程健,中国科学院自动化研究所,研究员,博导


  目前担任中国科学院自动化研究所研究员、博导,中国科学院大学岗位教授,国家高层次领军人才,中科南京人工智能创新研究院副院长。主要研究深度学习、图像与视频内容分析、智能芯片架构设计等问题。在IEEE TPAMI、TNNLS、TCAD、JMLR、NeurIPS、ICML、ICLR、HPCA、MICRO、CVPR、ICCV、AAAI等高水平杂志和会议上发表学术论文100余篇。相关成果获得以下荣誉和奖励:

  • 2010年度中国科学院卢嘉锡青年人才奖

  • 2011年入选中科院首批青年促进会成员

  • 2013年ChaLearn国际手势识别竞赛冠军

  • 2013年中国电子学会自然科学一等奖

  • 蝉联2015和2016年微软图像识别挑战赛(IRC)冠军

  • 2016年KDDCup荣誉提名奖(Honorable mention award) 

  • 2016年教育部自然科学二等奖

  • 2018年中国图象图形学会科技二等奖

  • 2019年NeurIPS MicroNet挑战赛ImageNet和CIFAR两项任务第一名

  • 2020年ECCV的AIM竞赛ISP等多项任务冠亚军

  • 2021年江苏省自然科学一等奖

联系方式:

  电子邮件:jcheng@nlpr.ia.ac.cn 

  团队主页:https://clab.ia.ac.cn/

  通信地址:北京市海淀区中关村东路95号

研究领域

研究问题

  • 面向海量图像和视频内容分析和理解,探索深度学习、机器学习、强化学习等前沿理论,解决感知、认知、决策等挑战性问题。

  • 针对深度学习等人工智能方法中存在的密集计算问题,研究和设计高效的计算方法和芯片架构,实现边缘端的深度学习高效计算。


研究方向:

  • 深度学习高效计算(网络模型压缩、大模型高效计算、AutoML等)

  • 图像与视频内容分析(图像分类、目标检测和识别等)

  • 人工智能芯片设计(神经网络加速器、嵌入式低功耗系统等)

招生信息

招生方向:图像与视频处理、集成电路与智能分析(参考自动化所研究生招生方向); 

招生要求:专业背景不限,但一定要对科研怀有强烈的兴趣和追求卓越的精神,希望你具备良好的数学基础和自主学习能力,动手能力强,有团队精神; 

招生类型:硕士、博士、博士后,及国科大非全日制硕士;

培养模式:硕士一般面向应用需求,通过项目培养动手实践能力;博士面向学术前沿问题,着重培养科研创新能力。

备注:由于招生数量有限,请提前通过邮件与我

教育背景

2001-09--2004-08   中国科学院自动化研究所   博士学位
1998-09--2001-07   武汉大学数学与统计学院   硕士学位
1994-09--1998-07   武汉大学数学与统计学院   学士学位

工作经历

  • 2014.11至今:中国科学院自动化研究所 研究员 博士生导师

  • 2007.6 - 2014.10: 中国科学院自动化研究所 副研究员 

  • 2009.2 - 2009.8:英国约克大学计算机系,访问学者

  • 2006.9 - 2007.6: 中国科学院自动化研究所 助理研究员

  • 2004.9 - 2006.9: 诺基亚研究中心 博士后 

出版信息

Selected Articles:

2024

  • Peisong Wang, Xiangyu He, Jian Cheng. Toward Accurate Binarized Neural Networks with Sparsity for Mobile Application. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), vol.35, No.1, pp.272-284,2024.

  • Zeyu Zhu, Peisong Wang, Qinghao Hu, Gang Li, Xiaoyao Liang, Jian Cheng. FastGL: A GPU-Efficient Framework for Accelerating Sampling-based GNN Training at Large Scale. ACM ASPLOS 2024.

  • Zeyu Zhu, Fanrong Li, Gang Li, Zejian Liu, Zitao Mo, Qinghao Hu, Xiaoyao Liang, Jian Cheng. MEGA: A Memory-Efficient GNN Accelerator Exploiting Degree-Aware Mixed-Precision Quantization. HPCA 2024.

  • Jinmin He, Kai Li, Yifan Zang, Haobo Fu, Qiang Fu, Junliang Xing, Jian Cheng. Not All Tasks Are Equally Difficult: Multi-Task Reinforcement Learning with Dynamic Depth Routing. AAAI 2024.

  • Junkai Zhang, Yifan Zhang, Xi Sheryl Zhang, Yifan Zang, Jian Cheng. Intrinsic Action Tendency Consistency for Cooperative Multi-Agent Reinforcement Learning. AAAI 2024.

  • Zhengyang Zhuge, Jiaxing Wang, Yong Li, Yongjun Bao, Peisong Wang, Jian Cheng. Patch-Aware Sample Selection for Efficient Masked Image Modeling. AAAI 2024.
  • Hang Xu, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing, Jian Cheng. Dynamic Discounted Counterfactual Regret Minimization. ICLR 2024, Spotlight (Top 5%).
  • Yuheng Jing, Kai Li, Bingyun Liu, Yifan Zang, Haobo Fu, Qiang Fu, Junliang Xing, Jian Cheng. Towards Offline Opponent Modeling with In-context Learning. ICLR 2024.

  • Hang Xu, Kai Li, Bingyun Liu, Haobo Fu, Qiang Fu, Junliang Xing, Jian Cheng. PDCFR+: Minimizing Weighted Counterfactual Regret with Optimistic Online Mirror Descent. IJCAI 2024.

  • Yang Wu, Yifan Zhang, Zhenxing Liang, Jian Cheng. HGCN2SP: Hierarchical Graph Convolutional Network for Two-Stage Stochastic Programming. ICML 2024.

  • Zhengyang Zhuge, Peisong Wang, Xingting Yao, Jian Cheng. Towards Efficient Spiking Transformer: a Token Sparsification Framework for Training and Inference Acceleration. ICML 2024.

2023

  • Tianli Zhao, Qinghao Hu, Xiangyu He, Weixiang Xu, Jiaxing Wang, Cong Leng, Jian Cheng. ECBC: Efficient Convolution via Blocked ColumnizingIEEE Transactions on Neural Networks and Learning Systems (TNNLS), Vol.34, No.1, pp.433-445, 2023.

  • Peisong Wang, Fanrong Li, Gang Li, Jian Cheng. Extremely Sparse Networks via Binary Augmented Pruning for Fast Image ClassificationIEEE Transactions on Neural Networks and Learning Systems (TNNLS), Vol.34, No.8, pp.4167-4180, 2023.
  • Zejian Liu, Gang Li, Jian Cheng. Efficient Accelerator/Network Co-Search with Circular Greedy Reinforcement Learning. IEEE Transactions on Circuits and Systems-II: Express Briefs, Vol.70, No.7, pp.2615-2619, 2023.

  • Xing Lan, Qinghao Hu, Jian Cheng. ATF: An Alternating Training Framework for Weakly Supervised Face Alignment. IEEE Transactions on Multimedia, Vol.25, pp.1798-1809, 2023.

  • Weixiang Xu, Fanrong Li, Yingying Jiang, Yong A, Xiangyu He, Peisong Wang, Jian Cheng. Improving Extreme Low-bit Quantization with Soft Threshold. IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), Vol.33, No.4, pp.1549-1563, 2023.
  • Peisong Wang, Weihan Chen, Xiangyu He, Qiang Chen, Qingshan Liu, Jian Cheng. Optimization-based Post-training Quantization with Bit-split and StitchingIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), Vol.45, No.2, pp.2119-2135, 2023.

  • Weihan Chen, Peisong Wang, Jian Cheng. Towards Automatic Model Compression via a Unified Two-Stage Framework. Pattern Recognition (PR), Vol.140, 2023.

  • Zeyu Zhu, Fanrong Li, Zitao Mo, Qinghao Hu, Gang Li, Zejian Liu, Xiaoyao Liang, Jian Cheng. A2Q: Aggregation-Aware Quantization for Graph Neural Networks. ICLR 2023.
  • Sicong Liu, Xi Sheryl Zhang, Yushuo Li, Yifan Zhang, Jian Cheng. On the Data-Efficiency with Contrastive Image Transformation in Reinforcement LearningICLR 2023.

  • Tianli Zhao, Jiayuan Chen, Cong Leng, Jian Cheng. TinyNeRF: Towards 100x Compression of Voxel Radiance FieldsAAAI 2023.
  • Linhui Sun, Yifan Zhang, Jian Cheng, Hanqing Lu. Asynchronous Event Processing with Local-Shift Graph Convolutional Networks. AAAI 2023.

  • Zejian Liu, Gang Li, Jian Cheng. TBERT: Dynamic BERT Inference with Top-k Based Predictors. DATE 2023.

  • Zhixiang Ye, Qinghao Hu, Tianli Zhao, Wangping Zhou, Jian Cheng.  MCUNeRF: Packing NeRF into an MCU with 1MB Memory. ACM MM 2023.

  • Tianqi Chen, Weixiang Xu, Weihan Chen, Peisong Wang, Jian Cheng. Towards Efficient and Accurate Winograd Convolution via Full Quantization. NeurIPS 2023

  • Yifan Zang, Jinmin He, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing, Jian Cheng. Automatic Grouping for Efficient Cooperative Multi-Agent Reinforcement Learning. NeurIPS 2023.

2022

  • Gang Li, Zejian Liu, Fanrong Li, Jian Cheng. Block Convolution: Towards Memory-Efficient Inference of Large-Scale CNNs on FPGA. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), Vol.41, No.5, pp.1436-1447, 2022.
  • Guanan Wang, Qinghao Hu, Yang Yang, Jian Cheng, Zeng-Guang Hou. Adversarial Binary Mutual Learning for Semi-Supervised Deep HashingIEEE Transactions on Neural Networks and Learning Systems (TNNLS), Vol.33, No.8, pp.4110-4124, 2022.
  • Zhizhe Liu, Xingxing Zhang, Zhenfeng Zhu, Shuai Zheng, Yao Zhao, Jian Cheng. MFHI: Taking Modality-Free Human Identification as Zero-Shot LearningIEEE Transactions on Circuits and Systems for Video Technology (TCSVT)Vol.32, No.8, pp.5225-5237, 2022.

  • Lei Shi, Yifan Zhang, Jian Cheng, Hanqing Lu. Action Recognition via Pose-based Graph Convolutional Networks with Intermediate Dense Supervision. Pattern Recognition, Vol.121, 108170, 2022.

  • Anda Cheng, Peisong Wang, Xi Sheryl Zhang, Jian Cheng. Differentially Private Federated Learning with Local Regularization and Sparsification. CVPR 2022.

  • Qiang Chen, Qiman Wu, Jian Wang, Qinghao Hu, Tao Hu, Errui Ding, Jian Cheng, Jingdong Wang. MixFormer: Mixing Features across Windows and Dimensions. CVPR 2022.
  • Jiahao Lu, Xi Sheryl Zhang. Tianli Zhao, Xiangyu He, Jian Cheng. APRIL: Finding the Achilles' Heel on Privacy Leakage for Vision Transformers. CVPR 2022.
  • Anda Cheng, Jiaxing Wang, Xi Sheryl Zhang, Qiang Chen, Peisong Wang, Jian Cheng. DPNAS: Neural Architecture Search for Deep Learning with Differential Privacy. AAAI 2022.

  • Weixiang Xu, Xiangyu He, Ke Cheng, Peisong Wang, Jian Cheng. Towards Fully Sparse Training: Information Restoration with Spatial Similarity. AAAI 2022.
  • Linhui Sun, Yifan Zhang, Ke Cheng, Jian Cheng, Hanqing Lu. MENet: a Memory-Based Network with Dual-Branch for Efficient Event Stream Processing. ECCV 2022.
  • Qinghao Hu, Gang Li, Qiman Wu, Jian Cheng. PalQuant: Accelerating High-precision Networks on Low-precision Accelerators. ECCV 2022.
  • Tianli Zhao, Xi Sheryl Zhang, Wentao Zhu, Jiaxing Wang, Sen Yang, Ji Liu, Jian Cheng. Multi-Granularity Pruning for Model Acceleration on Mobile Devices. ECCV 2022.

  • Weihan Cao, Yifan Zhang, Jianfei Gao, Anda Cheng, Ke Cheng, Jian Cheng. PKD: General Distillation Framework for Object Detectors via Pearson Correlation Coefficient. NeurIPS 2022.
  • Yanpeng Sun, Qiang Chen, Xiangyu He, Jian Wang, Haocheng Feng, Junyu Han, Errui Ding, Jian Cheng, Zechao Li, Jingdong Wang. Singular Value Fine-tuning: Few-shot Segmentation requires Few-parameters Fine-tuning. NeurIPS 2022.
  • Xingting Yao, Fanrong Li, Zitao Mo, Jian Cheng. GLIF: A Unified Gated Leaky Integrate-and-Fire Neuron for Spiking Neural Networks. NeurIPS 2022.

  • Gang Li, Weixiang Xu, Zhuoran Song, Naifeng Jing, Jian Cheng, Xiaoyao Liang. Ristretto: An Atomized Processing Architecture for Sparsity-Condensed Stream Flow in CNN. MICRO 2022.

2021

  • Peisong Wang, Xiangyu He, Qiang Chen, Anda Cheng, Qingshan Liu, Jian Cheng. Unsupervised Network Quantization via Fixed-point FactorizationIEEE Transactions on Neural Networks and Learning Systems (TNNLS), Vol.32, No.6, pp.2706-2720, 2021.
  • Ke Cheng, Yifan Zhang, Xiangyu He, Jian Cheng, Hanqing Lu. Extremely Lightweight Skeleton-Based Action Recognition With ShiftGCN++. IEEE Transactions on Image Processing (TIP), Vol.30, pp. 7333-7348, 2021.
  • Qiang Chen, Anda Cheng, Xiangyu He, Peisong wang, Jian Cheng. SpatialFlow: Bridging All Tasks for Panoptic Segmentation. IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)Vol.31, No.6, pp.2288-2300, 2021. [code]
  • Fanrong Li, Gang Li, Xiangyu He, Jian Cheng. Dynamic Dual Gating Neural Networks. ICCV 2021.
  • Weihan Chen, Peisong Wang, Jian Cheng. Towards Mixed-Precision Quantization of Neural Networks via Constrained Optimization. ICCV 2021.
  • Lei Shi, Yifan Zhang, Jian Cheng, Hanqing Lu. AdaSGN: Adapting Joint Number and Model Size for Efficient Skeleton-Based Action Recognition. ICCV 2021.
  • Zejian Liu, Fanrong Li, Gang Li, Jian Cheng. EBERT: Efficient BERT Inference with Dynamic Structured Pruning. Findings of ACL 2021.
  • Zejian Liu, Gang Li, Jian Cheng. Hardware Acceleration of Fully Quantized BERT for Efficient Natural Language Processing. DATE 2021 (Best paper candidate)
  • Qiang Chen, Yingming Wang, Tong Yang, Xiangyu Zhang, Jian Cheng, Jian Sun. You Only Look One-level Feature. CVPR 2021. [code]

2020

  •  Lei Shi, Yifan Zhang, Jian Cheng, Hanqing Lu. Skeleton-Based Action Recognition With Multi-Stream Adaptive Graph Convolutional Networks. IEEE Transactions on Image Processing (TIP), Vol.29, pp.9532-9545, 2020. (ESI highly cited paper )
  • Fanrong Li, Gang Li, Zitao Mo, Xiangyu He, Jian Cheng. FSA: A Fine-Grained Systolic Accelerator for Sparse CNNS. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), Vol.39, No.11, pp.3589-3600, 2020.

  • Guanan Wang, Yang Yang, Tianzhu Zhang, Jian Cheng, Zengguang Hou, Prayag Tiwari, Hari Mohan Pandey. Cross-modality Paired-images Generation and Augmentation for RGB-infrared Person Re-identification. Neural Networks, Vol.128, pp.294-304, 2020. (The 2020 best paper award)

  • Jiaxing Wang, Haoli Bai, Jiaxiang Wu, Jian Cheng. Bayesian Automatic Model Compression. IEEE Journal of Selected Topics in Signal Processing, Vol.14, No.4, pp.727-736, 2020.
  • Qiang Chen, Peisong Wang, Anda Cheng, Wanguo Wang, Yifan Zhang, Jian Cheng. Robust One-stage Object Detection with Location-aware Classifiers. Pattern Recognition (PR), Vol.105, September,107334, 2020.
  • Lu Bai, Luca Rossi, Lixin Cui, Jian Cheng, Edwin R.Hancock. A Quantum-Inspired Similarity Measure for the Analysis of Complete Weighted Graphs. IEEE Transactions on Cybernetics (ToC), Vol.50, Issue 3, pp. 1264-1277, 2020.
  • Chunjie Zhang, Jian Cheng, Qi Tian. Multi-View Image Classification with Visual, Semantic and View Consistency. IEEE Transactions on Image Processing (TIP), Vol.29, pp.617-627, 2020.
  • Jiaxing Wang, Haoli Bai, Jiaxiang Wu, Xupeng Shi, Junzhou Huang, Irwin King, Michael Lyu, Jian Cheng. Revisiting Parameter Sharing for Automatic Neural Channel Number SearchNeurIPS 2020.
  • Peisong Wang, Qiang Chen, Xiangyu He, Jian Cheng. Towards Accurate Post-training Network Quantization via Bit-Split and Stitching. ICML 2020.[code]
  • Xiangyu He, Zitao Mo, Ke Cheng, Weixiang Xu, Qinghao Hu, Peisong Wang, Qingshan Liu, Jian Cheng. ProxyBNN: Learning Binarized Neural Networks via Proxy Matrices. ECCV 2020.
  • Guanan Wang, Shaogang Gong, Jian Cheng, Zengguang Hou. Fast Person Re-Identification. ECCV 2020.
  • Ke Cheng, Yifan Zhang, Congqi Cao, Lei Shi, Jian Cheng, Hanqing Lu. Decoupling GCN with DropGraph Module for Skeleton-Based Action Recognition. ECCV 2020. [code]
  • Gang Li, Peisong Wang, Zejian Liu, Cong Leng, Jian Cheng. Hardware Acceleration of CNN with One-Hot Quantization of Weights and Activations. DATE 2020.
  • Jiaxing Wang, Jiaxiang Wu, Haoli Bai, Jian Cheng. M-NAS: Meta Neural Architecture Search. AAAI 2020.
  • Peisong Wang, Xiangyu He, Gang Li, Tianli Zhao, Jian Cheng. Sparsity-Inducing Binarized Neural Networks. AAAI 2020.
  • Guanan Wang, Tianzhu Zhang, Yang Yang, Jian Cheng, Jianlong Chang, Xu Liang, Zengguan Hou. Cross-Modality Paired-Images Generation for RGB-Infrared Person Re-Identification. AAAI 2020.
  • Shuai Zheng, Zhenfeng Zhu, Xingxing Zhang, Zhizhe Liu, Jian Cheng, Yao Zhao. Distribution-induced Bidirectional Generative Adversarial Network for Graph Representation Learning. CVPR 2020.
  • Ke Cheng, Yifan Zhang, Xiangyu He, Weihan Chen, Jian Cheng, Hanqing Lu. Skeleton-based Action Recognition with Shift Graph Convolutional Network. CVPR 2020. [code]
  • Weixiang Xu, Xiangyu He, Tianli Zhao, Qinghao Hu, Peisong Wang, Jian Cheng. Soft Threshold Ternary Networks. IJCAI 2020.

  • Xing Lan, Qinghao Hu, Fangzhou Xiong, Cong Leng, Jian Cheng. ATF: Towards Robust Face Alignment via Leveraging Similarity and Diversity across Different Datasets. ACM MM 2020.

2019

  • Chunjie Zhang, Jian Cheng, Qi Tian. Semantically Modeling of Object and Context for Categorization. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), Vol.30, No.4, pp.1013-1024, 2019.
  • Zhe Li, Peisong Wang, Hanqing Lu, Jian Cheng. Reading Selectively via Binary Input Gate Recurrent Unit. IJCAI 2019.
  • Zhe Li, Jian Cheng. Training Binary-Valued Gates LSTM. ICDAR 2019.
  • Guanan Wang, Yang Yang, Jian Cheng, Jinqiao Wang, Zengguang Hou. Color-Sensitive Persong Re-Identification. IJCAI 2019.
  • Guanan Wang, Tianzhu Zhang, Jian Cheng, Si Liu, Yang Yang, Zengguang Hou. RGB-Infrared Cross-Modality Person Re-Identification via Joint Pixel and Feature Alignment. ICCV 2019.
  • Fanrong Li, Zitao Mo, Peisong Wang, Zejian Liu, Jiayun Zhang, Gang Li, Qinghao Hu, Xiangyu He, Cong Leng, Yang Zhang, Jian Cheng. A System-Level Solution for Low-Power Object Detection. ICCV 2019 Workshop on Low-Power Computer Vision.
  • Xiangyu He, Peisong Wang, Jian Cheng. K-Nearest Neighbors Hashing. CVPR 2019. [code]
  • Xiangyu He, Zitao Mo, Peisong Wang, Yang Liu, Mingyuan Yang, Jian Cheng. ODE-inspired Network Design for Single Image Super-Resolution. CVPR 2019. [code]
  • Lei Shi, Yifan Zhang, Jian Cheng, Hanqing Lu. Skeleton-Based Action Recognition with Directed Graph Neural NetworksCVPR 2019.
  • Lei Shi, Yifan Zhang, Jian Cheng, Hanqing Lu. Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition. CVPR 2019.[code]

2018

  • Jian Cheng, Peisong Wang, Gang Li, Qinghao Hu, Hanqing Lu. Recent Advances in Efficient Computation of Deep Convolutional Neural Networks. Frontiers of Information Technology & Electronic Engineering (FITEE), Vol.19, No.1, pp.64-77, 2018. [arXiv]
  • Peisong Wang, Qinghao Hu, Zhiwei Fang, Chaoyang Zhao, Jian Cheng. DeepSearch: A Fast Image Search Framework for Mobile Devices. ACM Transactions on Multimedia Computing Communications and Applications (TOMM), Vol.14(1), 2018.
  • Yifan Zhang, Congqi Cao, Jian Cheng, Hanqing Lu. EgoGesture: A New Dataset and Benchmark for Egocentric Hand Gesture Recognition. IEEE Transactions on Multimedia (TMM), Vol.20, No.5, pp.1038-1050, 2018. [Project link]
  • Chunjie Zhang, Jian Cheng, Qi Tian. Multiview Label Sharing for Visual Representations and Classification. IEEE Transactions on Multimedia (TMM), Vol.20, No.4, pp.903-913, 2018.
  • Jian Cheng, Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu. Quantized CNN: A Unified Approach to Accelerate and Compress Convolutional NetworksIEEE Transactions on Neural Networks and Learning Systems (TNNLS), Vol.29, No.10, pp.4730-4743, 2018.
  • Tianli Zhao, Xiangyu He, Jian Cheng. BitStream: Efficient Computing Architecture for Real-Time Low-Power Inference of Binary Neural Networks on CPUs. ACM MM 2018.
  • Xiangyu He, Jian Cheng. Learning Compression from Limited Unlabeled Data. ECCV 2018. [code]
  • Guanan Wang, Qinghao Hu, Jian Cheng, Zengguang Hou. Semi-Supervised Generative Adversarial Hashing for Image Retrieval. ECCV 2018.
  • Qinghao Hu, Gang Li, Peisong Wang, Yifan Zhang, Jian Cheng. Training Binary Weight Networks via Semi-Binary Decomposition. ECCV 2018.
  • Qinghao Hu, Peisong Wang, Jian Cheng. From Hashing to CNNs: Training Binary Weight Networks via Hashing. AAAI 2018.
  • Gang Li, Fanrong Li, Tianli Zhao, Jian Cheng. Block Convolution: Towards Memory-Efficient Inference of Large-Scale CNNs on FPGA. DATE 2018.
  • Peisong Wang, Qinghao Hu, Yifan Zhang, Chunjie Zhang, Yang Liu, Jian Cheng. Two-Step Quantization for Low-bit Neural Networks. CVPR 2018.[code]

2017

  • Chunjie Zhang, Jian Cheng, Qi Tian. Incremental Codebook Adaptation for Visual Representation and Categorization. IEEE Transactions on Cybernetics (ToC), in press.

  • Chunjie Zhang, Jian Cheng, Qi Tian. Structured Weak Semantic Space Construction For Visual Categorization. IEEE Transactions on Neural Networks and Learning Systems (TNNLS), in press.

  • Qinghao Hu, Jiaxiang Wu, Lu Bai, Yifan Zhang, Jian Cheng. Fast K-Means for Large Scale Clustering. ACM CIKM 2017.

  • Qinghao Hu, Jiaxiang Wu, Jian Cheng, Lifang Wu, Hanqing Lu. Pesudo Label based Unsupervised Deep Discriminative Hashing for Image Retrieval. ACM MM 2017.

  • Congqi Cao, Yifan Zhang, Yi Wu, Hanqing Lu, Jian Cheng. Egocentric Gesture Recognition Using Recurrent 3D Convolutional Neural Networks with Spatiotemporal Transformer Modules. ICCV 2017. [Project link]

  • Peisong Wang, Jian Cheng. Fixed-point Factorized Networks. CVPR 2017. [code]

2016

  • Zhenfeng Zhu, Jian Cheng, Yao Zhao, Jieping Ye. LSSLP-Local Structure Sensitive Label Propagation. Information Sciences, Vol.332, pp.19-32, 2016.
  • Peisong Wang, Qiang Song, Hua Han, Jian Cheng. Sequentially Supervised Long Short-Term Memory for Gesture Recognition. Cognitive Computation 2016
  • Peisong Wang, Jian Cheng. Accelerating Convolutional Neural Networks for Mobile Applications. ACM MM 2016.
  • Zeyu Qiu, Deqiang Kong, Zhenfeng Zhu, Hanqing Lu, Jian Cheng. Heterogenous Graph Mining for Measuring the Impact of Research Institutions. KDD 2016 KDD Cup workshop. (Ranked the 1st place on phase 2)
  • Chenghua Li, Qi Kang, Guojing Ge, Qiang Song, Hanqing Lu, Jian Cheng. DeepBE: Learning Deep Binary Encoding for Multi-Label Classification. CVPR 2016 workshop. (Ranked the 2nd places on track 2 and track 3 of ChaLearn 2016)
  • Chenghua Li, Qiang Song, Yuhang Wang, Hang Song, Qi Kang, Jian Cheng, Hanqing Lu. Learning to Recognition from Bing Clickture Data. ICME 2016 workshop. (Successfully defended the 1st place on MSR Image Recognition Challenge)
  • Jiaxiang Wu, Qinghao Hu, Cong Leng, Jian Cheng. Shoot to Know What: An Application of Deep Networks on Mobile Devices. AAAI 2016 (Demo track).

2015

  • Chunjie Zhang, Jian Cheng, Jing Liu, Junbiao Pang, Qingming Huang, Qi Tian. Beyond Explicit Codebook Generation: Visual Representation Using Implicitly Transferred Codebooks. IEEE Transactions on Image Processing (TIP), Vol. 24, No. 12, pp.5777-5788, 2015.
  • Qiang Song, Sixie Yu, Cong Leng, Jiaxiang Wu, Qinghao Hu, Jian Cheng. Learning Deep Features for MSR-Bing Information Retrieval Challenge. ACM Multimedia 2015. (Ranked the 1st place on Visual Recognition task and 3rd place on Image Retrieval task)
  • Qiang Song, Jian Cheng, Ting Yuan, Hanqing Lu. Personalized Recommendation Meets Your Next Favorite. CIKM 2015.
  • Qiang Song, Jian Cheng, Hanqing Lu. Incremental Matrix Factorization via Feature Space Re-learning for Recommender System. ACM RecSys 2015.
  • Cong Leng, Jiaxiang Wu, Jian Cheng, Xi Zhang, Hanqing Lu. Hashing for Distributed Data. ICML 2015.
  • Xi Zhang, Jian Cheng, Shuang Qiu, Zhenfeng Zhu, Hanqing Lu. When Personalization meets Conformity: Collective Similarity based Multi-Domain Recommendation. SIGIR 2015.
  • Cong Leng, Jian Cheng. Consensus Hashing. Machine Learning, Vol.100 (2), pp.379-398, 2015.
  • Cong Leng, Jiaxiang Wu, Jian Cheng, Xiao Bai, Hanqing Lu. Online Sketching Hashing. CVPR 2015.[code]
  • Shuang Qiu, Jian Cheng, Xi Zhang, Hanqing Lu. Exploring Heterogeneity for Multi-Domain Recommendation with Decisive Factors Selection. WWW 2015 (Companion Volume).
  • Xi Zhang, Jian Cheng, Shuang Qiu, Guibo Zhu, Hanqing Lu. DualDS: A Dual Discriminative Rating Elicitation Framework for Cold Start Recommendation. Knowledge-Based Systems, Vol.73, pp.161-172, 2015.

2014

  • Xiao Bai, Haichuan Yang, Jun Zhou, Peng Ren, Jian Cheng. Data-Dependent Hashing Based on p-Stable Distribution. IEEE Transactions on Image Processing (TIP), Vol.23, No.12, pp.5033-5046, 2014.
  • Cong Leng, Jian Cheng, Jiaxiang Wu, Xi Zhang, Hanqing Lu. Supervised Hashing with Soft Constraints. CIKM 2014.
  • Cong Leng, Jian Cheng, Ting Yuan, Xiao Bai, Hanqing Lu. Learning binary codes with bagging PCA. ECML 2014. [code]
  • Jiaxiang Wu, Jian Cheng. Bayesian Co-Boosting for Multi-modal Gesture Recognition. Journal of Machine Learning Research (JMLR), 15(Oct):3013−3036, 2014.
  • Cong Leng, Jian Cheng, Hanqing Lu. Random Subspace for Binary Codes Learning in Large Scale Image Retrieval. SIGIR 2014.
  • Jian Cheng, Ting Yuan, Jinqiao Wang, Hanqing Lu. Group Latent Factor Model for Recommendation with Multiple User Behaviors. SIGIR 2014.
  • Shuang Qiu, Jian Cheng, Ting Yuan, Cong Leng, Hanqing Lu. Item Group Based Pairwise Preference Learning for Personalized Ranking. SIGIR 2014.
  • Haichuan Yang, Xiao Bai, Jun Zhou, Peng Ren, Zhihong Zhang, Jian Cheng. Adaptive Object Retrieval with Kernel Reconstructive HashingCVPR 2014.
  • Ting Yuan, Jian Cheng, Xi Zhang, Shuang Qiu and Hanqing Lu. Recommendation by Mining Multiple User Behaviors with Group Sparsity. AAAI 2014.
  • Jian Cheng, Cong Leng, Peng Li, Meng Wang, Hanqing Lu. Semi-Supervised Multi-Graph Hashing for Scalable Similarity Search. Computer Vision and Image Understanding (CVIU), Vol.124, pp.12-21, 2014.

2013

  • Huiguang Zhang, Xiao Bai, Jun Zhou, Jian Cheng, Huijie Zhao. Object Detection via Structural Feature Selection and Shape Model. IEEE Transaction on Image Processing (TIP), Vol.22, No.12, pp.4984-4995, 2013.
  • Biao Niu, Jian Cheng, Xiao Bai, Hanqing Lu. Asymmetric Propagation based Batch Mode Active Learning for Image Retrieval. Signal Processing. Vol.93, pp. 1639-1650, 2013
  • Peng Li, Jian Cheng, Hanqing Lu. Dual Locality Sensitive Hashing with Discriminative Projections Selection. Signal Processing, Vol.93, No.8, pp.2256-2264, 2013
  • Huigang Zhang, Xiao Bai, Huaxin Zheng, Huijie Zhao, Jun Zhou, Jian Cheng, Hanqing Lu. Hierarchical Remote Sensing Image Analysis via Graph Laplacian Energy. IEEE Geoscience and Remote Sensing Letters, Vol.10, No.2, pp.396-400, 2013
  • Chao Liang, Changsheng Xu, Jian Cheng, Weiqing Min, Hanqing Lu. Script-to-Movie: A Computational Framework for Story Movie Composition. IEEE Transactions on Multimedia (TMM). Vol.15, No.2, pp.401-414, 2013
  • Peng Li, Meng Wang, Jian Cheng, Changsheng Xu, Hanqing Lu. Spectral Hashing with Semantically Consistent Graph for Image Indexing. IEEE Transactions on Multimedia (TMM), Vol.15, No.1, pp.141-152, 2013. (Prize paper award honorable mention 2016)
  • Biao Niu, Bin Li, Peng Li, Xi Zhang, Jian Cheng, Hanqing Lu. Attribute Expansion with Sequential Learning for Object Classification. ICME 2013. (Best paper candidate)
  • Xi Zhang, Jian Cheng, Ting Yuan, Biao Niu, Hanqing Lu. Semi-Supervised Discriminative Preference Elicitation for Cold-Start Recommendation. CIKM 2013.
  • Xi Zhang, Jian Cheng, Ting Yuan, Biao Niu, Hanqing Lu. TopRec: Domain-Specific Recommendation through Community Topic Mining in Social Network. WWW 2013.
  • Jiaxiang Wu, Jian Cheng, Chaoyang Zhao, Hanqing Lu. Fusing multi-modal features for gesture recognition. ICMI 2013. (Won 1st award on ChaLearn Challenge 2013)

2012

  • Yi Wu, Jian Cheng, Jinqiao Wang, Hanqing Lu, Jun Wang, Haibin Ling, Erik Blasch, Li Bai. Real-time probabilistic covariance tracking with efficient model update. IEEE Transactions on Image Processing (TIP), Vol.21, No.5, pp.2824-2837, 2012
  • Xiaofeng Zhu, Zi Huang, Heng Tao Shen, Jian Cheng, Changsheng Xu. Dimensionality Reduction by Mixed Kernel Canonical Correlation Analysis. Pattern Recognition, Vol.45, No.8, pp.3003-3016, 2012
  • Biao Niu, Jian Cheng, Hanqing Lu. Improving Relevance Feedback for Image Retrieval with Asymmetric Sampling. ICME 2012
  • Peng Li, Jian Cheng, Hanqing Lu. Modeling Hidden Topics with Dual Local Consistency for Image Analysis. ACCV 2012

2011 and before

  • Chao Liang, Changsheng Xu, Jian Cheng, Hanqing Lu. TVParser: An automatic TV video parsing method. CVPR 2011
  • Yang Liu, Jian Cheng, Changsheng Xu, Hanqing Lu. Building topographic subspace model with transfer learning for sparse representation. Neurocomputing, 73(10-12), 2010
  • Changsheng Xu, Jian Cheng, Yi Zhang, Yifan Zhang, and Hanqing Lu. Sports video analysis: semantics extraction, editorial content creation and adaptation. Journal of Multimedia, Vol.4, No.2, pp.69-79, 2009
  • Xiaoyu Zhang, Changsheng Xu, Jian Cheng, Hanqing Lu, and Songde Ma. Effective Annotation and Search for Video Blogs with Integration of Context and Content Analysis. IEEE Transactions on Multimedia (TMM), Vol.11, No.2, pp.272-285, 2009.
  • Yikai Fang, Jian Cheng, Hanqing Lu. A hand gesture recognition method with fast scale-space feature detection. Journal of Image and Graphics, Vol.14, No.2, 2009. (In Chinese)
  • Rong Liu, Jian Cheng, Hanqing Lu. A Robust Boosting Tracker with Minimum Error Bound in a Co-training Framework. ICCV 2009
  • Yi Wu, Jian Cheng, Jinqiao Wang, Hanqing Lu. Real-time Visual Tracking via Incremental Covariance Tensor Learning. ICCV 2009
  • Yu Fu, Jian Cheng, Zhenglong Li and Hanqing Lu. Saliency Cuts: an automatic approach to object segmentation. ICPR 2008
  • Yikai Fang, Kongqiao Wang, Jian Cheng, and Hanqing Lu. A Real-time hand gesture recognition method. ICME 2007
  • Yikai Fang, Jian Cheng, Kongqiao Wang, and Hanqing Lu. Hand gesture recognition using fast multi-scale analysis. ICIG 2007
  • Zhenglong Li, Jian Cheng, Qingshan Liu, and Hanqing Lu. Image Segmentation using Co-EM strategy. ACCV 2007
  • Xiaoyu Zhang, Jian Cheng, Hanqing Lu, and Songde Ma. Weighted Co-SVM for image retrieval with MVB strategy. ICIP 2007
  • Jian Cheng and Kongqiao Wang. Active learning for image retrieval with Co-SVM. Pattern Recognition, Vol.40, pp.330-334, 2007.
  • Jian Cheng, Qingshan Liu, Hanqing Lu, and Yen-Wei Chen. Ensemble learning for independent component analysis. Pattern Recognition, Vol.39, pp.81-88, 2006.
  • Jian Cheng, Qingshan Liu, Hanqing Lu, and Yen-Wei Chen. Supervised kernel locality preserving projections for face recognition. Neurocomputing, vol.67, pp.443-449, 2005.
  • Jian Cheng, Yen-Wei Chen, Hanqing Lu and Xiang-Yan Zeng. A spatial weighted color histogram for image retrieval. IEICE Transaction on Information and System, Vol.E87-D, No.1, pp.246-249, 2004.

科研活动

  • 国际杂志《Pattern Recognition》和《IET Computer Vision》的编委(Associate editor)

  • 《数据与计算发展前沿》副主编


指导学生

已指导学生

邱爽  硕士研究生  081104-模式识别与智能系统  

宋强  硕士研究生  081104-模式识别与智能系统  

李钢  硕士研究生  085211-计算机技术  

王培松  博士研究生  081203-计算机应用技术  

胡庆浩  博士研究生  081203-计算机应用技术  

李哲  硕士研究生  081104-模式识别与智能系统  

莫子韬  硕士研究生  081104-模式识别与智能系统  

李繁荣  博士研究生  081104-模式识别与智能系统  

程安达  博士研究生  081104-模式识别与智能系统  

王家兴  博士研究生  081104-模式识别与智能系统  

刘泽健  博士研究生  081104-模式识别与智能系统  

李钢  博士研究生  081104-模式识别与智能系统  

谌强  博士研究生  081104-模式识别与智能系统  

贺翔宇  博士研究生  081104-模式识别与智能系统  

卢嘉昊  硕士研究生  081104-模式识别与智能系统  

刘凌云  硕士研究生  081104-模式识别与智能系统  

李哲鑫  硕士研究生  081104-模式识别与智能系统  

刘一男  硕士研究生  085410-人工智能  

柳林志  硕士研究生  085211-计算机技术  

苏秦  硕士研究生  085211-计算机技术  

夏天鹏  硕士研究生  085211-计算机技术  

郭振宇  硕士研究生  085208-电子与通信工程  

左振萌  硕士研究生  085208-电子与通信工程  

兰星  硕士研究生  085211-计算机技术  

王明明  硕士研究生  085410-人工智能  

陈维汉  博士研究生  081104-模式识别与智能系统  

关伟凡  硕士研究生  081104-模式识别与智能系统  

许伟翔  博士研究生  081104-模式识别与智能系统  

赵天理  博士研究生  081203-计算机应用技术  

现指导学生

臧一凡  博士研究生  081104-模式识别与智能系统  

何金岷  博士研究生  081104-模式识别与智能系统  

郭明鑫  博士研究生  081104-模式识别与智能系统  

朱泽雨  博士研究生  081104-模式识别与智能系统  

景煜恒  博士研究生  081104-模式识别与智能系统  

刘铁龙  博士研究生  081104-模式识别与智能系统  

刘伟翔  硕士研究生  085410-人工智能  

陈逸群  博士研究生  081104-模式识别与智能系统  

姚星廷  博士研究生  081104-模式识别与智能系统  

王威  硕士研究生  085404-计算机技术  

诸葛正阳  博士研究生  081104-模式识别与智能系统