789-19796, http://dx.doi.org/10.1109/JSEN.2021.3091843.
[25] Yang, Hongyu, Wei, Yuanchen, Fan, Beiyuan, Liu, Lixing, Zhang, Ting, Chen, Deyong, Wang, Junbo, Chen, Jian. A droplet-based microfluidic flow cytometry enabling absolute quantification of single-cell proteins leveraging constriction channel. MICROFLUIDICS AND NANOFLUIDICS[J]. 2021, 25(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000630359000001.
[26] Xiao, Guihua, Song, Yilin, Zhang, Yu, Wang, Yiding, Xing, Yu, Xu, Shengwei, Xie, Jingyu, Dai, Yuchuan, Wang, Mixia, Chen, Jian, Chen, Deyong, Wang, Junbo, Cai, Xinxia. Synchronous beta oscillation of epileptiform activities detected by microelectrode arrays in the awake and anesthetized mice. SENSORS AND ACTUATORS A-PHYSICAL[J]. 2021, 318: http://dx.doi.org/10.1016/j.sna.2020.112529.
[27] Xu, Chao, Wang, Junbo, Chen, Deyong, Chen, Jian, Qi, Wenjie, Liu, Bowen, Liang, Tian, She, Xu. Temperature Compensation of the MEMS-Based Electrochemical Seismic Sensors. MICROMACHINES[J]. 2021, 12(4): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8066024/.
[28] Guihua Xiao, Yilin Song, Yu Zhang, Yu Xing, Shengwei Xu, Mixia Wang, Junbo Wang, Deyong Chen, Jian Chen, Xinxia Cai. Dopamine and Striatal Neuron Firing Respond to Frequency-Dependent DBS Detected by Microelectrode Arrays in the Rat Model of Parkinson’s Disease. Biosensors[J]. 2020, 10(10): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7600337/.
[29] Wang, Ke, Sun, Xiaohao, Zhang, Yi, Wei, Yuanchen, Chen, Deyong, Wu, Hengan, Song, Zijian, Long, Rong, Wang, Junbo, Chen, Jian. Microfluidic Cytometry for High-Throughput Characterization of Single Cell Cytoplasmic Viscosity Using Crossing Constriction Channels. CYTOMETRY PART A[J]. 2020, 97(6): 630-637, https://www.webofscience.com/wos/woscc/full-record/WOS:000491914400001.
[30] Zhang, Yi, Liang, Hongyan, Tan, Huiwen, Chen, Deyong, Wang, Yixiang, Xu, Ying, Wang, Junbo, Chen, Jian. Development of microfluidic platform to high-throughput quantify single-cell intrinsic bioelectrical markers of tumor cell lines, subtypes and patient tumor cells. SENSORS AND ACTUATORS B-CHEMICAL[J]. 2020, 317: http://dx.doi.org/10.1016/j.snb.2020.128231.
[31] Liu, Lixing, Yang, Hongyu, Men, Dong, Wang, Meng, Gao, Xiaolei, Zhang, Ting, Chen, Deyong, Xue, Chunlai, Wang, Yixiang, Wang, Junbo, Chen, Jian. Development of microfluidic platform capable of high-throughput absolute quantification of single-cell multiple intracellular proteins from tumor cell lines and patient tumor samples. BIOSENSORS & BIOELECTRONICS[J]. 2020, 155: http://dx.doi.org/10.1016/j.bios.2020.112097.
[32] Li, Yadong, Zhao, Ming, Wei, Qiuxu, Yu, Jie, Chen, Jian, Chen, Deyong, Wang, Junbo. Wireless Passive Intracranial Pressure Sensor Based on Vacuum Packaging. IEEE SENSORS JOURNAL[J]. 2020, 20(19): 11247-11255, https://www.webofscience.com/wos/woscc/full-record/WOS:000582804900023.
[33] Liu, Bowen, Wang, Junbo, Chen, Deyong, Chen, Jian, Xu, Chao, Liang, Tian, Qi, Wenjie, Zheng, Xichen, She, Xu. A MEMS-Based Electrochemical Angular Accelerometer With Integrated Plane Electrodes for Seismic Motion Monitoring. IEEE SENSORS JOURNAL[J]. 2020, 20(18): 10469-10475, https://www.webofscience.com/wos/woscc/full-record/WOS:000575389000015.
[34] Liu, Yan, Wang, Ke, Sun, Xiaohao, Chen, Deyong, Wang, Junbo, Chen, Jian. Development of microfluidic platform capable of characterizing cytoplasmic viscosity, cytoplasmic conductivity and specific membrane capacitance of single cells. MICROFLUIDICS AND NANOFLUIDICS[J]. 2020, 24(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000535134700001.
[35] Chen Jian. Advances of Single-Cell Proteomic Analysis. Cells. 2020, [36] Li, Yadong, Lu, Yulan, Xie, Bo, Chen, Jian, Wang, Junbo, Chen, Deyong. A Micromachined Resonant Differential Pressure Sensor. IEEE TRANSACTIONS ON ELECTRON DEVICES[J]. 2020, 67(2): 640-645, https://www.webofscience.com/wos/woscc/full-record/WOS:000510723400037.
[37] Chen Jian. A Resonant Pressure Microsensor Employing Temperature Compensation Method Based on Differential Outputs. Micromachines. 2020, [38] Xu, Chao, Wang, Junbo, Chen, Deyong, Chen, Jian, Liu, Bowen, Qi, Wenjie, Zheng, Xichen. The Electrochemical Seismometer Based on Fine-Tune Sensing Electrodes for Undersea Exploration. IEEE SENSORS JOURNAL[J]. 2020, 20(15): 8194-8202, https://www.webofscience.com/wos/woscc/full-record/WOS:000545717900001.
[39] Gao, Yan, Li, Taiyang, Sun, Qing, Ye, Chongyang, Guo, Mengmeng, Chen, Zebin, Chen, Jian, Huo, Bo. Migration and differentiation of osteoclast precursors under gradient fluid shear stress. BIOMECHANICS AND MODELING IN MECHANOBIOLOGY[J]. 2019, 18(6): 1731-1744, https://www.webofscience.com/wos/woscc/full-record/WOS:000493661200012.
[40] Lu, Yulan, Zhang, Sen, Yan, Pengcheng, Li, Yadong, Yu, Jie, Chen, Deyong, Wang, Junbo, Xie, Bo, Chen, Jian. Resonant Pressure Micro Sensors Based on Dual Double Ended Tuning Fork Resonators. MICROMACHINES[J]. 2019, 10(9): https://doaj.org/article/61f79710d258402985308ab0015767ed.
[41] Zheng, Xichen, Chen, Deyong, Wang, Junbo, Chen, Jian, Xu, Chao, Qi, Wenjie, Liu, Bowen. Microelectromechanical System-Based Electrochemical Seismometers with Two Pairs of Electrodes Integrated on One Chip. SENSORS[J]. 2019, 19(18): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000489187800138.
[42] Shi, Xiaoqing, Zhang, Sen, Chen, Deyong, Wang, Junbo, Chen, Jian, Xie, Bo, Lu, Yulan, Li, Yadong. A Resonant Pressure Sensor Based upon Electrostatically Comb Driven and Piezoresistively Sensed Lateral Resonators. MICROMACHINES[J]. 2019, 10(7): https://doaj.org/article/506c822f314a44d69b4fe34ac32a53dd.
[43] Liang, Hongyan, Zhang, Yi, Chen, Deyong, Tan, Huiwen, Zheng, Yu, Wang, Junbo, Chen, Jian. Characterization of Single-Nucleus Electrical Properties by Microfluidic Constriction Channel. MICROMACHINES[J]. 2019, 10(11): https://doaj.org/article/3fa074c4c8fc43ac98423b84088487c7.
[44] Zhang, Yi, Zhao, Yang, Chen, Deyong, Wang, Ke, Wei, Yuanchen, Xu, Ying, Huang, Chengjun, Wang, Junbo, Chen, Jian. Crossing constriction channel-based microfluidic cytometry capable of electrically phenotyping large populations of single cells. ANALYST[J]. 2019, 144(3): 1008-1015, [45] Yan, Pengcheng, Lu, Yulan, Xiang, Chao, Wang, Junbo, Chen, Deyong, Chen, Jian. A Temperature-Insensitive Resonant Pressure Micro Sensor Based on Silicon-on-Glass Vacuum Packaging. SENSORS[J]. 2019, 19(18): https://doaj.org/article/9060749507644530b4b71e949a360caa.
[46] Lu, Yulan, Xie, Bo, Wei, Qiuxu, Li, Yadong, Shi, Xiaoqing, Xiang, Chao, Chen, Deyong, Wang, Junbo, Chen, Jian. A Resonant Pressure Microsensor With a Stress Isolation Layer. IEEE SENSORS JOURNAL[J]. 2019, 19(18): 7875-7883, https://www.webofscience.com/wos/woscc/full-record/WOS:000481964500012.
[47] Lu, Yulan, Yan, Pengcheng, Xiang, Chao, Chen, Deyong, Wang, Junbo, Xie, Bo, Chen, Jian. A Resonant Pressure Microsensor with the Measurement Range of 1 MPa Based on Sensitivities Balanced Dual Resonators. SENSORS[J]. 2019, 19(10): https://doaj.org/article/2031f223f59346ef9683d6773702dc39.
[48] Chen Jian. Characterization of Cytoplasmic Viscosity of Hundreds of Single Tumor Cells Based on Micropipette Aspiration. Royal Society Open Science. 2019, [49] Liu, Lixing, Fan, Beiyuan, Wang, Diancan, Li, Xiufeng, Song, Yeqing, Zhang, Ting, Chen, Deyong, Wang, Yixiang, Wang, Junbo, Chen, Jian. Microfluidic Analyzer Enabling Quantitative Measurements of Specific Intracellular Proteins at the Single-Cell Level. MICROMACHINES[J]. 2018, 9(11): https://doaj.org/article/a203c7c3425f41b4aaf43675c04a46a9.
[50] Chang, ChunChieh, Wang, Ke, Zhang, Yi, Chen, Deyong, Fan, Beiyuan, Hsieh, ChiaHsun, Wang, Junbo, Wu, MinHsien, Chen, Jian. Mechanical property characterization of hundreds of single nuclei based on microfluidic constriction channel. CYTOMETRY PART A[J]. 2018, 93A(8): 822-828, [51] Chen, Lianhong, Sun, Zhenyuan, Li, Guanglei, Chen, Deyong, Wang, Junbo, Chen, Jian. A Monolithic Electrochemical Micro Seismic Sensor Capable of Monitoring Three-Dimensional Vibrations. SENSORS[J]. 2018, 18(4): https://doaj.org/article/4ef8ae586512457e9b25c352542cae02.
[52] Li, Xiufeng, Fan, Beiyuan, Liu, Lixing, Chen, Deyong, Cao, Shanshan, Men, Dong, Wang, Junbo, Chen, Jian. A Microfluidic Fluorescent Flow Cytometry Capable of Quantifying Cell Sizes and Numbers of Specific Cytosolic Proteins. SCIENTIFIC REPORTS[J]. 2018, 8(1): http://202.127.146.157/handle/2RYDP1HH/5715.
[53] Wang, Jiazhou, Liu, Liwei, Cao, Axiu, Pang, Hui, Xu, Chuntao, Mu, Quanquan, Chen, Jian, Shi, Lifang, Deng, Qiling. Generation of Color Images by Utilizing a Single Composite Diffractive Optical Element. MICROMACHINES[J]. 2018, 9(10): https://doaj.org/article/33aa0c3e7eaa47b28848452a4332826f.
[54] Fan, Beiyuan, Li, Xiufeng, Liu, Lixing, Chen, Deyong, Cao, Shanshan, Men, Dong, Wang, Junbo, Chen, Jian. Absolute Copy Numbers of -Actin Proteins Collected from 10,000 Single Cells. MICROMACHINES[J]. 2018, 9(5): http://www.corc.org.cn/handle/1471x/2373259.
[55] Shi, Xiaoqing, Lu, Yulan, Xie, Bo, Li, Yadong, Wang, Junbo, Chen, Deyong, Chen, Jian. A Resonant Pressure Microsensor Based on Double-Ended Tuning Fork and Electrostatic Excitation/Piezoresistive Detection. SENSORS[J]. 2018, 18(8): https://doaj.org/article/1b0cd921f838424f9c797c25030e9ca6.
[56] Chen Jian. EBR-84 can Protect Rat Retinas by Inhibiting the β-Catenin Signaling Pathway. International Journal of Molecular Sciences. 2018, [57] Li, Guanglei, Sun, Zhenyuan, Wang, Junbo, Chen, Deyong, Chen, Jian, Chen, Lianhong, Xu, Chao, Qi, Wenjie, Zheng, Yu. A Flexible Sensing Unit Manufacturing Method of Electrochemical Seismic Sensor. SENSORS[J]. 2018, 18(4): https://doaj.org/article/500b5db136b64fca99e4dd021b4eb8f1.
[58] Wei, Qiuxu, He, Chaochao, Chen, Jian, Chen, Deyong, Wang, Junbo. Wireless Passive Intracranial Pressure Sensor Based on a Microfabricated Flexible Capacitor. IEEE TRANSACTIONS ON ELECTRON DEVICES[J]. 2018, 65(6): 2592-2600, [59] Zhao, Yang, Wang, Ke, Chen, Deyong, Fan, Beiyuan, Xu, Ying, Ye, Yifei, Wang, Junbo, Chen, Jian, Huang, Chengjun. Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells. BIOSENSORS & BIOELECTRONICS[J]. 2018, 111: 138-143, http://dx.doi.org/10.1016/j.bios.2018.04.015.
[60] Li, Guanglei, Wang, Junbo, Chen, Deyong, Chen, Jian, Chen, Lianhong, Xu, Chao. An Electrochemical, Low-Frequency Seismic Micro-Sensor Based on MEMS with a Force-Balanced Feedback System. SENSORS[J]. 2017, 17(9): https://doaj.org/article/7a197bac8210471a8197da45cefc0c96.
[61] Li, Xiufeng, Fan, Beiyuan, Cao, Shanshan, Chen, Deyong, Zhao, Xiaoting, Men, Dong, Yue, Wentao, Wang, Junbo, Chen, Jian. A microfluidic flow cytometer enabling absolute quantification of single-cell intracellular proteins. LAB ON A CHIP[J]. 2017, 17(18): 3129-3137, http://www.corc.org.cn/handle/1471x/2373380.
[62] Minzioni, Paolo, Osellame, Roberto, Sada, Cinzia, Zhao, S, Omenetto, F G, Gylfason, Kristinn B, Haraldsson, Tommy, Zhang, Yibo, Ozcan, Aydogan, Wax, Adam, Mugele, Frieder, Schmidt, Holger, Testa, Genni, Bernini, Romeo, Guck, Jochen, Liberale, Carlo, BergSorensen, Kirstine, Chen, Jian, Pollnau, Markus, Xiong, Sha, Liu, AiQun, Shiue, ChiaChann, Fan, ShihKang, Erickson, David, Sinton, David. Roadmap for optofluidics. JOURNAL OF OPTICS[J]. 2017, 19(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000408249900001.
[63] Chen Jian. Instrumentation of Microfluidic Analyzer Enabling Biophysical Property Characterization of Single Cells. International Journal of Molecular Sciences. 2017, [64] Chiu, TzuKeng, Zhao, Yang, Chen, Deyong, Hsieh, ChiaHsim, Wang, Ke, Chou, WenPin, Liao, ChiaJung, Wang, HsinYao, Fan, Beiyuan, Wang, Junbo, Chen, Jian, Wu, MinHsien. A low-sample-loss microfluidic system for the quantification of size-independent cellular electrical property Its demonstration for the identification and characterization of circulating tumour cells (CTCs). SENSORS AND ACTUATORS B-CHEMICAL[J]. 2017, 246: 29-37, http://dx.doi.org/10.1016/j.snb.2017.02.048.
[65] Cao, Axiu, Pang, Hui, Wang, Jiazhou, Zhang, Man, Chen, Jian, Shi, Lifang, Deng, Qiling, Hu, Song. The Effects of Profile Errors of Microlens Surfaces on Laser Beam Homogenization. MICROMACHINES[J]. 2017, 8(2): http://ir.ioe.ac.cn/handle/181551/8840.
[66] Wang, Jiazhou, Cao, Axiu, Pang, Hui, Zhang, Man, Wang, Guangyi, Chen, Jian, Shi, Lifang, Deng, Qiling, Hu, Song. Vector optical field generation based on birefringent phase plate. OPTICS EXPRESS[J]. 2017, 25(11): 12531-12540, http://ir.ioe.ac.cn/handle/181551/8867.
[67] Luan, Shaoliang, Hao, Rui, Wei, Yuanchen, Chen, Deyong, Fan, Beiyuan, Dong, Fengliang, Guo, Wei, Wang, Junbo, Chen, Jian. A microfabricated 96-well wound-healing assay. CYTOMETRY PART A[J]. 2017, 91A(12): 1192-1199, https://www.webofscience.com/wos/woscc/full-record/WOS:000418422200008.
[68] Sun, Zhenyuan, Li, Guanglei, Chen, Lianhong, Chen, Deyong, Wang, Junbo, Chen, Jian. A High-Consistency Broadband MEMS-Based Electrochemical Seismometer With Integrated Planar Microelectrodes. IEEE TRANSACTIONS ON ELECTRON DEVICES[J]. 2017, 64(9): 3829-3835, [69] Wang, Ke, Chang, ChunChieh, Chiu, TzuKeng, Zhao, Xiaoting, Chen, Deyong, Chou, WenPin, Zhao, Yang, Wang, HungMing, Wang, Junbo, Wu, MinHsien, Chen, Jian. Membrane capacitance of thousands of single white blood cells. JOURNAL OF THE ROYAL SOCIETY INTERFACE[J]. 2017, 14(137): https://www.webofscience.com/wos/woscc/full-record/WOS:000418696300012.
[70] Hao, Rui, Wei, Yuanchen, Li, Chaobo, Chen, Feng, Chen, Deyong, Zhao, Xiaoting, Luan, Shaoliang, Fan, Beiyuan, Guo, Wei, Wang, Junbo, Chen, Jian. A Microfabricated 96-Well 3D Assay Enabling High-Throughput Quantification of Cellular Invasion Capabilities. SCIENTIFIC REPORTS[J]. 2017, 7: https://www.webofscience.com/wos/woscc/full-record/WOS:000394771200001.
[71] Wang, Ke, Zhao, Yang, Chen, Deyong, Fan, Beiyuan, Lu, Yulan, Chen, Lianhong, Long, Rong, Wang, Junbo, Chen, Jian. Specific membrane capacitance, cytoplasm conductivity and instantaneous Young's modulus of single tumour cells. SCIENTIFIC DATA[J]. 2017, 4: https://www.webofscience.com/wos/woscc/full-record/WOS:000393856100001.
[72] Deng, T, Sun, Z, Li, G, Chen, J, Chen, D, Wang, J. Microelectromechanical system-based electrochemical seismic sensors with an anode and a cathode integrated on one chip. JOURNAL OF MICROMECHANICS AND MICROENGINEERING[J]. 2017, 27(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000390777300002.
[73] Zhao, Yang, Liu, Qingxi, Sun, He, Chen, Deyong, Li, Zhaohui, Fan, Beiyuan, George, Julian, Xue, Chengcheng, Cui, Zhanfeng, Wang, Junbo, Chen, Jian. Electrical Property Characterization of Neural Stem Cells in Differentiation. PLOS ONE[J]. 2016, 11(6): https://doaj.org/article/ed6a349d232d4ddea0a54cad98207ec0.
[74] Fan, Beiyuan, Li, Xiufeng, Chen, Deyong, Peng, Hongshang, Wang, Junbo, Chen, Jian. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization. SENSORS[J]. 2016, 16(2): https://doaj.org/article/36ce5e424a30437ab349ed4ec91934a0.
[75] Wen, Na, Zhao, Zhan, Fan, Beiyuan, Chen, Deyong, Men, Dong, Wang, Junbo, Chen, Jian. Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis. MOLECULES[J]. 2016, 21(7): https://doaj.org/article/e37289f823b74ad787156e20b9c1102d.
[76] Zhao, Yang, Jiang, Mei, Chen, Deyong, Zhao, Xiaoting, Xue, Chengcheng, Hao, Rui, Yue, Wentao, Wang, Junbo, Chen, Jian. Single-Cell Electrical Phenotyping Enabling the Classification of Mouse Tumor Samples. SCIENTIFIC REPORTS[J]. 2016, 6: https://www.webofscience.com/wos/woscc/full-record/WOS:000368165300001.
[77] Deng, Tao, Chen, Deyong, Chen, Jian, Sun, Zhenyuan, Li, Guanglei, Wang, Junbo. Microelectromechanical Systems-Based Electrochemical Seismic Sensors With Insulating Spacers Integrated Electrodes for Planetary Exploration. IEEE SENSORS JOURNAL[J]. 2016, 16(3): 650-653, [78] Wei, Chao, Fan, Beiyuan, Chen, Deyong, Liu, Chao, Wei, Yuanchen, Huo, Bo, You, Lidan, Wang, Junbo, Chen, Jian. Osteocyte culture in microfluidic devices. BIOMICROFLUIDICS[J]. 2015, 9(1): [79] Huang, SongBin, Zhao, Yang, Chen, Deyong, Liu, ShingLun, Luo, Yana, Chiu, TzuKeng, Wang, Junbo, Chen, Jian, Wu, MinHsien. Classification of Cells with Membrane Staining and/or Fixation Based on Cellular Specific Membrane Capacitance and Cytoplasm Conductivity. MICROMACHINES[J]. 2015, 6(2): 163-171, https://doaj.org/article/f380b70cec474b1e8fd6ba3fd6f624c6.
[80] Chen, Jian, Xue, Chengcheng, Zhao, Yang, Chen, Deyong, Wu, MinHsien, Wang, Junbo. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCESnull. 2015, 16(5): 9804-9830, https://doaj.org/article/6da380f1ade54206b018c23680a02dae.
[81] Yinan Li, Junbo Wang, Zhenyu Luo, Deyong Chen, Jian Chen, Stefano Mariani. A Resonant Pressure Microsensor Capable of Self-Temperature Compensation. Sensors (Basel, Switzerland). 2015, 15(5): 10048-10058, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481888/.
[82] Jin, D, Deng, B, Li, J X, Cai, W, Tu, L, Chen, J, Wu, Q, Wang, W H. A microfluidic device enabling high-efficiency single cell trapping. BIOMICROFLUIDICS[J]. 2015, 9(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000350546900001.
[83] Bo Xie, Yonghao Xing, Yanshuang Wang, Jian Chen, Deyong Chen, Junbo Wang, Vittorio M N Passaro. A Lateral Differential Resonant Pressure Microsensor Based on SOI-Glass Wafer-Level Vacuum Packaging. Sensors (Basel, Switzerland). 2015, 15(9): 24257-24268, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610534/.
[84] Wei, Yuanchen, Chen, Feng, Zhang, Tao, Chen, Deyong, Jia, Xin, Wang, Junbo, Guo, Wei, Chen, Jian. A Tubing-Free Microfluidic Wound Healing Assay Enabling the Quantification of Vascular Smooth Muscle Cell Migration. SCIENTIFIC REPORTS[J]. 2015, 5: https://www.webofscience.com/wos/woscc/full-record/WOS:000361149300001.
[85] Zhao, Yang, Chen, Deyong, Luo, Yana, Chen, Feng, Zhao, Xiaoting, Jiang, Mei, Yue, Wentao, Long, Rong, Wang, Junbo, Chen, Jian. Simultaneous Characterization of Instantaneous Young's Modulus and Specific Membrane Capacitance of Single Cells Using a Microfluidic System. SENSORS[J]. 2015, 15(2): 2763-2773, https://doaj.org/article/0daae0c880c94f5daf1669e7d2033da6.
[86] Deng, Tao, Chen, Deyong, Wang, Junbo, Chen, Jian, He, Wentao. A MEMS Based Electrochemical Vibration Sensor for Seismic Motion Monitoring. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS[J]. 2014, 23(1): 92-99, [87] Luo, Y N, Chen, D Y, Zhao, Y, Wei, C, Zhao, X T, Yue, W T, Long, R, Wang, J B, Chen, J. A constriction channel based microfluidic system enabling continuous characterization of cellular instantaneous Young's modulus. SENSORS AND ACTUATORS B-CHEMICAL[J]. 2014, 202: 1183-1189, http://dx.doi.org/10.1016/j.snb.2014.05.028.
[88] Chen Jian. A Readout Circuit for Wireless Passive LC Sensor and Its Application for GI Monitoring. Measurement Science and Technology. 2014, [89] Song-Bin Huang, Yang Zhao, Deyong Chen, Hsin-Chieh Lee, Yana Luo, Tzu-Keng Chiu, Junbo Wang, Jian Chen, Min-Hsien Wu. A clogging-free microfluidic platform with an incorporated pneumatically driven membrane-based active valve enabling specific membrane capacitance and cytoplasm conductivity characterization of single cells. Sensors & Actuators: B. Chemical. 2014, 190: 928-936, http://dx.doi.org/10.1016/j.snb.2013.09.070.
[90] Y. Zhao, X.T. Zhao, D.Y. Chen, Y.N. Luo, M. Jiang, C. Wei, R. Long, W.T. Yue, J.B. Wang, J. Chen. Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity. Biosensors and Bioelectronics. 2014, 57: 245-253, http://dx.doi.org/10.1016/j.bios.2014.02.026.
[91] Chen Jian. In Vitro and In Vivo Characterization of Wireless and Power-Free Micro Platform Enabling Gastrointestinal Pressure Monitoring. Biomedical Microdevices. 2014, [92] Wei, Y C, Chen, F, Zhang, T, Chen, D Y, Jia, X, Wang, J B, Guo, W, Chen, J. Vascular smooth muscle cell culture in microfluidic devices. BIOMICROFLUIDICS[J]. 2014, 8(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000344225400029.
[93] Zhang, Xuemin, Zhang, Tao, Zhang, Xiaoming, Zhang, Chunfang, Chen, Jian, Han, Fang, Guo, Wei. Obstructive Sleep Apnea Syndrome: A Risk Factor for Stanford's Type B Aortic Dissection. ANNALS OF VASCULAR SURGERY[J]. 2014, 28(8): 1901-1908, http://dx.doi.org/10.1016/j.avsg.2014.07.014.
[94] Deng, B, Li, X F, Chen, D Y, You, L D, Wang, J B, Chen, J. Parameter Screening in Microfluidics Based Hydrodynamic Single-Cell Trapping. SCIENTIFIC WORLD JOURNAL[J]. 2014, https://www.webofscience.com/wos/woscc/full-record/WOS:000343430300001.
[95] Chen Jian. A High-Q Resonant Pressure Micro Sensor with Through-Glass Electrical Interconnections Based on SOI-Glass Anodic Bonding. Sensors. 2014, [96] Zhao, Yang, Chen, Deyong, Luo, Yana, Li, Hao, Deng, Bin, Huang, SongBin, Chiu, TzuKeng, Wu, MinHsien, Long, Rong, Hu, Hao, Zhao, Xiaoting, Yue, Wentao, Wang, Junbo, Chen, Jian. A microfluidic system for cell type classification based on cellular size-independent electrical properties. LAB ON A CHIP[J]. 2013, 13(12): 2272-2277, https://www.webofscience.com/wos/woscc/full-record/WOS:000319285500007.
[97] Jiao, Hailong, Xie, Bo, Wang, Junbo, Chen, Deyong, Chen, Jian. Electrostatically driven and capacitively detected differential lateral resonant pressure microsensor. MICRO & NANO LETTERS[J]. 2013, 8(10): 650-653, http://159.226.65.12/handle/80137/10078.
[98] Li, Yuxin, Chen, Deyong, Wang, Junbo, Chen, Jian. A New Stress Isolation Method in the Packaging of Resonant Pressure Micro Sensors. SENSOR LETTERS[J]. 2013, 11(2): 264-269, http://159.226.65.12/handle/80137/10076.
[99] Zhang, Tao, Zhang, Xiaoming, Yu, Weidong, Chen, Jian, Li, Qingle, Jiao, Yang, He, Peiying, Shen, Chenyang. Effects of chemokine-like factor 1 on vascular smooth muscle cell migration and proliferation in vascular inflammation. ATHEROSCLEROSIS[J]. 2013, 226(1): 49-57, http://dx.doi.org/10.1016/j.atherosclerosis.2012.09.023.
[100] Deyong Chen, Guangbei Li, Junbo Wang, Jian Chen, Wentao He, Yunjie Fan, Tao Deng, Peng Wang. A micro electrochemical seismic sensor based on MEMS technologies. Sensors & Actuators: A. Physical. 2013, 85-89, http://dx.doi.org/10.1016/j.sna.2012.12.041.
[101] Zhao, Yang, Chen, Deyong, Li, Hao, Luo, Yana, Deng, Bin, Huang, SongBin, Chiu, TzuKeng, Wu, MinHsien, Long, Rong, Hu, Hao, Wang, Junbo, Chen, Jian. A microfluidic system enabling continuous characterization of specific membrane capacitance and cytoplasm conductivity of single cells in suspension. BIOSENSORS & BIOELECTRONICS[J]. 2013, 43: 304-307, http://dx.doi.org/10.1016/j.bios.2012.12.035.
[102] Jianhai Sun, Fengying Guan, Dafu Cui, Xing Chen, Lulu Zhang, Jian Chen. An improved photoionization detector with a micro gas chromatography column for portable rapid gas chromatography system. Sensors & Actuators: B. Chemical[J]. 2013, 188: 513-518, http://dx.doi.org/10.1016/j.snb.2013.07.066.
[103] Zhang, Tao, Qiao, Zhengguo, Chen, Feng, Zhang, Xiaoming, Xiong, Jiang, Jia, Xin, Chen, Jian, Shen, Chenyang, Guo, Wei. Antagonistic effect of C19 on migration of vascular smooth muscle cells and intimal hyperplasia induced by chemokine-like factor 1. MOLECULAR BIOLOGY REPORTS[J]. 2013, 40(4): 2939-2946, https://www.webofscience.com/wos/woscc/full-record/WOS:000316221100019.
[104] Chen, Jian, Li, Jason, Sun, Yu. Microfluidic approaches for cancer cell detection, characterization, and separation. LAB ON A CHIP[J]. 2012, 12(10): 1753-1767, https://www.webofscience.com/wos/woscc/full-record/WOS:000303167200003.
[105] Chu, Michael K L, Chen, Jian, Gordijo, Claudia R, Chiang, Simon, Ivovic, Alexander, Koulajian, Khajag, Giacca, Adria, Wu, Xiao Yu, Sun, Yu. In vitro and in vivo testing of glucose-responsive insulin-delivery microdevices in diabetic rats. LAB ON A CHIP[J]. 2012, 12(14): 2533-2539, https://www.webofscience.com/wos/woscc/full-record/WOS:000305532600013.
[106] Tao Zhang MD PhD, Xiaoming Zhang MD, Xuemin Zhang MD, Jingjun Jiang MD, Chen, Jian, Bingying Zhou PhD. Management of Multiple Embolization Arising From Atrial Myxoma. The Annals of Thoracic Surgery[J]. 2012, 94(2): 646-649, http://dx.doi.org/10.1016/j.athoracsur.2011.12.090.
[107] Chen Jian. Micro-machined Resonant Out-of-Plane Accelerometer with a Differential Structure Fabricated by SOI-MEMS Technology. Micro and Nano Letters. 2012, [108] Huang, SongBin, Chen, Jian, Wang, Junbo, Yang, ChihLiang, Wu, MinHsien. A New Optically-Induced Dielectrophoretic (ODEP) Force-Based Scheme for Effective Cell Sorting. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE[J]. 2012, 7(12): 12656-12667, https://www.webofscience.com/wos/woscc/full-record/WOS:000312936700081.
[109] Chen, Jian, Abdelgawad, Mohamed, Yu, Liming, Shakiba, Nika, Chien, WeiYin, Lu, Zhe, Geddie, William R, Jewett, Michael A S, Sun, Yu. Electrodeformation for single cell mechanical characterization. JOURNAL OF MICROMECHANICS AND MICROENGINEERING[J]. 2011, 21(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000289986600013.
[110] Chen, Jian, Zheng, Yi, Tan, Qingyuan, Zhang, Yan Liang, Li, Jason, Geddie, William R, Jewett, Michael A S, Sun, Yu. A microfluidic device for simultaneous electrical and mechanical measurements on single cells. BIOMICROFLUIDICS[J]. 2011, 5(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000289148400031.
[111] Chen, Jian, Zheng, Yi, Tan, Qingyuan, ShojaeiBaghini, Ehsan, Zhang, Yan Liang, Li, Jason, Prasad, Preethy, You, Lidan, Wu, Xiao Yu, Sun, Yu. Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells. LAB ON A CHIP[J]. 2011, 11(18): 3174-3181, https://www.webofscience.com/wos/woscc/full-record/WOS:000294263400019.
[112] Chen, Xing, Cui, Dafu, Li, Hui, Cai, Haoyuan, Sun, Jianhan, Chen, Jian. Microfluidics-based immunoassays by using an integrated fluorescence detection system. MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS[J]. 2010, 16(12): 2049-2055, http://ir.sim.ac.cn/handle/331004/108927.
[113] Sun, Jianhai, Cui, Dafu, Li, Yutai, Zhang, Lulu, Chen, Jian, Li, Hui, Chen, Xing. A High Resolution MEMS-based Gas Chromatography Column for the Analysis of Benzene and Toluene Gaseous Mixtures. SENSORS AND ACTUATORS B-CHEMICAL[J]. 2009, 141(2): 431-435, http://dx.doi.org/10.1016/j.snb.2009.06.047.
[114] Chen, Jian, Chu, Michael, Koulajian, Khajag, Wu, Xiao Yu, Giacca, Adria, Sun, Yu. A monolithic polymeric microdevice for pH-responsive drug delivery. BIOMEDICAL MICRODEVICES[J]. 2009, 11(6): 1251-1257, https://www.webofscience.com/wos/woscc/full-record/WOS:000271721000012.
[115] Chen, Xing, Cui, Dafu, Chen, Jian. Design, fabrication and characterization of nano-filters in silicon microfluidic channels based on MEMS technology. ELECTROPHORESIS[J]. 2009, 30(18): 3168-3173, http://ir.sim.ac.cn/handle/331004/108800.
[116] Chen, Xing, Cui, Dafu, Liu, Changchun, Li, Hui, Chen, Jian. Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. ANALYTICA CHIMICA ACTA[J]. 2007, 584(2): 237-243, http://dx.doi.org/10.1016/j.aca.2006.11.057.
发表著作
(1) Stimuli-Responsive Drug Delivery Micro Chips, Springer, 2012-01, 第 1 作者
(2) Single Cell Impedance Spectroscopy, Springer, 2012-01, 第 1 作者
(3) Advances in Micro and Nano Technologies for Stem Cell Based Therapies, Springer, 2015-01, 第 1 作者
(4) Stimuli-Responsive Drug Delivery Micro Chips, Springer, 2015-10, 第 1 作者
(5) Single Cell Mechanical Properties: Label-Free Biomarkers for Cell Status Evaluation, Springer, 2016-01, 第 1 作者
(6) Advances in Micro- and Nanotechnologies for Stem Cell-Based Translational Applications, Springer, 2017-01, 第 1 作者
(7) Single-Cell Protein Assays--A Review, Springer, 2018-01, 第 1 作者
(8) A Micromachined Silicon Resonant Pressure Sensor, Springer, 2018-01, 第 4 作者
(9) Single-Cell Impedance Flow Cytometry, Springer, 2019-01, 第 5 作者
(10) Biosensors for Single-Cell Analysis, Elsevier, 2021-10, 第 1 作者

科研活动

   
科研项目
( 1 ) 基于细胞机械/电子特性高通量同时表征的肿瘤细胞检测研究, 主持, 国家级, 2013-01--2015-12
( 2 ) 海底地震仪 MEMS 电化学宽带地震检波器研制, 主持, 国家级, 2014-01--2016-12
( 3 ) 中国科学院青年创新促进会, 主持, 部委级, 2015-01--2018-12
( 4 ) 北京市科技新星技划-陈健, 主持, 省级, 2014-07--2017-06
( 5 ) 中国科学院电子学研究所优秀青年人才计划-陈健, 主持, 市地级, 2013-07--2016-06
( 6 ) 基于柔性衬底的无线无源腹主动脉瘤 MEMS 压力传感器研究, 主持, 省级, 2015-01--2017-12
( 7 ) 基于微流控技术的恶性肿瘤细胞电子特性高通量表征, 主持, 省级, 2013-07--2016-06
( 8 ) 肿瘤细胞生物物理/化学特性高通量综合检测方法研, 参与, 国家级, 2015-01--2019-12
( 9 ) 基于生物、心理多模态信息的潜在抑郁风险预警理论与生物传感关键技术研究, 参与, 国家级, 2014-01--2018-12
( 10 ) 骨细胞在基于微流控技术重建的体外微环境中的代谢和功能研究, 参与, 国家级, 2013-01--2015-12
( 11 ) 单细胞固有电学/力学特性高通量检测分析仪, 参与, 部委级, 2015-01--2016-12
( 12 ) 面向肿瘤异质性的单细胞蛋白检测新方法研究, 主持, 部委级, 2016-08--2021-07
( 13 ) 肿瘤单细胞的骨架蛋白定量及其力学特性高通量综合检测方法研究, 主持, 国家级, 2017-01--2020-12
( 14 ) 单细胞特定蛋白高通量定量检测分析仪, 主持, 部委级, 2017-01--2018-12
( 15 ) 绝对量化检测特定胞内蛋白的新型流式细胞仪研发, 主持, 省级, 2018-05--2019-10
( 16 ) 单细胞检测与传感器, 主持, 国家级, 2020-01--2022-12
( 17 ) 中国科学院青年创新促进会优秀会员, 主持, 部委级, 2020-01--2022-12
( 18 ) 硅谐振压力传感器敏感芯体研制, 主持, 国家级, 2018-10--2021-09
( 19 ) 地震检波器, 参与, 国家级, 2018-10--2019-12
( 20 ) 单细胞蛋白定量分析及肿瘤研究中的应用, 参与, 部委级, 2018-01--2020-12
( 21 ) MEMS电化学运动传感器, 主持, 国家级, 2021-01--2023-12
( 22 ) 高端MEMS传感器关键技术团队, 参与, 部委级, 2021-01--2023-12
参与会议
(1)Development of Droplet Microfluidics Enabling Quantitative Measurements of Multiple Proteins at Single-cell Level   2022-01-09
(2)Development of a Microfluidic Platform Capable of Measuring Intrinsic Electrical Properties from 1000 Single Cells   2022-01-09
(3)A Microfluidic System Enabling High-Throughput Quantitative Measurements of Single-Cell Proteins   2021-10-10
(4)Microfluidic Platform of Measuring Single-Cell Cortical Tension/Specific Membrane Capacitance and Cytoplasmic Conductivity   2021-10-10
(5)A Microfluidic Flow Cytometer Composed of Double T-Type Constriction Channel with Predefined Fluorescent Detection Window, Enabling High-Throughput Characterization of Intrinsic Single-Cell Structural and Electrical Parameters   2021-06-20
(6)Classification of White Blood Cells Based on Cell Diameter, Specific Membrane Capacitance and Cytoplasmic Conductivity Leveraging Microfluidic Constriction Channel   2021-06-20
(7)A Micromachined Resonant Low-Pressure Sensor Using an Island-Diaphragm Structure   2021-06-20
(8)A Resonant Micro-Pressure Sensor with Glass-on-Silicon Wafer Packaging   2021-06-20
(9)A Resonant High-Pressure Sensor with High Strength Design   2021-06-20
(10)A Resonant Differential Pressure Microsensor with compensations of Temperature and Static Pressure   2021-06-20
(11)A Resonant Differential Pressure Microsensor with a Stress Isolation Layer   2021-04-25
(12)A Piezoresistive Pressure Microsensor Based on Simplified Fabrication Processes   2021-04-25
(13)A Resonant Differential Pressure Sensor Based on Bulk Silicon Technology   2021-04-25
(14)A Micromachined Electrochemical Angular Accelerometer Based on Interdigital Electrodes   2021-04-25
(15)The Design and Fabrication of the High Integrated Sensitive Electrodes by Adopting the Anodic Bonding Technology for the Electrochemical Seismic Sensors   2021-01-25
(16)Constriction Channel Based Microfluidic System of Quantifying Single-Cell Cytoplasmic Viscosity, Cytoplasmic Conductivity and Specific Membrane Capacitance   2020-10-04
(17)High-Throughput Quantification of Single-Cell Cortical Tension Using Multiple Constriction Channels   2020-10-04
(18)MEMS Based Triaxial Electrochemical Seismometer   2020-09-27
(19)A MEMS Based Electrochemical Angular Vibration Sensor   2020-09-27
(20)Single-Cell Electroporation and Real-Time Electrical Monitoring on a Microfluidic Chip   2020-01-18
(21)Asymmetrical Constriction Channel Based Microfluidic Impedance Flow Cytometry Enabling the Quantification of Specific Membrane Capacitance, Cytoplasm Conductivity and Cellular Diameter from 100,000 single cells   2019-10-27
(22)Droplet Based Microfluidic Flow Cytometry Capable of Quantifying Copy Numbers of Specific Single-Cell Proteins   2019-10-27
(23)A Resonant Pressure Micro Sensor Based on Suspended Assembly   2019-06-23
(24) The Electrochemical Seismometer Based on a Novel Designed Sensing Electrode for Undersea Exploration   2019-06-23
(25)An Electrochemical Micro Seismometer based on a New Electrolyte System to Improve the Low-Frequency Performances   2019-06-23
(26)A Constriction Channel Based Microfluidic Flow Cytometry Enabling High-Throughput Quantification of Multiple Types of Intracellular Proteins in Single Cells   2019-06-23
(27)Development of a Crossing Constriction Channel Based Microfluidic Cytometry Enabling the High-Throughput Quantification of Single-Cell Electrical Phenotypes   2019-06-23
(28)A High-sensitivity, Small-size Resonant Pressure Microsensor Based on Optimized Resonator-diaphragm Structure   2019-04-11
(29)A Constriction Channel Based Microfluidic Flow Cytometry Capable of Quantifying Copy Numbers of Specific Intracellular Proteins   2018-11-11
(30)Development of a Microfluidic Platform Enabling the High-throughput Quantification of Single-Cell Cytoplasmic Viscosity   2018-11-11
(31)A Resonant Pressure Micro Sensor with a Stress Isolation Layer   2018-10-28
(32)A Monolithic Three-Axial Electrochemical Seismic Sensor Based on MEMS Technology   2017-10-30
(33)A Force-Balanced Negative Feedback Method for MEMS Based Electrochemical Seismic Sensor   2017-10-30
(34)Numerical Study of the Frequency Characteristics of the Electrochemical Seismometer   2017-10-30
(35)A 96-Well Three-Dimensional Microfabricated Wound-Healiing Assay   2017-10-22
(36)Development of Microfluidic Platforms Enabling High-Throughput Characterization of Single-Cell Specific Membrane Capacitance   2017-10-22
(37)A MEMS based Integrated Three Axial Electrochemical Seismic Sensor   2017-06-18
(38)A High-Quality Resonant Pressure Micro Sensor with Through-Silicon-Via Electrical Interconnections   2017-06-18
(39)Reduction of the Temperature Sensitivity of Anodic Bonded Resonant Pressure Micro Sensors   2017-04-09
(40)High-sensitivity Electrochemical Seismometers Relying on Parylene-based Microelectrodes   2017-04-09
(41)Development of Microfluidics Targeting Tumor Heterogeneity   2017-04-09
(42)A Novel Method Based on RF Detection Enabling Wireless and Passive LC Sensing   2016-10-30
(43)Effect of the Cathodes on the Characteristics of the MEMS Based Electrochemical Seismometer   2016-10-30
(44)A 96-Well Three-Dimensional Microfluidic Wound-Healing Assay   2016-10-09
(45)A Microfluidic System Enabling High-Throughput Single-Cell Intracellular Protein Quantification   2016-10-09
(46)A System Enabling Isolation and Electrical Property Characterization of Circulating Tumour Cells   2016-10-09
(47)A MEMS based electrochemical seismometer with a novel integrated sensing unit   2016-01-24
(48)Classification of Mouse Tumor Samples Based on Specific Membrane Capacitance and Cytoplasm Conductivity of Single Cells   Yang Zhao, Mei Jiang, Deyong Chen, Xiaoting Zhao, Chengcheng Xue, Wentao Yue, Junbo Wang, and Jian Chen*   2015-10-25
(49)A 384-Well Microfluidic Wound-Healing Assay   Yuanchen Wei, Feng Chen, Tao Zhang, Deyong Chen, Xin Jia, Junbo Wang, Wei Guo, and Jian Chen*   2015-10-25
(50)Microfluidic Platform for Tumor Cell Characterization and Classification Based on Specific Membrane Capacitance and Cytoplasm Conductivity   Yang Zhao, Deyong Chen, Junbo Wang and Jian Chen*   2015-08-18
(51)Microfluidic Studies of Vascular Smooth Muscle Cells   Feng Chen, Yuanchen Wei, Tao Zhang, Deyong Chen, Xin Jia, Junbo Wang, Wei Guo, and Jian Chen*   2015-08-18
(52)A Tubing-Free Microfluidic Wound-Healing Assay Quantifying Vascular Smooth Muscle Cell Migrtion   Yuanchen Wei, Feng Chen, Tao Zhang, Deyong Chen, Xin Jia, Junbo Wang, Wei Guo, and Jian Chen*   2015-07-21
(53)A Microfluidic System Enabling Continuous Quantification of Specific Membrane Capacitance and Instantaneous Young’s Modulus of Single Cells   Yang Zhao, Deyong Chen, Yana Luo, Feng Chen, Xiaoting Zhao, Mei Jiang, Wentao Yue, Rong Long, Junbo Wang, and Jian Chen*   2014-10-26
(54)On-Chip Culture of Osteocytes   10. Chao Wei, Deyong Chen, Yuanchen Wei, Lidan You, Junbo Wang, and Jian Chen*   2014-10-26
(55)Tumor Cell Classification Based on Instantaneous Young’s Modulus Using Constriction Channel based Microfluidic Devices   Yana Luo, Deyong Chen, Yang Zhao, Chao Wei, Xiaoting Zhao, Wentao Yue, Rong Long, Junbo Wang, and Jian Chen*   2014-10-26
(56)On-Chip Tubing-Free Culture of Vascular Smooth Muscle Cells   Yuanchen Wei, Feng Chen, Tao Zhang, Deyong Chen, Xin Jia, Junbo Wang, Wei Guo, and Jian Chen*   2014-08-28
(57)Constriction Channel Based Microfluidic Systems Enabling Single-Cell Instantaneous Young’s Modulus Measurement In a Continuous Manner   Yana Luo, Deyong Chen, Yang Zhao, Chao Wei, Xiaoting Zhao, Wentao Yue, Rong Long, Junbo Wang, and Jian Chen*   2014-05-27
(58)Microfluidic Platform Enabling Tumor Cell Characterization and Classification Based on Specific Membrane Capacitance and Cytoplasm Conductivity   Yang Zhao, Xiaoting Zhao, Deyong Chen, Yana Luo, Mei Jiang, Wentao Yue, Junbo Wang, and Jian Chen*   2014-05-27
(59)A Clogging-Free Microfluidic Platform for Size Independent Single Cancer Cellular Electrical Property Characterization   Song-Bin Huang, Yang Zhao, Deyong Chen, Hsin-Chieh Lee, Yana Luo, Tzu-Keng Chiu, Junbo Wang, Jian Chen*, and Min-Hsien Wu   2014-04-13
(60)Cell Type Classification Based on Specific Membrane Capacitance and Cytoplasm Conductivity Using Microfluidic Devices   Yang Zhao, Deyong Chen, Yana Luo, Song-Bin Huang, Hsin-Chieh Lee, Min-Hsien Wu, Rong Long, Junbo Wang, and Jian Chen*   2013-10-27
(61)A Microfluidic Device Capable of Continuous Quantification of Size-Independent Electrical Properties of Single Cells   Yang Zhao, Deyong Chen, Yana Luo, Hao Li, Bin Deng, Song-Bin Huang, Tzu-Keng Chiu, Min-Hsien Wu, Rong Long, Junbo Wang, and Jian Chen*   2013-06-16
(62)A Micro Device for Measuring Single-Cell Membrane Capacitance and Cytoplasm Conductivity   Qingyuan Tan, Jian Chen, Yi Zheng, Brandon K. Chen, and Yu Sun*   2012-01-29
(63)Classification of Cell Types Using Mechanical and Electrical Measurement on Single Cells   Jian Chen, Yi Zheng, Qingyuan Tan, Ehsan Shojaei-Baghini, Yanliang Zhang, Preethy Prasad, Xiaoyu Wu, and Yu Sun*   2011-10-02
(64)A Micro Device for Impedance and Mechanical Characterization of Biological Cells   Jian Chen, Yi Zheng, Yanliang Zhang, and Yu Sun*   2011-06-05
(65)A Glucose-Responsive Insulin Delivery Micro Device Embedded with NanoHydrogel Particles as “Smart Valves”   Jian Chen, Claudia R. Gordijo, Michael Chu, Xiao Yu Wu, and Yu Sun*   2011-06-05
(66)Electrodeformation for Single Cell Mechanical Characterization   Jian Chen, Mohamed Abdelgawad, Liming Yu, Nika Shakiba, Wei-Yin Chien, Zhe Lu, William B. Geddie, Michael A.S. Jewett, and Yu Sun*   2011-01-23
(67)A Monolithic Micro Device for Glucose-Responsive Insulin Delivery   Jian Chen, Claudia R. Gordijo, Michael Chu, Xiao Yu Wu, and Yu Sun*   2010-06-06
(68)pH-Responsive Drug-Delivery Devices for Implantable Applications   Jian Chen, Michael Chu, Khajag Koulajian, Xiao Yu Wu, Adria Giacca, and Yu Sun*   2009-06-21
(69)Research on Resonant Low-Velocity Gas Flow Microsensor Based on Trichoid Sensillum of Insects   Jian Chen, Deyong Chen, Junbo Wang, and Shanhong Xia*   2006-10-22

合作情况

   
项目协作单位

美国科罗拉多大学
英国牛津大学
加拿大多伦多大学
台湾长庚大学
清华大学
北京大学
中国人民解放军总医院
首都医科大学
北京交通大学
中国科学院武汉病毒所
中国科学院微电子所
中国科学院光电所
中国科学院上海生科院

指导学生

已指导学生

薛成宬  硕士研究生  080903-微电子学与固体电子学  

侍小青  硕士研究生  080903-微电子学与固体电子学  

严鹏程  硕士研究生  080903-微电子学与固体电子学  

佘旭  硕士研究生  080903-微电子学与固体电子学  

现指导学生

钟安祥  硕士研究生  080903-微电子学与固体电子学  

陈骁  博士研究生  0809Z1-生物电子学  

高驰远  博士研究生  0809Z1-生物电子学  

陈思源  硕士研究生  080903-微电子学与固体电子学  

张明博  硕士研究生  085400-电子信息  

周梦杨  硕士研究生  080903-微电子学与固体电子学