基本信息
张鹏  男  博导  中国科学院分子植物科学卓越创新中心
电子邮件: pengzhang01@cemps.ac.cn
通信地址: 上海市枫林路300号
邮政编码: 200032

研究领域

课题组利用结构生物学、生物化学及遗传学方法,研究植物重要生理过程蛋白质的结构与功能,主要聚焦跨膜转运与信号传递的分子机理。研究成果以通讯作者发表在NatureNat. Struct. Mol. BiolNat PlantsCell ResNat CommunPNASEMBO RepMol Plant等国际国内期刊上。研究成果被Annu Rev Biochem, Nat Rev MicrobiolNat Struct Mol BiolCurr Opin Struct BiolCrit Rev Biochem Mol BiolFaculty-1000 Biology等期刊和机构引用和评述。

1)跨膜转运的分子机理:跨细胞膜的物质转运是细胞与内外环境之间进行物质交流的主要方式,与生命体的生长发育和环境响应等密切相关。探索植物营养物质跨膜转运的分子机理是我们的研究兴趣之一。ECFABC转运蛋白是微生物与植物中存在的一大类B族维生素转运蛋白,生理功能重要。为研究ECF转运蛋白发挥功能的分子机理,我们解析了跨膜转运叶酸(B9)、泛酸(B5)、钴离子(合成B12)等ECF转运蛋白的三维结构,揭示了底物识别和跨膜转运的分子过程,提出了ECFABC转运蛋白的工作模型(Nature, 2013; PNAS, 2014; Nature Commun2015 Cell Res, 2017; Trends Microbiol, 2013.)。在另一工作中,我们解析了蓝藻CO2浓缩机制(CCM)中HCO3-跨膜转运蛋白BicASbtA跨膜转运及调控的分子机理,为CCM在高等植物中的应用提供了分子基础(Nature Plants, 2019PNAS, 2021)。

 

2)跨膜信号传递机理研究:跨细胞膜的信号传递是细胞与内外环境间进行信息交流的主要方式,许多活性小分子在跨膜信号传递中发挥着重要功能。我们的另一研究兴趣是探究活性小分子物质介导的跨膜信号传递机理。我们的研究揭示了植物蓝光受体CRY光激活的分子机制(Nat Struct Mol Biol, 2020);首次阐明了真核生物磷脂酶D的催化磷脂酸合成及调控的分子机制、抑制剂的作用机理(Cell Res, 2020),磷脂酸跨线粒体膜运输的机制(EMBO Rep, 2015);揭示了细菌细胞膜双组分信号复合体XylFII-LytS结合木糖分子,调控木糖跨膜转运、代谢的分子机制(PNAS, 2017a)。

 

3)植物重要活性代谢物的合成机理解析与分子设计:研究植物体产生的活性代谢物,如:紫杉醇、叶绿素等萜类及衍生物的合成过程、酶催化机理,基于蛋白结构与机理开展合成生物学途径设计。研究揭示了多个植物/微生物活性化合物合成效率及特异性的分子机理(Nat Commun, 2021; Plant Commun, 20192020Mol Plant. 2016PNAS, 2016 Biochem J. 2013;)。


教育背景

2002-09--2007-12   中科院上海生命科学研究院生化细胞所   博士
1998-09--2002-07   山东大学   学士

工作经历

2020.5-现在       研究员     中科院分子植物卓越中心

2010.10-2020.4    研究员     中科院植物生理生态所

2008.2-2010.9     博士后     美国普林斯顿大学分子生物学系 


专利与奖励

上海市浦江人才2011
国家基金委优秀青年基金(2013
英国皇家学会牛顿高级学者(2018
上海市青年优秀学术带头人(2019
国家基金委杰出青年基金(2020

中科院特聘研究员(2021

出版信息

1.      Fang S. #, Huang X.W.#, Zhang X.#,*, Zhang M.H., Hao YH, Guo H., Liu L.N., Yu F., Zhang P. *. Molecular mechanism underlying transport and allosteric inhibition of bicarbonate transporter SbtA. Proc Natl Acad Sci U S A. 2021.118 (22) e2101632118.

2.      Xiao Y. #, Shao K. #, Zhou J.W. #, Wang L., Ma X.Q., Wu D., Yang Y.B., Chen J.F., Feng J.X., Qiu S., Lv Z.Y., Zhang L. *, Zhang P. *, and Chen W.S.*. Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reductases. Nat Commun. 2021.12 (2828)

3.      Liu G.Q.#, Zhao Y.L.#, He F.Y., Zhang P., Ouyang X.Y., Tang H.Z. *, Xu P. *. Structure-guided insights into heterocyclic ring-cleavage catalysis of the non-heme Fe (II) dioxygenase NicX. Nat Commun. 2021.12 (1301)

4.      Yang G.H. #, Hong S.#, Yang P.J.#, Sun Y.W., Wang Y., Zhang P., Jiang W.H. *, Gu Y.*. Discovery of an ene-reductase for initiating flavone and flavonol catabolism in gut bacteria. Nat Commun. 2021.12 (790)

5.      Yao Y. #, Li J. #., Lin Y. #, Zhou J., Zhang P. *, Xu Y. *. Structural insights into phospholipase D function. Prog Lipid Res. 2021. 81: 101070.

6.      Shao K. #, Zhang X. #, Li X. #, Hao Y.H., Huang X.W., Ma M.L., Zhang M.H., Yu F., Liu H.T. *, Zhang P. *. The oligomeric structures of plant cryptochromes. Nat. Struct. Mol. Biol. 2020. 27480-488.Views and News in NSMB

7.      Li J.X.#, Yu F. #, Guo H., Xiong R.X., Zhang W.J., He F.Y., Zhang M.H., Zhang P.*. Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Res. 2020.30: 61-69.

8.      Thomas C., Aller SG, Beis K., Carpenter E.P., Chang G., Chen L., Dassa E., Dean M., Duong Van Hoa F., Ekiert D., Ford R., Gaudet R., Gong X., Holland I.B., Huang Y., Kahne D.K., Kato H., Koronakis V., Koth C.M., Lee Y., Lewinson O., Lill R., Martinoia E., Murakami S., Pinket H.W., Poolman B., Rosenbaum D., Sarkadi B., Schmitt L., Schneider E., Shi Y., Shyng S.L., Slotboom D.J., Tajkhorshid E., Tieleman D.P., Ueda K., Váradi A., Wen P.C., Yan N., Zhang P., Zheng H., Zimmer J., Tampé R. Structural and functional diversity calls for a new classification of ABC transporters. FEBS Lett. 2020. doi: 10.1002/1873-3468.13935.

9.      Chen Q.W. #, Li J.X. #, Liu Z.X., Mitsuhashi T., Zhang Y.T., Liu H.L., Ma Y.H., He J., Shinada T., Sato T., Wang Y., Liu H.W., Abe I., Zhang P.*, Wang G.D*. Molecular Basis for Sesterterpene (C25) Diversity Produced by Plant Terpene Synthases. Plant Communications. 2020. 1(5), 100051.doi: 10.1016/j.xplc.2020.100051.

10.  Liu Z.F.#, Li J.X.#, Sun Y.W., Zhang P.*, Wang Y.*. Structural insights into the catalytic mechanism of a plant diterpene glycosyltransferase SrUGT76G1. Plant Communications. 2020 1(1), 100004. doi: 10.1016/j.xplc.2019.100004.

11.  Wang C.C., Sun B., Zhang X., Huang X.W., Zhang M.H., Guo H., Chen X., Huang F., Chen T.Y., Mi H.L., Yu F., Liu L.N., Zhang P.*. Structural mechanism of the active bicarbonate transporter from cyanobacteria. Nature Plants. 2019. 5,1184-1193.

12.  He J, Zhang C, Dai H, Liu H, Zhang X, Yang J, Chen X, Zhu Y, Wang D, Qi X, Li W, Wang Z, An G, Yu N, He Z, Wang YF, Xiao Y, Zhang P, Wang E. A LysM receptor heteromer mediates perception of arbuscular mycorrhizal symbiotic signal in rice. Mol Plant. 2019. doi: 10.1016/j.molp.2019.10.015.

13.  Sun Y.W., Chen Z., Li J.X., Li .JH., Lv H.J., Yang J.Y., Li W.W., Xie D.A., Xiong Z.Q., Zhang P., Wang Y.*. Diterpenoid UDP-glycosyltransferases from Chinese Sweet Tea and Ashitaba Complete the Biosynthesis of Rubusoside. Mol Plant. 2018. doi.10.1016/j.molp.2018.05.010

14.  Yang Y, Liang T, Zhang L, Shao K, Gu X, Shang R, Shi N, Li X, Zhang P, Liu H*. (2018) UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nature Plants. 4:98-107

15.  Li J.X. #, Wang C.Y. # , Yang G.H., Sun Z., Guo H., Shao K., Gu Y., Jiang W.H.*, Zhang P.*. Molecular mechanism of environmental D-xylose perception by a XylFII-LytS complex in bacteria. Proc Natl Acad Sci U S A. 2017a. 114(31):8235-8240. 

16.  Fang X., Li J.X., Huang J.Q., Xiao Y.L., Zhang P., Chen X.Y.*. Systematic identification of functional residues of Artemisia annua amorpha-4,11- dienesynthase.  Biochem J. 2017. 474(13):2191-2202.

17.  Zhou F. #, Wang C.Y. # , Gutensohn M. #, Jiang L, Zhang P., Zhang D.B., Dudareva N.*, Lu S.*. A Novel Recruiting Protein of Geranylgeranyl Diphosphate Synthase Controls Metabolic Flux towards Chlorophyll Biosynthesis in Rice. Proc Natl Acad Sci U S A. 2017b. doi:10.1073/pnas.1705689114.

18.  Bao Z.H. #, Qi X.F. #, Hong S., Xu K., He F.Y., Zhang M.H., Chen J.G., Chao D.Y., Zhao W., Li D.F., Wang JW. *, Zhang P.*. Structure and mechanism of a group‐I cobalt energy coupling factor transporter. Cell Res. 2017. 27(5):675-687. 

19.  Qi X.F., Lin W., Ma M.L., Wang C.Y., He Y., He N.S., Gao J., Zhou H., Xiao Y.L., Wang Y., and Zhang P.*. Structural basis of rifampin inactivation by rifampin phosphotransferase. Proc Natl Acad Sci U S A. 2016. 113 (14) 3803-3808.

20.  Wang C. #, Chen Q. #, Fan D., Li J., Wang G.*, and Zhang P.*. Structural analyses of short-chain prenyltransferases identify an evolutionarily conserved GFPPS clade in Brassicaceae plants. Mol Plant. 2016.  9:195–204. (Cover & Highlight)

21.  Zhao Q. #, Wang C.C. #, Wang C.Y., Guo H., Bao Z.H., Zhang M.H., Zhang P. *. Structures of FolT at substrate-bound and substrate-released conformations reveal a gating mechanism of ECF transporters. Nat Commun. 2015. 6:7661.

22.   Yu F. #, He F.Y. #, Yao H.Y., Wang C.Y., Wang J.C., Li J.X., Qi X.F., Xue H.W.*, Ding J.P.*, Zhang P.*. Structural basis of intramitochondrial phosphatidic acid transport mediated by Ups1-Mdm35 complex. EMBO Rep. 2015. 16 (7). 813-23. (Recommended by Faculty 1000, Biology)

23.  Li X.M., Chao D.Y., Wu Y., Huang X.H., Chen K., Cui L.G., Su L., Ye W.W., Chen H., Chen H.C., Dong N.Q., Guo T., Shi M., Feng Q., Zhang P., Han B., Shan J.X.*, Gao J.P.*, Lin H.X.*. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice.  Nat Genet2015. 47(7):827-33.

24.  Zhang M.H.#, Bao Z.H.#, Zhao Q., Guo H., Xu K., Wang C.C., Zhang P.*. Structure of a pantothenate transporter and implications for ECF module sharing and energy coupling of group II ECF transporters. Proc Natl Acad Sci U S A. 2014. 111(52):18560-5.

25.  Yang X., Ren W.Q., Zhao Q.X., Zhang P, Wu F.J., He Y.K.*.  Homodimerization of HYL1 ensures the correct selection of cleavage sites in primary miRNA. Nucleic Acids Res. 2014. 42(19):12224-12236.

26.  Zhang Z.L., Wu J., Lin W., Wang J., Yan H., Zhao W., Ma J., Ding J.P.*, Zhang P.*., and Zhao G.P.*. Subdomain II of alpha-isopropylmalate synthase is essential for activity: Inferring a mechanism of feedback inhibition. J Biol Chem. 2014. 289(40): 27966-27978.

27.  Lin W., Wang Y., Han X.B., Zhang Z.L.,Wang C.Y., Wang J., Yang H.Y., Lu Y.H., Jiang W.H., Zhao G.P.*., Zhang P.*. Atypical OmpR/PhoB subfamily response regulator GlnR of actinomycetes functions as a homodimer, stabilized by the unphosphorylated conserved Asp-focused charge. J Biol Chem. 2014. 289(22): 15413-15425.

28.  Zhang P.*. Structure and mechanism of energy-coupling factor transporters. Trends Microbiol. 2013. 21(12):652-9. Invited review

29.  Xu K. #, Zhang M.H. #, Zhao Q. #, Yu F. #, Guo H., Wang C.Y., He F.Y., Ding J.P., Zhang P.*. Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature. 2013. 497(7448):268-71. (Recommended by Faculty 1000, Biology; Highlighted by Nature China.)

30.  Li J.X. #, Fang X. #, Zhao Q., Ruan J.X., Yang C.Q., Wang L.J., Miller D.J., Faraldos J.A., Allemann R.K., Chen X.Y.*, Zhang P.*.  Rational engineering of plasticity residues of sesiquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency.  Biochem J. 2013. 451(3):417-26.

31.  Zhang P., Wang J.W. and Shi Y.*. Structure and mechanism of the S component of a bacterial ECF transporter. Nature. 2010; 468(7324): 717-720. (Recommended by Faculty 1000, Biology)

指导学生

已指导学生

许可  博士研究生  071007-遗传学  

王程远  博士研究生  071007-遗传学  

赵琴  博士研究生  071007-遗传学  

何方圆  博士研究生  071007-遗传学  

齐晓峰  博士研究生  071007-遗传学  

鲍志浩  博士研究生  071007-遗传学  

现指导学生

王程程  博士研究生  071007-遗传学  

邵凯  博士研究生  071007-遗传学  

封赵杰  硕士研究生  071007-遗传学  

康伟平  硕士研究生  071001-植物学  

张雪  博士研究生  071007-遗传学  

洪森  博士研究生  071007-遗传学  

薛冰阳  博士研究生  071007-遗传学