发表论文
[1] 程荫. Programmable Robotic Shape Shifting and Color Morphing Dynamics Through Magneto-Mechano-Chromic Coupling. Advanced Materials[J]. 2024, 第 1 作者 通讯作者 null(null): [2] 程荫. A soft, fatigue‐free, and self‐healable ionic elastomer via the synergy of skin‐like assembly and Bouligand structure. Angewandte Chemie International Edition[J]. 2024, 第 1 作者 通讯作者 null(null): [3] Zheng, Maorong, Liu, Mingyuan, Cheng, Yin, Chen, Wenjing, Wang, Liming, Qin, Xiaohong. Stimuli-responsive fiber/fabric actuators for intelligent soft robots: From current progress to future opportunities. NANO ENERGY. 2024, 第 3 作者 通讯作者 129: http://dx.doi.org/10.1016/j.nanoen.2024.110050.[4] Liu, Boyang, Lan, Binxu, Shi, Liangjing, Cheng, Yin, Sun, Jing, Wang, Ranran. Batch Fabrication of Flexible Strain Sensors with High Linearity and Low Hysteresis for Health Monitoring and Motion Detection. ACS APPLIED MATERIALS & INTERFACES[J]. 2024, 第 4 作者16(28): 36821-36831, http://dx.doi.org/10.1021/acsami.4c07016.[5] 程荫. Self-adhesive Polyzwitterionic Hydrogel Electrolytes for Long-life Flexible Zinc-ion Batteries. Journal of Materials Chemistry A,[J]. 2024, 第 1 作者null(null): [6] 程荫. Dual Ion Regulated Eutectogels with High Elasticity and Adhesive Strength for Accurate Strain Sensors. Advanced Functional Materials[J]. 2024, 第 1 作者null(null): [7] Qiuyang Yan, Cheng Yin. Lithographic printing inspired in-situ transfer of MXene-based films with localized topo-electro tunability for high-performance flexible pressure sensors. Nano Research[J]. 2023, 第 2 作者 通讯作者 [8] Yi Zhou, Tianpeng Ding, Cheng Yin. Non-planar dielectrics derived thermal and electrostatic field inhomogeneity for boosted weather-adaptive energy harvesting. National Science Review[J]. 2023, 第 3 作者[9] Yunna Hao, Cheng Yin. A Stretchable, Breathable, And Self‐Adhesive Electronic Skin with Multimodal Sensing Capabilities for Human‐Centered Healthcare. Advanced Functional Materials[J]. 2023, 第 2 作者 通讯作者 [10] Huiting Lai, 程荫. Temperature‐Triggered Adhesive Bioelectric Electrodes with Long‐Term Dynamic Stability and Reusability. Advanced Science[J]. 2023, 第 2 作者 通讯作者 [11] Guojian Zhu, Yi Zhou, Zeyu Si, Yin Cheng, Fei Wu, Huan Wang, Yaozong Pan, Jing Xie, Chaobo Li, Aiying Chen, Ranran Wang, Jing Sun. A multi-hole resonator enhanced acoustic energy harvester for ultra-high electrical output and machine-learning-assisted intelligent voice sensing. NANO ENERGY[J]. 2023, 第 4 作者 通讯作者 http://dx.doi.org/10.1016/j.nanoen.2023.108237.[12] Yuxiang Li, Liangjing Shi, Yin Cheng, Ranran Wang, Jing Sun. Development of conductive materials and conductive networks for flexible force sensors. CHEMICAL ENGINEERING JOURNAL[J]. 2023, 第 3 作者455: http://dx.doi.org/10.1016/j.cej.2022.140763.[13] Cheng Yin, Zhou Yi, Wang, Ranran. An Elastic and Damage-Tolerant Dry Epidermal Patch with Robust Skin Adhesion for Bioelectronic Interfacing. Acs Nano[J]. 2022, 第 1 作者[14] 程荫. Breathable, Self-AdhesiDry Electrodes for Stable Electrophysiological Signal Monitoring During Exercise. ACS Applied Materials & Interfaces[J]. 2022, 第 1 作者[15] Yan, Qiuyang, Cheng, Yin, Wang, Ranran, Sun, Jing. Recent advances in 3D porous MXenes: structures, properties and applications. JOURNAL OF PHYSICS D-APPLIED PHYSICS. 2022, 第 2 作者 通讯作者 55(9): [16] []. Development of conductive materials and conductive networks for flexible force sensors. Chemical Engineering Journal[J]. 2022, [17] Lan, Binxu, Wu, Fei, Cheng, Yin, Zhou, Yi, Hossain, Gaffar, Grabher, Gunter, Shi, Liangjing, Wang, Ranran, Sun, Jing. Scalable, stretchable and washable triboelectric fibers for self-powering human-machine interaction and cardiopulmonary resuscitation training. NANO ENERGY[J]. 2022, 第 3 作者102: http://dx.doi.org/10.1016/j.nanoen.2022.107737.[18] Wu, Fei, Lan, Binxu, Cheng, Yin, Zhou, Yi, Hossain, Gaffar, Grabher, Guenter, Shi, Liangjing, Wang, Ranran, Sun, Jing. A stretchable and helically structured fiber nanogenerator for multifunctional electronic textiles. NANO ENERGY[J]. 2022, 第 3 作者 通讯作者 101: http://dx.doi.org/10.1016/j.nanoen.2022.107588.[19] Wang, XiaoQiao, Chan, Kwok Hoe, Lu, Wanheng, Ding, Tianpeng, Ng, Serene Wen Ling, Cheng, Yin, Li, Tongtao, Hong, Minghui, Tee, Benjamin C K, Ho, Ghim Wei. Macromolecule conformational shaping for extreme mechanical programming of polymorphic hydrogel fibers. NATURE COMMUNICATIONS[J]. 2022, 第 6 作者13(1): https://doaj.org/article/0224ece152c041e6bd5d99e3e56061ad.[20] Zhang, Tianxi, Meng, Fanlu, Cheng, Yin, Dewangan, Nikita, Ho, Ghim Wei, Kawi, Sibudjing. Z-scheme transition metal bridge of Co9S8/Cd/CdS tubular heterostructure for enhanced photocatalytic hydrogen evolution. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2021, 第 3 作者286: http://dx.doi.org/10.1016/j.apcatb.2020.119853.[21] Cheng, Yin, Chan, Kwok Hoe, Wang, XiaoQiao, Ding, Tianpeng, Li, Tongtao, Zhang, Chen, Lu, Wanheng, Zhou, Yi, Ho, Ghim Wei. A Fast Autonomous Healing Magnetic Elastomer for Instantly Recoverable, Modularly Programmable, and Thermorecyclable Soft Robots. ADVANCED FUNCTIONAL MATERIALS[J]. 2021, 第 1 作者31(32): http://dx.doi.org/10.1002/adfm.202101825.[22] Ding, Tianpeng, Zhou, Yi, Wang, XiaoQiao, Zhang, Chen, Li, Tongtao, Cheng, Yin, Lu, Wanheng, He, Jiaqing, Ho, Ghim Wei. All-Soft and Stretchable Thermogalvanic Gel Fabric for Antideformity Body Heat Harvesting Wearable. ADVANCED ENERGY MATERIALS[J]. 2021, 第 6 作者11(44): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000707875900001.[23] 程荫. Mutually Noninterfering Flexible Pressure–Temperature Dual-Modal Sensors Based on Conductive Metal–Organic Framework for Electronic Skin. ACS nano[J]. 2021, 第 1 作者[24] Li, Tongtao, Chan, Kwok Hoe, Ding, Tianpeng, Wang, XiaoQiao, Cheng, Yin, Zhang, Chen, Lu, Wanheng, Yilmaz, Gamze, Qiu, ChengWei, Ho, Ghim Wei. Dynamic thermal trapping enables cross-species smart nanoparticle swarms. SCIENCE ADVANCES[J]. 2021, 第 5 作者7(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000606331400040.[25] Tianpeng Ding, Kwok Hoe Chan, Yi Zhou, XiaoQiao Wang, Yin Cheng, Tongtao Li, Ghim Wei Ho. Scalable thermoelectric fibers for multifunctional textile-electronics. NATURE COMMUNICATIONS[J]. 2020, 第 5 作者11(1): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7693281/.[26] 程荫. Somatosensory, light‐driven, thin‐film robots capable of integrated perception and. Advanced materials[J]. 2020, 第 1 作者[27] Zhou, Yi, Ding, Tianpeng, Gao, Minmin, Chan, Kwok Hoe, Cheng, Yin, He, Jiaqing, Ho, Ghim Wei. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production. NANO ENERGY[J]. 2020, 第 5 作者77: http://dx.doi.org/10.1016/j.nanoen.2020.105102.[28] Cheng, Yin, Chan, Kwok Hoe, Wang, XiaoQao, Ding, Tianpeng, Li, Tongtao, Lu, Xin, Ho, Ghim Wei. Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots. ACS NANO[J]. 2019, 第 1 作者13(11): 13176-13184, http://dx.doi.org/10.1021/acsnano.9b06144.[29] []. A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and. ACS NANO[J]. 2018, [30] Cheng, Yin, Wang, Ranran, Chan, Kwok Hoe, Lu, Xin, Sun, Jing, Ho, Ghim Wei. A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and Sensors. ACS NANO[J]. 2018, 第 1 作者12(4): 3898-3907, http://ir.sic.ac.cn/handle/331005/25031.[31] 程荫. Smart fibers based on low dimensional conductive materials. 2018, 第 1 作者[32] Ding, Tianpeng, Zhu, Liangliang, Wang, XiaoQiao, Chan, Kwok Hoe, Lu, Xin, Cheng, Yin, Ho, Ghim Wei. Hybrid Photothermal Pyroelectric and Thermogalvanic Generator for Multisituation Low Grade Heat Harvesting. ADVANCED ENERGY MATERIALS[J]. 2018, 第 6 作者8(33): https://www.webofscience.com/wos/woscc/full-record/WOS:000451181900018.[33] Xu, Xiaojuan, Wang, Ranran, Nie, Pu, Cheng, Yin, Lu, Xiaoyu, Shi, Liangjing, Sun, Jing. Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 第 4 作者9(16): 14273-14280, http://dx.doi.org/10.1021/acsami.7b02087.[34] Nie, Pu, Wang, Ranran, Xu, Xiaojuan, Cheng, Yin, Wang, Xiao, Shi, Liangjing, Sun, Jing. High-Performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 第 4 作者9(17): 14911-14919, http://dx.doi.org/10.1021/acsami.7b01979.[35] Nie, Pu, Wang, Ranran, Xu, Xiaojuan, Cheng, Yin, Wang, Xiao, Shi, Liangjing, Sun, Jing. High-Performance Piezoresistive Electronic Skin with Bionic Hierarchical Microstructure and Microcracks. ACS APPLIED MATERIALS AND INTERFACES[J]. 2017, 第 4 作者9(17): 14911-14919, http://ir.sic.ac.cn/handle/331005/25993.[36] Xu, Xiaojuan, Wang, Ranran, Nie, Pu, Cheng, Yin, Lu, Xiaoyu, Shi, Liangjing, Sun, Jing. Copper Nanowire-Based Aerogel with Tunable Pore Structure and Its Application as Flexible Pressure Sensor. ACS APPLIED MATERIALS AND INTERFACES[J]. 2017, 第 4 作者9(16): 14273-14280, http://ir.sic.ac.cn/handle/331005/25998.[37] 程荫. A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monito. Nano Energy[J]. 2017, 第 1 作者[38] Cheng, Yin, Wang, Ranran, Zhai, Haitao, Sun, Jing. Stretchable electronic skin based on silver nanowire composite fiber electrodes for sensing pressure, proximity, and multidirectional strain. NANOSCALE[J]. 2017, 第 1 作者9(11): 3834-3842, http://www.irgrid.ac.cn/handle/1471x/1790983.[39] Cheng, Yin, Lu, Xin, Chan, Kwok Hoe, Wang, Ranran, Cao, Zherui, Sun, Jing, Ho, Ghim Wei. A stretchable fiber nanogenerator for versatile mechanical energy harvesting and self-powered full-range personal healthcare monitoring. NANO ENERGY[J]. 2017, 第 1 作者41: 511-518, http://dx.doi.org/10.1016/j.nanoen.2017.10.010.[40] Wang, Ranran, Zhai, Haitao, Wang, Tao, Wang, Xiao, Cheng, Yin, Shi, Liangjing, Sun, Jing. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. NANO RESEARCH[J]. 2016, 第 5 作者9(7): 2138-2148, http://www.irgrid.ac.cn/handle/1471x/1176920.[41] Wang, Tao, Wang, Ranran, Cheng, Yin, Sun, Jing. Quasi In Situ Polymerization To Fabricate Copper Nanowire-Based Stretchable Conductor and Its Applications. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 第 3 作者8(14): 9297-9304, http://www.irgrid.ac.cn/handle/1471x/1176970.[42] Cheng, Yin, Zhang, Hange, Wang, Ranran, Wang, Xiao, Zhai, Haitao, Wang, Tao, Jin, Qinghui, Sun, Jing. Highly Stretchable and Conductive Copper Nanowire Based Fibers with Hierarchical Structure for Wearable Heaters. ACS APPLIED MATERIALS & INTERFACES[J]. 2016, 第 1 作者8(48): 32925-32933, http://www.irgrid.ac.cn/handle/1471x/1161574.[43] Zhai, Haitao, Wang, Ranran, Wang, Xiao, Cheng, Yin, Shi, Liangjing, Sun, Jing. Transparent heaters based on highly stable Cu nanowire films. NANO RESEARCH[J]. 2016, 第 4 作者9(12): 3924-3936, http://www.irgrid.ac.cn/handle/1471x/1161582.[44] Zhai, Haitao, Wang, Ranran, Wang, Weiqi, Wang, Xiao, Cheng, Yin, Shi, Liangjing, Liu, Yangqiao, Sun, Jing. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. NANO RESEARCH[J]. 2015, 第 5 作者8(10): 3205-3215, https://www.webofscience.com/wos/woscc/full-record/WOS:000362588100009.[45] Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lian. Highly Conductive and Ultrastretchable Electric Circuits from Covered Yarns and Silver Nanowires. ACS NANO[J]. 2015, 第 1 作者9(4): 3887-3895, [46] 程荫. A stretchable and highly sensitive graphene‐based fiber for sensing tensile strain, bending and. Advanced materials[J]. 2015, 第 1 作者[47] Cheng, Yin, Wang, Shouling, Wang, Ranran, Sun, Jing, Gao, Lian. Copper nanowire based transparent conductive films with high stability and superior stretchability. JOURNAL OF MATERIALS CHEMISTRY C[J]. 2014, 第 1 作者2(27): 5309-5316, https://www.webofscience.com/wos/woscc/full-record/WOS:000338601800008.[48] Wang, Shouling, Cheng, Yin, Wang, Ranran, Sun, Jing, Gao, Lim. Highly Thermal Conductive Copper Nanowire Composites with Ultralow Loading: Toward Applications as Thermal Interface Materials. ACS APPLIED MATERIALS & INTERFACES[J]. 2014, 第 2 作者6(9): 6481-6486, https://www.webofscience.com/wos/woscc/full-record/WOS:000336075300059.