基本信息

曹婍 女 硕导 中国科学院计算技术研究所
电子邮件: caoqi@ict.ac.cn
通信地址: 北京市海淀区科学院南路6号计算技术研究所
邮政编码:
电子邮件: caoqi@ict.ac.cn
通信地址: 北京市海淀区科学院南路6号计算技术研究所
邮政编码:
研究领域
可信推荐算法、算法安全评估监测、社交媒体分析挖掘
招生信息
招生专业
081203-计算机应用技术
招生方向
可信推荐算法算法安全评估监测社交媒体分析挖掘
教育背景
2015-09--2020-07 中国科学院大学 博士2011-09--2015-07 中国人民大学 学士
工作经历
工作简历
2022-09~现在, 中国科学院计算技术研究所, 副研究员2020-07~2022-09,中国科学院计算技术研究所, 助理研究员
社会兼职
2023-11-27-今,中国中文信息学会社会媒体处理专委会委员, 委员
教授课程
高级人工智能
专利与奖励
奖励信息
(1) 中国科学院计算技术研究所优秀研究人员, 研究所(学校), 2023(2) 中国中文信息学会优秀博士学位论文提名奖, 其他, 2021(3) 中国科学院计算技术研究所优秀研究人员, 其他, 2021(4) IEEE BigComp国际会议最佳论文奖 , 其他, 2020
专利成果
( 1 ) 一种推荐系统流行度去偏方法和系统、存储介质, 发明专利, 2023, 第 1 作者, 专利号: CN116664226A( 2 ) 基于图表示学习的身份保持对抗训练方法、装置、介质, 发明专利, 2022, 第 3 作者, 专利号: CN114418060A( 3 ) 一种提高图数据上鲁棒性的对抗免疫方法, 发明专利, 2021, 第 3 作者, 专利号: CN113762465A( 4 ) 基于位置学习图卷积神经网络的图分类方法及系统, 发明专利, 2021, 第 3 作者, 专利号: CN113128587A( 5 ) 网络信息传播影响力度量方法、系统及影响力最大化方法, 专利授权, 2019, 第 2 作者, 专利号: CN109741198A
出版信息
发表论文
[1] Yige Yuan, Bingbing Xu, Huawei Shen, Qi Cao, Keting Cen, Wen Zheng, Xueqi Cheng. Towards generalizable Graph Contrastive Learning: An information theory perspective. NEURAL NETWORKS. 2024, 第 4 作者172: http://dx.doi.org/10.1016/j.neunet.2024.106125.[2] 刘元浩, 曹婍, 沈华伟, 伍云帆, 陶舒畅, 程学旗. Popularity Debiasing from Exposure to Interaction in Collaborative Filtering. Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2023, 第 2 作者 通讯作者 [3] Huang, Junjie, Huang, Winbin, Bu, Yi, Cao, Qi, Shen, Huawei, Cheng, Xueqi. What makes a successful rebuttal in computer science conferences?: A perspective on social interaction. JOURNAL OF INFORMETRICS[J]. 2023, 第 4 作者17(3): http://dx.doi.org/10.1016/j.joi.2023.101427.[4] Huang, Junjie, Xie, Ruobing, Cao, Qi, Shen, Huawei, Zhang, Shaoliang, Xia, Feng, Cheng, Xueqi. Negative Can Be Positive: Signed Graph Neural Networks for Recommendation. INFORMATION PROCESSING & MANAGEMENT[J]. 2023, 第 3 作者60(4): http://dx.doi.org/10.1016/j.ipm.2023.103403.[5] 张凯科, 曹婍, Gaolin Fang, Bingbing Xu, Hongjian Zou, 沈华伟, 程学旗. DyTed: Disentangled Representation Learning for Discrete-time Dynamic Graph. Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 2023, 第 2 作者 通讯作者 [6] Tao, Shuchang, Cao, Qi, Shen, Huawei, Wu, Yunfan, Hou, Liang, Sun, Fei, Cheng, Xueqi. Adversarial camouflage for node injection attack on graphs. INFORMATION SCIENCES[J]. 2023, 第 2 作者 通讯作者 649: http://dx.doi.org/10.1016/j.ins.2023.119611.[7] 岑科廷, 沈华伟, 曹婍, 程学旗. 图对比学习综述. 中文信息学报[J]. 2023, 第 3 作者37(5): 1-21, http://lib.cqvip.com/Qikan/Article/Detail?id=7110251012.[8] 王兆慧, 沈华伟, 曹婍, 程学旗. 图分类研究综述. 软件学报[J]. 2022, 第 3 作者33(1): 171-192, http://lib.cqvip.com/Qikan/Article/Detail?id=7106515294.[9] Liang Hou, Qi Cao, Huawei Shen, Siyuan Pan, Xiaoshuang Li, Xueqi Cheng. Conditional GANs with Auxiliary Discriminative Classifier. Proceedings of the 39th International Conference on Machine Learning (ICML'22). 2022, 第 2 作者http://arxiv.org/abs/2107.10060.[10] Yunfan Wu, Qi Cao, Huawei Shen, Shuchang Tao, Xueqi Cheng. INMO: A Model-Agnostic and Scalable Module for Inductive Collaborative Filtering. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'22). 2022, 第 2 作者 通讯作者 [11] Qi Cao, Huawei Shen, Yuanhao Liu, Jinhua Gao, Xueqi Cheng. PREP: Pre-training with Temporal Elapse Inference for Popularity Prediction. Companion Proceedings of the Web Conference 2022 (WWW’22 Companion). 2022, 第 1 作者[12] Zhaohui Wang, Qi Cao, Huawei Shen, Bingbing Xu, Keting Cen, Xueqi Cheng. Location-aware convolutional neural networks for graph classification. NEURAL NETWORKS[J]. 2022, 第 2 作者155: 74-83, http://dx.doi.org/10.1016/j.neunet.2022.07.035.[13] Keting Cen, Huawei Shen, Qi Cao, Bingbing Xu, Xueqi Cheng. Towards Powerful Graph Contrastive Learning without Negative Examples. Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN'22). 2022, 第 3 作者[14] 程学旗, 徐冰冰, 曹婍, 刘盛华, 陈娟, 林磊, 沈华伟. 开放环境下的群智决策:概念、挑战及引领性技术. 智能科学与技术学报[J]. 2022, 第 3 作者4(1): 45-54, http://lib.cqvip.com/Qikan/Article/Detail?id=7106845164.[15] Cao, Qi, Shen, Huawei, Gao, Jinhua, Cheng, Xueqi. Learning diffusion model-free and efficient influence function for influence maximization from information cascades. KNOWLEDGE AND INFORMATION SYSTEMS[J]. 2021, 第 1 作者63(5): 1173-1196, http://dx.doi.org/10.1007/s10115-021-01556-6.[16] Huang, Junjie, Shen, Huawei, Cao, Qi, Cai, Li, Cheng, Xueqi. How Medical Crowdfunding Helps People? A Large-scale Case Study on Waterdrop Fundraising. 2021, 第 3 作者http://arxiv.org/abs/2011.13608.[17] Huang, Junjie, Shen, Huawei, Cao, Qi, Tao, Shuchang, Cheng, Xueqi. Signed Bipartite Graph Neural Networks. 2021, 第 3 作者http://arxiv.org/abs/2108.09638.[18] 刘元浩, 曹婍, 沈华伟, 黄俊杰, 程学旗. 基于自增强泊松过程的COVID-19疫情预测. 中国传媒大学学报:自然科学版[J]. 2021, 第 2 作者28(6): 1-8, http://lib.cqvip.com/Qikan/Article/Detail?id=7106576698.[19] 曹婍, 沈华伟, 高金华, 程学旗. 基于深度学习的流行度预测研究综述. 中文信息学报[J]. 2021, 第 1 作者35(2): 1-18+32, http://lib.cqvip.com/Qikan/Article/Detail?id=7104315065.[20] Tao, Shuchang, Shen, Huawei, Cao, Qi, Hou, Liang, Cheng, Xueqi. Adversarial Immunization for Certifiable Robustness on Graphs. 2021, 第 3 作者http://arxiv.org/abs/2007.09647.[21] Tao, Shuchang, Cao, Qi, Shen, Huawei, Huang, Junjie, Wu, Yunfan, Cheng, Xueqi. Single Node Injection Attack against Graph Neural Networks. 2021, 第 2 作者[22] Cao, Qi, Shen, Huawei, Gao, Hnhua, Wei, Bingzheng, Cheng, Xuegi, ACM. Popularity Prediction on Social Platforms with Coupled Graph Neural Networks. PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20)[J]. 2020, 第 1 作者70-78, http://dx.doi.org/10.1145/3336191.3371834.[23] Yan, Rong, Shen, Huawei, Cao, Qi, Cen, Keting, Wang, Li, Lee, W, Chen, L, Moon, YS, Bourgeois, J, Bennis, M, Li, YF, Ha, YG, Kwon, HY, Cuzzocrea, A. GraphWGAN: Graph Representation Learning with Wasserstein Generative Adversarial Networks. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020). 2020, 第 3 作者315-322, [24] Shao, Jiangli, Shen, Huawei, Cao, Qi, Cheng, Xueqi, Zhang, Q, Liao, X, Ren, Z. Temporal Convolutional Networks for Popularity Prediction of Messages on Social Medias. INFORMATION RETRIEVAL (CCIR 2019). 2019, 第 3 作者11772: 135-147, http://dx.doi.org/10.1007/978-3-030-31624-2_11.[25] Xing,Guoliang, Gao,Hao, Cao,Qi, Yue,Xinyu, Xu,Bingbing, Cen,Keting, Shen,Huawei. User Profiling for CSDN: Keyphrase Extraction, User Tagging and User Growth Value Prediction: First-place Entry for User Profiling Technology Evaluation Campaign in SMP Cup 2017. Data Intelligence[J]. 2019, 第 3 作者1(2): 137-159, https://direct.mit.edu/dint/article/1/2/137/27499/User-Profiling-for-CSDN-Keyphrase-Extraction-User.[26] Cao, Qi, Shen, Huawei, Gao, Hao, Gao, Jinhua, Cheng, Xueqi, ASSOC COMP MACHINERY. Predicting the Popularity of Online Content with Group-specific Models. WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB[J]. 2017, 第 1 作者765-766, [27] Cao Qi, Shen Huawei, Cen Keting, Ouyang Wentao, Cheng Xueqi, Assoc Comp Machinery. DeepHawkes: Bridging the Gap between Prediction and Understanding of Information Cascades. CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT[J]. 2017, 第 1 作者1149-1158, http://dx.doi.org/10.1145/3132847.3132973.
科研活动
科研项目
( 1 ) 社交媒体中信息的可控定向传播方法, 负责人, 国家任务, 2022-01--2024-12( 2 ) 动态图网络的特征表示稳定性研究, 负责人, 其他, 2021-10--2022-12( 3 ) 智能算法模型安全评估与风险监测技术, 参与, 国家任务, 2022-12--2025-11