基本信息

应康 男 硕导 中国科学院上海光学精密机械研究所
电子邮件: yingk0917@siom.ac.cn
通信地址: 上海市嘉定区清河路390号
邮政编码:
电子邮件: yingk0917@siom.ac.cn
通信地址: 上海市嘉定区清河路390号
邮政编码:
个人简介
作为课题负责人承担国家重点研发计划,国家自然科学基金,JY-型谱项目等国家重要课题,围绕“光谱合成高功率光纤激光” 、“分布式光纤传感”、“测风激光雷达”等系统中关键器件国产化瓶颈问题,开展单频激光技术研究和器件研制工作,整机性能达到国际高性能激光器NKT Koheras系列产品水平;并形成了一系列原创成果,实现相关单频激光源频率噪声、强度噪声、线宽、调谐性能等核心指标的数量级提升.相关研究成果作为第一/通讯作者发表Optics Express, Optics Letters等论文23篇,并入选“中科院青年创新促进会”、“上海市青年科技英才扬帆计划”等青年人才计划。
招生信息
招生专业
080300-光学工程
招生方向
单频激光技术
光纤光子学技术
精密时频传递测量技术
光纤光子学技术
精密时频传递测量技术
教育背景
2010-09--2015-07 中国科学院上海光学精密机械研究所 研究生学习/博士
2006-09--2010-06 中国科学技术大学 本科学习/学士
2006-09--2010-06 中国科学技术大学 本科学习/学士
工作经历
工作简历
2020-01~现在, 中国科学院上海光学精密机械研究所, 副研究员
2015-10~2020-01,中国科学院上海光学精密机械研究所, 助理研究员
2015-10~2020-01,中国科学院上海光学精密机械研究所, 助理研究员
专利与奖励
专利成果
( 1 ) 基于腔内自参考的单频激光器频率稳定装置, 发明专利, 2021, 第 1 作者, 专利号: CN113078552A
( 2 ) 高精度光纤时间传递系统及方法, 发明专利, 2019, 第 2 作者, 专利号: CN110224776A
( 3 ) 基于非线性效应的半导体激光器强度噪声抑制装置及抑制方法, 专利授权, 2018, 第 2 作者, 专利号: CN108493762A
( 4 ) 大范围连续可调光纤延迟线装置, 发明专利, 2018, 第 1 作者, 专利号: CN107966765A
( 5 ) 光纤激光器封装装置, 专利授权, 2018, 第 1 作者, 专利号: CN107749558A
( 6 ) 激光器驰豫振荡噪声抑制装置, 发明专利, 2018, 第 1 作者, 专利号: CN107591673A
( 7 ) 光纤激光器温度补偿封装装置, 发明专利, 2017, 第 1 作者, 专利号: CN106684678A
( 8 ) 光纤激光器强度噪声抑制装置和抑制方法, 发明专利, 2016, 第 1 作者, 专利号: CN105932530A
( 9 ) 中心频率可调谐的半导体激光器稳频装置和稳频方法, 发明专利, 2015, 第 2 作者, 专利号: CN104767119A
( 10 ) 半导体激光器稳频装置及其调整方法, 发明专利, 2012, 第 1 作者, 专利号: CN102593715A
( 2 ) 高精度光纤时间传递系统及方法, 发明专利, 2019, 第 2 作者, 专利号: CN110224776A
( 3 ) 基于非线性效应的半导体激光器强度噪声抑制装置及抑制方法, 专利授权, 2018, 第 2 作者, 专利号: CN108493762A
( 4 ) 大范围连续可调光纤延迟线装置, 发明专利, 2018, 第 1 作者, 专利号: CN107966765A
( 5 ) 光纤激光器封装装置, 专利授权, 2018, 第 1 作者, 专利号: CN107749558A
( 6 ) 激光器驰豫振荡噪声抑制装置, 发明专利, 2018, 第 1 作者, 专利号: CN107591673A
( 7 ) 光纤激光器温度补偿封装装置, 发明专利, 2017, 第 1 作者, 专利号: CN106684678A
( 8 ) 光纤激光器强度噪声抑制装置和抑制方法, 发明专利, 2016, 第 1 作者, 专利号: CN105932530A
( 9 ) 中心频率可调谐的半导体激光器稳频装置和稳频方法, 发明专利, 2015, 第 2 作者, 专利号: CN104767119A
( 10 ) 半导体激光器稳频装置及其调整方法, 发明专利, 2012, 第 1 作者, 专利号: CN102593715A
出版信息
发表论文
[1] 应康, 陈迪俊, 皮浩洋, 王照勇, 李璇, 孙延光, 魏芳, 杨飞, 程楠, 叶青, 蔡海文. Ultra-Stable Fiber Laser Based on Intracavity Dual Mode Self-Reference Mechanism. Journal of Lightwave Technology[J]. 2022, 40(12): 3923-3929, [2] 梁虹, 应康, 王迪, 魏金金, 李璇, 皮浩洋, 魏芳, 蔡海文. 基于光栅局域温度控制的高精度多相移的产生和滤波器的制备. 中国激光[J]. 2021, 48(16): 104-114, [3] Lu, Zhan, Gui, Youzhen, Wang, Jialiang, Ying, Kang, Sun, Yanguang, Liu, Lei, Cheng, Nan, Cai, Haiwen. Fiber-optic time-frequency transfer in gigabit ethernet networks over urban fiber links. OPTICS EXPRESS[J]. 2021, 29(8): 11693-11701, http://dx.doi.org/10.1364/OE.422727.
[4] 王照勇, 卢斌, 叶蕾, 应康, 孙延光, 程楠, 鲁湛, 叶青, 蔡海文. 分布式光纤声波传感及其地震波检测应用. 激光与光电子学进展[J]. 2021, 58(13): 75-86, http://lib.cqvip.com/Qikan/Article/Detail?id=7105512801.
[5] Liang, Hong, Ying, Kang, Wang, Di, Pi, Haoyang, Li, Xuan, Wang, Zhaoyong, Wei, Fang, Cai, Haiwen. All-fiber narrow-bandwidth rectangular Optical filter with reconfigurable bandwidth and tunable center wavelength. OPTICS EXPRESS[J]. 2021, 29(8): 11739-11749, http://dx.doi.org/10.1364/OE.423451.
[6] fang zujie, Wei, Fang, 应康, 叶青, 蔡海文. Intensity Noise of Semiconductor Lasers Induced by Inter-Mode Beating. IEEE JOURNAL OF QUANTUM ELECTRONICS[J]. 2021, 57(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000610966100001.
[7] Ying Kang. A narrow linewidth swept laser source based on cascaded multi-wavelengths injection of DFB Lasers. Applied Optics. 2020, [8] 孙延光, 徐敏, 陈亚晴, 吴瑞, 桂有珍, 程楠, 应康, 杨飞, 蔡海文. 自由空间激光时频传输研究进展. 激光与光电子学进展[J]. 2020, 57(17): 43-51, http://lib.cqvip.com/Qikan/Article/Detail?id=7103156550.
[9] 王吉, 陈迪俊, 魏芳, 孙延光, 皮浩洋, 杨中国, 吴瑞, 应康, 蔡海文, 陈卫标. 基于全光纤环形谐振腔的转移腔稳频技术研究. 中国激光[J]. 2020, 47(9): 256-262, http://lib.cqvip.com/Qikan/Article/Detail?id=7103156007.
[10] 王迪, 应康, 李文屏, 张武, 龚静文, 梁栋, 蒋炜, 谭庆贵, 李小军. 多相移光纤光栅滤波器的设计与制备. 光学学报[J]. 2020, 40(22): 25-33, http://lib.cqvip.com/Qikan/Article/Detail?id=7103606487.
[11] Wang, Zhaoyong, Yang, Junqi, Gu, Jinfeng, Lu, Bin, Ye, Lei, Ying, Kang, Ye, Qing, Qu, Ronghui, Cai, Haiwen. Multi-source aliasing suppression for distributed fiber acoustic sensing with directionally coherent enhancement technology. OPTICS LETTERS[J]. 2020, 45(20): 5672-5675, https://www.webofscience.com/wos/woscc/full-record/WOS:000581198200010.
[12] Liang, Hong, Ying, Kang, Wei, Fang, Sun, Yanguang, Wang, Zhaoyong, Chen, Dijun, Yang, Fei, Cai, Haiwen. Narrow linewidth swept laser source based on cascaded multi-wavelength injection of DFB lasers. APPLIED OPTICS[J]. 2020, 59(30): 9393-9399, https://www.webofscience.com/wos/woscc/full-record/WOS:000581917500013.
[13] Ying, Kang, Liang, Hong, Chen, Dijun, Sun, Yanguang, Pi, HaoYang, Wei, Fang, Yang, Fei, Cai, Haiwen. Ultralow noise DFB fiber laser with self-feedback mechanics utilizing the inherent photothermal effect. OPTICS EXPRESS[J]. 2020, 28(16): 23717-23727, http://dx.doi.org/10.1364/OE.400083.
[14] Ying Kang. Research on the key technology of high precision time frequency transfer via 200km deseart urban fiber link. Acta Phys. Sin.. 2019, [15] Ying Kang, Gui YouZhen, Sun YanGuang, Cheng Nan, Xiong XiaoFeng, Wang JiaLiang, Yang Fei, Cai HaiWen. Key technology of high-precision time frequency transfer via 200 km desert urban fiber link. ACTA PHYSICA SINICA[J]. 2019, 68(6): [16] 应康, 桂有珍, 孙延光, 程楠, 熊晓锋, 王家亮, 杨飞, 蔡海文. 200 km沙漠链路高精度光纤时频传递关键技术研究. 物理学报[J]. 2019, 34-41, http://lib.cqvip.com/Qikan/Article/Detail?id=87768866504849574854484853.
[17] Qin, Xiaoqiong, Fang, Zujie, Ying, Kang, Ding, Zhidan, Wang, Di, Wei, Fang, Yang, Fei, Ye, Qing, Qu, Ronghui, Cai, Haiwen. Slow-Light Effect and Mode Selection of Double Fiber Ring With a Fiber Bragg Grating. IEEE PHOTONICS JOURNAL[J]. 2018, 10(1): https://doaj.org/article/3716e543abab4610916d9375a0ac9580.
[18] Qin, Xiaoqiong, Ying, Kang, Fang, Zujie, Wei, Fang, Chen, Dijun, Qu, Ronghui, Cai, Haiwen. Intensity noise in high-frequency range of an external cavity diode laser and its reduction by second harmonic generation. OPTICS LETTERS[J]. 2018, 43(16): 3973-3976, https://www.webofscience.com/wos/woscc/full-record/WOS:000441505100043.
[19] 秦晓琼, 方祖捷, 应康, 魏芳, 王照勇, 叶青, 潘政清, 蔡海文, 瞿荣辉. 窄线宽全光纤环形滤波器特性研究. 光学学报[J]. 2018, 38(10): 1006001-1, http://lib.cqvip.com/Qikan/Article/Detail?id=676701376.
[20] Liu, Yutong, Lin, Gongwei, Ying, Kang, Liang, Lin, Niu, Yueping, Gong, Shangqing. Observation of polariton resonances with five-level M-type atoms in an optical cavity. OPTICS COMMUNICATIONS[J]. 2017, 402: 163-166, http://dx.doi.org/10.1016/j.optcom.2017.05.063.
[21] Liu, Yutong, Lin, Gongwei, Ying, Kang, Gong, Shangqing, Liang, Lin, Niu, Yueping. Observation of polariton resonances with five-level M-type atoms in an optical cavity. OPT. COMMUN.[J]. 2017, 402: 163-, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000407985300028&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[22] 应康, 陈迪俊, 魏芳, 蔡海文, 瞿荣辉. 基于腔内光放大器结构的光纤激光器噪声抑制方法. 红外[J]. 2017, 38(3): 17-20, http://lib.cqvip.com/Qikan/Article/Detail?id=671646720.
[23] Ding, Meng, Chen, Dijun, Fang, Zujie, Wang, Di, Zhang, Xi, Wei, Fang, Yang, Fei, Ying, Kang, Cai, Haiwen. Photothermal effects in phase shifted FBG with varied light wavelength and intensity. OPTICS EXPRESS[J]. 2016, 24(22): 25370-25379, https://www.webofscience.com/wos/woscc/full-record/WOS:000388413400067.
[24] Ying, Kang, Chen, Dijun, Pan, Zhengqing, Zhang, Xi, Cai, Haiwen, Qu, Ronghui. All-optical noise reduction of fiber laser via intracavity SOA structure. APPL. OPTICS[J]. 2016, 55(29): 8185-, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000385715900007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[25] Ying, Kang, Chen, Dijun, Pan, Zhengqing, Zhang, Xi, Cai, Haiwen, Qu, Ronghui. All-optical noise reduction of fiber laser via intracavity SOA structure. APPLIED OPTICS[J]. 2016, 55(29): 8185-8188, https://www.webofscience.com/wos/woscc/full-record/WOS:000385715900007.
[26] Ding, Meng, Chen, Dijun, Fang, Zujie, Wang, Di, Zhang, Xi, Wei, Fang, Yang, Fei, Ying, Kang, Cai, Haiwen. Photothermal effects in phase shifted FBG with varied light wavelength and intensity. OPT. EXPRESS[J]. 2016, 24(22): 25370-, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000388413400067&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[27] Ying, Kang, Niu, Yueping, Chen, Dijun, Cai, Haiwen, Qu, Ronghui, Gong, Shangqing. White light cavity via modification of linear and nonlinear dispersion in an N-type atomic system. OPTICS COMMUNICATIONS[J]. 2015, 342: 189-192, http://dx.doi.org/10.1016/j.optcom.2014.12.080.
[28] Yang, Xu, Ying, Kang, Niu, Yueping, Gong, Shangqing. Reversible self-Kerr nonlinearity in an N-type atomic system through a switching field. JOURNAL OF OPTICS[J]. 2015, 17(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000352033800017.
[29] Ying, Kang, Niu, Yueping, Chen, Dijun, Cai, Haiwen, Qu, Ronghui, Gong, Shangqing. Laser frequency offset locking via tripod-type electromagnetically induced transparency. APPLIED OPTICS[J]. 2014, 53(12): 2632-2637, https://www.webofscience.com/wos/woscc/full-record/WOS:000334582400011.
[30] Chen, Haonan, Ying, Kang, Duan, Yafan, Niu, Yueping, Gong, Shangqing. Cavity linewidth narrowing by means of electromagnetically induced transparency in Rb with a longitudinal magnetic field. CHINESE OPTICS LETTERS[J]. 2014, 12(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000341792600019.
[31] Ying, Kang, Niu, Yueping, Chen, Dijun, Cai, Haiwen, Qu, Ronghui, Gong, Shangqing. Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature. JOURNAL OF MODERN OPTICS[J]. 2014, 61(4): 322-327, https://www.webofscience.com/wos/woscc/full-record/WOS:000333996200007.
[32] Ying, Kang, Niu, Yueping, Chen, Dijun, Cai, Haiwen, Qu, Ronghui, Gong, Shangqing. Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS[J]. 2014, 31(1): 144-148, https://www.webofscience.com/wos/woscc/full-record/WOS:000329035300021.
[33] Ying, Kang, Niu, Yueping, Chen, Dijun, Cai, Haiwen, Qu, Ronghui, Gong, Shangqing. Observation of multi-electromagnetically induced transparency in V-type rubidium atoms. JOURNAL OF MODERN OPTICS[J]. 2014, 61(8): 631-635, https://www.webofscience.com/wos/woscc/full-record/WOS:000335884100002.
[34] Tian Guang-Lei, Wu Shi-Gang, Yang Lu-Yun, Shu Kang-Ying, Qin Lai-Shun, 邵建达. Influence of annealing temperature on structure, optical loss and laser-induced damage threshold of TiO2 thin films. CHIN. PHYS. LETT.[J]. 2007, 24(10): 2967-, http://ir.siom.ac.cn/handle/181231/4518.
[35] Ying, Kang, Niu, Yueping, Chen, Dijun, Cai, Haiwen, Qu, Ronghui. Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system. http://arxiv.org/abs/1403.7346.
[4] 王照勇, 卢斌, 叶蕾, 应康, 孙延光, 程楠, 鲁湛, 叶青, 蔡海文. 分布式光纤声波传感及其地震波检测应用. 激光与光电子学进展[J]. 2021, 58(13): 75-86, http://lib.cqvip.com/Qikan/Article/Detail?id=7105512801.
[5] Liang, Hong, Ying, Kang, Wang, Di, Pi, Haoyang, Li, Xuan, Wang, Zhaoyong, Wei, Fang, Cai, Haiwen. All-fiber narrow-bandwidth rectangular Optical filter with reconfigurable bandwidth and tunable center wavelength. OPTICS EXPRESS[J]. 2021, 29(8): 11739-11749, http://dx.doi.org/10.1364/OE.423451.
[6] fang zujie, Wei, Fang, 应康, 叶青, 蔡海文. Intensity Noise of Semiconductor Lasers Induced by Inter-Mode Beating. IEEE JOURNAL OF QUANTUM ELECTRONICS[J]. 2021, 57(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000610966100001.
[7] Ying Kang. A narrow linewidth swept laser source based on cascaded multi-wavelengths injection of DFB Lasers. Applied Optics. 2020, [8] 孙延光, 徐敏, 陈亚晴, 吴瑞, 桂有珍, 程楠, 应康, 杨飞, 蔡海文. 自由空间激光时频传输研究进展. 激光与光电子学进展[J]. 2020, 57(17): 43-51, http://lib.cqvip.com/Qikan/Article/Detail?id=7103156550.
[9] 王吉, 陈迪俊, 魏芳, 孙延光, 皮浩洋, 杨中国, 吴瑞, 应康, 蔡海文, 陈卫标. 基于全光纤环形谐振腔的转移腔稳频技术研究. 中国激光[J]. 2020, 47(9): 256-262, http://lib.cqvip.com/Qikan/Article/Detail?id=7103156007.
[10] 王迪, 应康, 李文屏, 张武, 龚静文, 梁栋, 蒋炜, 谭庆贵, 李小军. 多相移光纤光栅滤波器的设计与制备. 光学学报[J]. 2020, 40(22): 25-33, http://lib.cqvip.com/Qikan/Article/Detail?id=7103606487.
[11] Wang, Zhaoyong, Yang, Junqi, Gu, Jinfeng, Lu, Bin, Ye, Lei, Ying, Kang, Ye, Qing, Qu, Ronghui, Cai, Haiwen. Multi-source aliasing suppression for distributed fiber acoustic sensing with directionally coherent enhancement technology. OPTICS LETTERS[J]. 2020, 45(20): 5672-5675, https://www.webofscience.com/wos/woscc/full-record/WOS:000581198200010.
[12] Liang, Hong, Ying, Kang, Wei, Fang, Sun, Yanguang, Wang, Zhaoyong, Chen, Dijun, Yang, Fei, Cai, Haiwen. Narrow linewidth swept laser source based on cascaded multi-wavelength injection of DFB lasers. APPLIED OPTICS[J]. 2020, 59(30): 9393-9399, https://www.webofscience.com/wos/woscc/full-record/WOS:000581917500013.
[13] Ying, Kang, Liang, Hong, Chen, Dijun, Sun, Yanguang, Pi, HaoYang, Wei, Fang, Yang, Fei, Cai, Haiwen. Ultralow noise DFB fiber laser with self-feedback mechanics utilizing the inherent photothermal effect. OPTICS EXPRESS[J]. 2020, 28(16): 23717-23727, http://dx.doi.org/10.1364/OE.400083.
[14] Ying Kang. Research on the key technology of high precision time frequency transfer via 200km deseart urban fiber link. Acta Phys. Sin.. 2019, [15] Ying Kang, Gui YouZhen, Sun YanGuang, Cheng Nan, Xiong XiaoFeng, Wang JiaLiang, Yang Fei, Cai HaiWen. Key technology of high-precision time frequency transfer via 200 km desert urban fiber link. ACTA PHYSICA SINICA[J]. 2019, 68(6): [16] 应康, 桂有珍, 孙延光, 程楠, 熊晓锋, 王家亮, 杨飞, 蔡海文. 200 km沙漠链路高精度光纤时频传递关键技术研究. 物理学报[J]. 2019, 34-41, http://lib.cqvip.com/Qikan/Article/Detail?id=87768866504849574854484853.
[17] Qin, Xiaoqiong, Fang, Zujie, Ying, Kang, Ding, Zhidan, Wang, Di, Wei, Fang, Yang, Fei, Ye, Qing, Qu, Ronghui, Cai, Haiwen. Slow-Light Effect and Mode Selection of Double Fiber Ring With a Fiber Bragg Grating. IEEE PHOTONICS JOURNAL[J]. 2018, 10(1): https://doaj.org/article/3716e543abab4610916d9375a0ac9580.
[18] Qin, Xiaoqiong, Ying, Kang, Fang, Zujie, Wei, Fang, Chen, Dijun, Qu, Ronghui, Cai, Haiwen. Intensity noise in high-frequency range of an external cavity diode laser and its reduction by second harmonic generation. OPTICS LETTERS[J]. 2018, 43(16): 3973-3976, https://www.webofscience.com/wos/woscc/full-record/WOS:000441505100043.
[19] 秦晓琼, 方祖捷, 应康, 魏芳, 王照勇, 叶青, 潘政清, 蔡海文, 瞿荣辉. 窄线宽全光纤环形滤波器特性研究. 光学学报[J]. 2018, 38(10): 1006001-1, http://lib.cqvip.com/Qikan/Article/Detail?id=676701376.
[20] Liu, Yutong, Lin, Gongwei, Ying, Kang, Liang, Lin, Niu, Yueping, Gong, Shangqing. Observation of polariton resonances with five-level M-type atoms in an optical cavity. OPTICS COMMUNICATIONS[J]. 2017, 402: 163-166, http://dx.doi.org/10.1016/j.optcom.2017.05.063.
[21] Liu, Yutong, Lin, Gongwei, Ying, Kang, Gong, Shangqing, Liang, Lin, Niu, Yueping. Observation of polariton resonances with five-level M-type atoms in an optical cavity. OPT. COMMUN.[J]. 2017, 402: 163-, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000407985300028&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[22] 应康, 陈迪俊, 魏芳, 蔡海文, 瞿荣辉. 基于腔内光放大器结构的光纤激光器噪声抑制方法. 红外[J]. 2017, 38(3): 17-20, http://lib.cqvip.com/Qikan/Article/Detail?id=671646720.
[23] Ding, Meng, Chen, Dijun, Fang, Zujie, Wang, Di, Zhang, Xi, Wei, Fang, Yang, Fei, Ying, Kang, Cai, Haiwen. Photothermal effects in phase shifted FBG with varied light wavelength and intensity. OPTICS EXPRESS[J]. 2016, 24(22): 25370-25379, https://www.webofscience.com/wos/woscc/full-record/WOS:000388413400067.
[24] Ying, Kang, Chen, Dijun, Pan, Zhengqing, Zhang, Xi, Cai, Haiwen, Qu, Ronghui. All-optical noise reduction of fiber laser via intracavity SOA structure. APPL. OPTICS[J]. 2016, 55(29): 8185-, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000385715900007&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[25] Ying, Kang, Chen, Dijun, Pan, Zhengqing, Zhang, Xi, Cai, Haiwen, Qu, Ronghui. All-optical noise reduction of fiber laser via intracavity SOA structure. APPLIED OPTICS[J]. 2016, 55(29): 8185-8188, https://www.webofscience.com/wos/woscc/full-record/WOS:000385715900007.
[26] Ding, Meng, Chen, Dijun, Fang, Zujie, Wang, Di, Zhang, Xi, Wei, Fang, Yang, Fei, Ying, Kang, Cai, Haiwen. Photothermal effects in phase shifted FBG with varied light wavelength and intensity. OPT. EXPRESS[J]. 2016, 24(22): 25370-, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000388413400067&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[27] Ying, Kang, Niu, Yueping, Chen, Dijun, Cai, Haiwen, Qu, Ronghui, Gong, Shangqing. White light cavity via modification of linear and nonlinear dispersion in an N-type atomic system. OPTICS COMMUNICATIONS[J]. 2015, 342: 189-192, http://dx.doi.org/10.1016/j.optcom.2014.12.080.
[28] Yang, Xu, Ying, Kang, Niu, Yueping, Gong, Shangqing. Reversible self-Kerr nonlinearity in an N-type atomic system through a switching field. JOURNAL OF OPTICS[J]. 2015, 17(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000352033800017.
[29] Ying, Kang, Niu, Yueping, Chen, Dijun, Cai, Haiwen, Qu, Ronghui, Gong, Shangqing. Laser frequency offset locking via tripod-type electromagnetically induced transparency. APPLIED OPTICS[J]. 2014, 53(12): 2632-2637, https://www.webofscience.com/wos/woscc/full-record/WOS:000334582400011.
[30] Chen, Haonan, Ying, Kang, Duan, Yafan, Niu, Yueping, Gong, Shangqing. Cavity linewidth narrowing by means of electromagnetically induced transparency in Rb with a longitudinal magnetic field. CHINESE OPTICS LETTERS[J]. 2014, 12(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000341792600019.
[31] Ying, Kang, Niu, Yueping, Chen, Dijun, Cai, Haiwen, Qu, Ronghui, Gong, Shangqing. Cavity linewidth narrowing by optical pumping-assisted electromagnetically induced transparency in V-type rubidium at room temperature. JOURNAL OF MODERN OPTICS[J]. 2014, 61(4): 322-327, https://www.webofscience.com/wos/woscc/full-record/WOS:000333996200007.
[32] Ying, Kang, Niu, Yueping, Chen, Dijun, Cai, Haiwen, Qu, Ronghui, Gong, Shangqing. Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS[J]. 2014, 31(1): 144-148, https://www.webofscience.com/wos/woscc/full-record/WOS:000329035300021.
[33] Ying, Kang, Niu, Yueping, Chen, Dijun, Cai, Haiwen, Qu, Ronghui, Gong, Shangqing. Observation of multi-electromagnetically induced transparency in V-type rubidium atoms. JOURNAL OF MODERN OPTICS[J]. 2014, 61(8): 631-635, https://www.webofscience.com/wos/woscc/full-record/WOS:000335884100002.
[34] Tian Guang-Lei, Wu Shi-Gang, Yang Lu-Yun, Shu Kang-Ying, Qin Lai-Shun, 邵建达. Influence of annealing temperature on structure, optical loss and laser-induced damage threshold of TiO2 thin films. CHIN. PHYS. LETT.[J]. 2007, 24(10): 2967-, http://ir.siom.ac.cn/handle/181231/4518.
[35] Ying, Kang, Niu, Yueping, Chen, Dijun, Cai, Haiwen, Qu, Ronghui. Realization of cavity linewidth narrowing via interacting dark resonances in a tripod-type electromagnetically induced transparency system. http://arxiv.org/abs/1403.7346.
科研活动
科研项目
( 1 ) 高性能单频光纤激光器关键技术与工艺, 负责人, 国家任务, 2020-12--2022-11
( 2 ) 新型全光腔内负反馈单频光纤激光器抑噪技术研究, 负责人, 国家任务, 2019-01--2021-12
( 3 ) XX光纤激光器, 负责人, 国家任务, 2020-11--2023-09
( 4 ) 基于光学差分相干探测的精密时延测试系统, 负责人, 中国科学院计划, 2019-01--2020-12
( 5 ) 基于腔内非线性效应的宽频段半导体激光器强度噪声抑制技术研究, 负责人, 地方任务, 2018-06--2021-05
( 6 ) 基于电磁诱导透明效应的新型半导体激光器线宽压窄技术研究, 负责人, 地方任务, 2018-05--2021-04
( 7 ) 基于腔内频率自参考效应的光纤激光器频率稳定技术, 负责人, 国家任务, 2022-01--2025-12
( 8 ) 中国科学院青年创新促进会, 负责人, 中国科学院计划, 2021-01--2024-12
( 9 ) 高性能激光腔双模自参考频率稳定技术研究, 负责人, 地方任务, 2022-05--2025-04
( 2 ) 新型全光腔内负反馈单频光纤激光器抑噪技术研究, 负责人, 国家任务, 2019-01--2021-12
( 3 ) XX光纤激光器, 负责人, 国家任务, 2020-11--2023-09
( 4 ) 基于光学差分相干探测的精密时延测试系统, 负责人, 中国科学院计划, 2019-01--2020-12
( 5 ) 基于腔内非线性效应的宽频段半导体激光器强度噪声抑制技术研究, 负责人, 地方任务, 2018-06--2021-05
( 6 ) 基于电磁诱导透明效应的新型半导体激光器线宽压窄技术研究, 负责人, 地方任务, 2018-05--2021-04
( 7 ) 基于腔内频率自参考效应的光纤激光器频率稳定技术, 负责人, 国家任务, 2022-01--2025-12
( 8 ) 中国科学院青年创新促进会, 负责人, 中国科学院计划, 2021-01--2024-12
( 9 ) 高性能激光腔双模自参考频率稳定技术研究, 负责人, 地方任务, 2022-05--2025-04
参与会议
(1)星载低噪声单频光纤激光器技术研究 第六届空间光通信与组网技术学术研讨会 2020-09-27
(2)Noise Reduction of Single Frequency Fiber Lasers 2019-10-02
(3)The research progress and application of single frequency DFB fiber laser 2018-10-15
(4)低噪声窄线宽快速大范围扫频激光器 全国第18次光纤通信暨第19届集成光学学术大会 2018-07-13
(2)Noise Reduction of Single Frequency Fiber Lasers 2019-10-02
(3)The research progress and application of single frequency DFB fiber laser 2018-10-15
(4)低噪声窄线宽快速大范围扫频激光器 全国第18次光纤通信暨第19届集成光学学术大会 2018-07-13