General

Gengxin Zhang

Institute of Tibetan Plateau Research, CAS                               010-84097071

16 Courtyard   Lincui Rd.                                       E-email: zhangg@itpcas.ac.cn

Chaoyang Dist.

Beijing 100101


Research Areas


(1) Population structure and dynamics – how do microbial communities very among different fine geochemical gradients? 

(2) Metabolic and functional potential – what are energy sources and primary producers for the deep habitats; can we used observed concentrations of biologically important compounds (i.e. H2, NO2-, NO3-, Fe3+, SeO42-, As5+, CO, Fe2+, H2S, S0, S2O32-, SO32-, SO42-, CH4, and CO2), to make predictions regarding metabolic potentials of microbial inhabitants? 

(3) Linking structure and function of microbial communities – how do microbial functional groups organize together, and how do microbes communicate with each other?


Education

Staff Scientist              (Sep. 2009 ~ present) Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, CAS

Research Associate      (Aug. 2007 ~ Aug. 2009) Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN

Research Associate    (May. 2006 ~ Jul. 2007) Civil & Environmental Engineering, The Pennsylvania State University, University Park, PA

 

Ph.D. (2006)                     Geology, Miami University, Oxford, OH

 

M.S. (2001)                       Organic Geochemistry, Lanzhou Institute of Geology,

                                          Chinese Academy of Sciences, China

 

B.A. (1997)                       Geology, Xi’an Engineering University, China


Experience

   
Work Experience

Professional experience:

 

Research and Teaching Assistant, Geology Department, Maim University, January 2002–2006.

 

Research Assistant, Lanzhou Institute of Geology, Chinese Academy of Sciences, China, 1998- 2000

 

Assistant Engineer, China Geological Survey, Xinjiang , China, 1997-1998

 


Publications

   
Papers

(1) Yanli Yuan, Guicai Si, Wei Li, Zhang, G*. 2015. Altitudinal distribution of ammonia-oxidizing archaea and bacteria in alpine grassland soils along the south-facing slope of Nyqentangula Mountains, central Tibetan Plateau. Geomicrobiology Journal, 32(1):77-88

 

 (2) Si, G., Lei,T., Xia,Y., Zhang, G*. 2015.Microbial nonlinear Response to a Precipitation Gradient in the Northeastern Tibetan Plateau. Geomiobiology Journal, (accepted)

 

(3) Yuan YL, Si GC, Wang J, Han CH, Zhang, G*. 2015. Microclimate determines soil bacterial community structures across two contrasting timberline ecotones in the Sergyemla Mountains, Southeast Tibet. European Journal of Soil Science (Accepted)

 

(4) Yuan, Y*., Si, G., Wang, J., Luo, T., Zhang, G. 2014. Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau. FEMS Microbiol Ecol 87, 121-132.

 

(5) Shen, M., S. Piao, S.-J. Jeong, L. Zhou, Z. Zeng, P. Ciais, D. Chen, M. Huang, C.-S. Jin, L. Z. X. Li, Y. Li, R. B. Myneni, K. Yang, G. Zhang, Y. Zhang, and T. Yao. 2015. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proceedings of the National Academy of Sciences USA doi: 10.1073/pnas.1504418112.

 

(6) Shen, M., S. Piao, N. Cong, G. Zhang, and I. A. Jassens. 2015. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Global Change Biology In Press:doi: 10.1111/gcb.12961.

 

(7)Yang, Y., Fang, X., Galy, A., Zhang, G, Liu, S., Zan, J., Wu, F., Meng, Q., Ye, C., Yang, R., Liu, X., 2015. Carbonate composition and its impact on fluvial geochemistry in the NE Tibetan Plateau region, Chemical Geology 410, 138-148. doi: 10.1016/j.chemgeo.2015.06.009

 

(8) Shen, M., Tang, Y., Chen, J., Yang, X., Wang, C., Cui, X., Yang, Y., Han, L., Li, L., Du, J., Zhang, G*., Cong, N., 2014a. Earlier-Season Vegetation Has Greater Temperature Sensitivity of Spring Phenology in Northern Hemisphere. PLoS ONE 9.

 

(9) Shen, M., Zhang, G*., Cong, N., Wang, S., Kong, W., Piao, S., 2014b. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agr Forest Meteor 189, 71-80.

 

(10) Peng, S., Piao, S., Ciais, P., Myneni, R.B., Chen, A., Chevallier, F., Dolman, A.J., Janssens, I.A., Penuelas, J., Zhang, G., Vicca, S., Wan, S., Wang, S., Zeng, H., 2013. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 501, 88-92.

 

(11) Perevalova, A.A., Kublanov, I.V., Baslerov, R.V., Zhang, G., Bonch-Osmolovskaya, E.A., 2013. Brockia lithotrophica gen. nov., sp nov., an anaerobic thermophilic bacterium from a terrestrial hot spring. Int J Syst Evol Microbiol 63, 479-483.

 

(12) Shen, M., Sun, Z., Wang, S., Zhang, G., Kong, W., Chen, A., Piao, S., 2013. No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proc Natl Acad SciUSA110, E2329-E2329.

 

(13) Zhang, G., Burgos, W.D., Senko, J.M., Bishop, M.E., Dong, H., Boyanov, M.I., Kemner, K.M., 2011. Microbial reduction of chlorite and uranium followed by air oxidation. Chem Geol 283, 242-250.

 

(14) Zhang, G, Dong, H., Jiang, H., Kukkadapu, R.K., Kim, J., Eberl, D.D., and Xu, Z. (2009) Biomineralization Associated with Microbial Reduction of Fe(III) and Oxidation of Fe(II) in Solid Minerals. American Mineralogist, 94, 1049-1058.

 

(15) Zhang, G, Senko, J.M., Kelly, S.D., Tan, H., Kemner, K.M., and Burgos, W.D. (2009) Microbial reduction of iron(III)-rich nontronite and uranium(VI). Geochimica et Cosmochimica Acta, 73, 3523-3538.

 

(16) Senko, J.M., Zhang, G, McDonough, J.T., Bruns, M.A., and Burgos, W.D. (2009) Metal reduction at low pH by a Desulfosporosinus species: implications for the biological treatment of acidic mine drainage. Geomicrobiology Journal, 26(2) 71-82.

 

(17) Burgos, W.D., McDonough, J.T., Senko, J.M., Zhang, G, Dohnalkova, A.C., Kelly, S.D., Gorby, Y., and Kemner, K.M. (2008) Characterization of uraninite nanoparticles produced by Shewanella oneidensis MR-1. Geochimica Et Cosmochimica Acta, 72(20), 4901-4915.

 

(18) Navarro, J., Moser, D., Flores, A., Ross, C., Rosen, M., Dong, H.L., Zhang, G, and Hedlund, B. (2009) Bacterial Succession within an Ephemeral Hypereutrophic Mojave Desert Playa Lake. Microbial Ecology, 57(2), 307-320.

 

(19) Rao, W.B., Chen, J., Yang, J.D., Ji, J.F., Zhang, G, and Chen, J.S. (2008) Strontium isotopic and elemental characteristics of calcites in the eolian dust profile of the Chinese Loess Plateau during the past 7 Ma. Geochemical Journal, 42(6), 493-506.

 

(20) Zhang, G,, Dong H., Kim J., and Eberl D. D. (2007) Microbial Reduction of Structural Fe3+ in Nontronite by a Thermophilic Bacterium and its Roles in Promoting the Smectite to Illite Reaction. American Mineralogist 92, 1411-1419.

 

(21) Zhang, G,, Kim J., Dong H., and Andre J. S. (2007) Microbial effects in promoting the smectite to illite reaction: Role of organic matter intercalated in the interlayer. American Mineralogist 92, 1401-1410.

 

(22) Zhang, G, Dong, H.L, Jiang, H.C., Xu, Z.Q., and Eberl, D.D. (2006) Unique microbial community in drilling fluids from Chinese Continental Scientific drilling. Geomicrobiology Journal, 23(6), 499-514.

 

(23) Dong, H.L., Zhang, G, Jiang, H., Yu, C., Chapman, L.P., Lucas, C.R., and Fields, M.W. (2006) Microbial Diversity in Water and Sediment of Lake Qinghai: The Largest Inland Saline Lake in China. Microbiology Ecology, 51, 65-82.

 

(24) Jiang, H.C., Dong, H.L., Zhang, G, Yu, B.S., Chapman, L.R., and Fields, M.W. (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Applied and Environmental Microbiology, 72(6), 3832-3845.

 

(25) Zhang, G, Dong, H.L., Xu, Z.Q., Zhao, D.G., and Zhang, C.L. (2005) Microbial Diversity in Ultra-High-Pressure Rocks and Fluids from the Chinese Continental Scientific Drilling Project in China. Applied and Environmental Microbiology, 71(6), 3213-3227.

 

(26) Xia Yanqing, Zhang, G, (2002) Investigation of mechanisms of formation of biphenyls and benzonaphthothiophenes by simulation experiment. Science in China (series D), 45 (5), 392-398.

Research Interests

My interests are in Microbial Biogeochemistry by using an integrated approach of molecular biology, microbial biomarkers, microbial isolation and culturing, and geochemical and mineralogical tools. My specific interests are to study the microbial community structure, functions, and physiological pathways that support biogeochemical processes in the subsurface, which provide insights for geological and microbial co-evolution on Earth; to study the interactions between microbes and minerals, especially the impact of microbes on weathering, biomineralization, and geochemical cycling such as C, N, Fe and Mn.

Microbes can be found at greater extremes of temperature, acidity, alkalinity, and salinity. The study of microbial life in the deep subsurface can provide insights into: how life may have evolved in the extreme physical and chemical conditions dominating the early earth, and how microorganisms play a role in shaping their surroundings. To investigate the genetic and functional diversity of life in the deep subsurface, I am interested in to use the integrated approaches to address several specific questions: (1) Population structure and dynamics – how do microbial communities very among different fine geochemical gradients? (2) Metabolic and functional potential – what are energy sources and primary producers for the deep habitats; can we used observed concentrations of biologically important compounds (i.e. H2, NO2-, NO3-, Fe3+, SeO42-, As5+, CO, Fe2+, H2S, S0, S2O32-, SO32-, SO42-, CH4, and CO2), to make predictions regarding metabolic potentials of microbial inhabitants? (3) Linking structure and function of microbial communities – how do microbial functional groups organize together, and how do microbes communicate with each other?

I am interested in microbe-mineral interactions and the geological and ecological implications of these interactions in environments. Specifically, I am interested in (1) The processes by metal (Fe(III) or Mn(IV))-reducing and metal(Fe(II) or Mn(II))-oxidizing bacteria dissolve and precipitate iron or manganese-bearing minerals. Electron microscopy (TEM and SEM) and other high resolution imaging techniques provide a unique opportunity to directly image mineral-microbe interface. Biogeochemical interfacial reactions are ultimately expressions of biochemical and physical processes at mineral surfaces that are mediated by bio-molecules at nanometer scale. (2) The consequences of microbial metal redox processes for the fate of organic and inorganic pollutants in natural environments such as dehalogenation of organic compounds, bioremediation of uranium. 3) Elemental cycles. Microbial mediated Fe(II)-Fe(III) cycling are associated with nitrate-reducing, dissimilatory iron-reducing and sulfate-reducing bacteria. Biogeochemical iron/manganese cycle integrates with carbon, nitrogen and sulfur cycles.



Students

已指导学生

王建  硕士研究生  070501-自然地理学  

现指导学生

韩丛海  博士研究生  070501-自然地理学  

李皎  博士研究生  070501-自然地理学  

陈秋宇  硕士研究生  071300-生态学  

胡轶伦  博士研究生  070501-自然地理学  

孙淑蕊  博士研究生  070501-自然地理学