基本信息
林铁军 男 博导 中国科学院上海高等研究院
电子邮件: lintj@sari.ac.cn
通信地址: 上海市浦东新区海科路100号9A楼222室
邮政编码:201210
研究领域
能源与环境
招生信息
招生专业
070304-物理化学081701-化学工程085600-材料与化工
招生方向
C1催化转化及纳米催化CO2转化与碳资源的高效利用低碳烷烃活化
教育背景
2010-09--2015-06 华东理工大学 研究生/博士2006-09--2010-06 浙江工业大学 本科/学士
学历
研究生
学位
工学博士
工作经历
工作简历
2023-02~现在, 中国科学院上海高等研究院, 研究员2015-08~2023-01,中国科学院上海高等研究院, 副研究员
社会兼职
2020-01-01-今,中国科学院青年创新促进会化学与材料分会委员, 委员
专利与奖励
专利成果
[1] 钟良枢, 龚坤, 林铁军, 齐行振. 一种合金碳化物催化剂、制备方法及其应用. CN: CN116510732A, 2023-08-01.[2] 钟良枢, 安芸蕾, 林铁军, 于海玲, 尧泰真, 孙予罕. 一种用于合成气一步法直接合成高碳烯烃产物的催化剂、制备方法及其应用. CN: CN115364870A, 2022-11-22.[3] 钟良枢, 于海玲, 王才奇, 林铁军, 安芸蕾, 孙予罕. 一种Ru基催化剂及其制备方法、应用. CN: CN114570360A, 2022-06-03.[4] 钟良枢, 齐行振, 林铁军, 王新星, 吕东, 孙予罕. 一种用于合成气一步法直接合成醇醛类含氧产物的催化剂及应用. CN: CN111420674A, 2020-07-17.[5] 钟良枢, 林铁军, 孙涛, 孙予罕. 一种合成气制取芳烃的催化剂及其应用. CN: CN111420701A, 2020-07-17.[6] 秦婷婷, 钟良枢, 孙予罕, 齐行振, 林铁军. 一种用于合成气转化直接制备混合醇的Ru基催化剂及其制备方法和应用. CN: CN110280270A, 2019-09-27.[7] 钟良枢, 孙予罕, 吕东, 王新星, 林铁军, 齐行振. 一种用于浆态床合成气直接制烯烃的含钴催化剂的原位还原活化方法及直接制烯烃的方法. CN: CN109663597A, 2019-04-23.[8] 钟良枢, 孙予罕, 林铁军, 齐行振. 一种用于合成气催化转化的催化剂及其制备方法和应用. CN: CN109569652A, 2019-04-05.[9] 钟良枢, 孙予罕, 代元元, 林铁军, 齐行振, 于飞, 安芸蕾. 催化剂及其制备方法和用途. CN: CN108906062A, 2018-11-30.[10] 孙予罕, 钟良枢, 林铁军, 王慧, 齐行振, 王新星, 吕东. 一种用于合成气制备混合醇的催化剂及其制备方法和应用. CN: CN107308950A, 2017-11-03.[11] 孙予罕, 钟良枢, 林铁军, 王慧, 齐行振, 杨彦章, 代元元. 一种用于合成气一步法制取混合醇的钴基催化剂及其制备和应用. CN: CN107335446A, 2017-11-10.[12] 孙予罕, 钟良枢, 吕东, 王新星, 齐行振, 林铁军. 一种合成气制烯烃的铁基催化剂及其制备方法和用途. CN: CN107243347A, 2017-10-13.[13] 孙予罕, 钟良枢, 王新星, 林铁军, 于飞, 李正甲, 安芸蕾, 代元元, 吕东, 齐行振. 一种合成气直接转化为烯烃的催化剂及其制备方法和应用. CN: CN107362802A, 2017-11-21.[14] 孙予罕, 钟良枢, 王新星, 林铁军, 于飞, 吕东, 齐行振, 李正甲, 安芸蕾, 李晋平, 肖亚宁, 刘斌. 钴催化剂及其制备方法与应用. CN: CN107866230A, 2018-04-03.[15] 代元元, 钟良枢, 孙予罕, 李正甲, 安芸蕾, 于飞, 林铁军, 杨彦章, 王慧. 碳包贵金属纳米催化剂的制备方法. CN: CN107866250A, 2018-04-03.[16] 代元元, 钟良枢, 孙予罕, 林铁军, 于飞, 安芸蕾, 李正甲, 杨彦章, 王慧. 基于Co 2 C制备石墨化空心纳米结构的方法. CN: CN107867686A, 2018-04-03.[17] 代元元, 钟良枢, 孙予罕, 林铁军, 于飞, 安芸蕾, 李正甲, 杨彦章, 王慧. 基于Co 2 C制备石墨化空心纳米结构的方法. 中国: CN107867686A, 2018-04-03.[18] 孙予罕, 林铁军, 钟良枢, 于飞, 齐行振, 卢卫民, 李克健, 李晋平, 肖亚宁, 刘斌. 一种用于合成气一步法联产混合醇和α‑烯烃的催化剂及其制备方法与应用. CN: CN106268852A, 2017-01-04.[19] 李正甲, 钟良枢, 孙予罕, 于飞, 安芸蕾, 齐行振, 林铁军, 肖亚宁, 刘斌, 王东飞. 一种用于合成气直接制备烯烃的碳化钴基催化剂及其制备方法和应用. CN: CN105772049A, 2016-07-20.[20] 孙予罕, 钟良枢, 林铁军, 齐行振, 王慧, 夏林, 吴秀章, 卢卫民, 李克健, 李晋平, 刘斌, 孙志强. 一种用于合成气制备高碳醇的混合氧化物催化剂. CN: CN105664964A, 2016-06-15.
出版信息
发表论文
[1] Nanoscale. 2024, 通讯作者 [2] ACS Catalysis. 2024, 通讯作者 [3] Applied Catalysis B-Environment and Energy. 2024, 通讯作者 [4] Zhang, Junli, Yu, Fei, An, Yunlei, Lin, Tiejun, Zhong, Liangshu. Aqueous-phase Fischer-Tropsch reaction for the production of oxygenates from syngas over colloidal ruthenium nanoparticles. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2023, 第 4 作者 通讯作者 13(11): 3216-3220, http://dx.doi.org/10.1039/d3cy00273j.[5] Peigong Liu, Tiejun Lin, Lei Guo, Xiaozhe Liu, Kun Gong, Taizhen Yao, Yunlei An, Liangshu Zhong. Tuning cobalt carbide wettability environment for Fischer-Tropsch to olefins with high carbon efficiency. CHINESE JOURNAL OF CATALYSIS[J]. 2023, 第 2 作者 通讯作者 48: 150-163, http://dx.doi.org/10.1016/S1872-2067(23)64410-9.[6] Xiaozhe Liu, Tiejun Lin, Peigong Liu, Liangshu Zhong. Hydrophobic interfaces regulate iron carbide phases and catalytic performance of FeZnOx nanoparticles for Fischer-Tropsch to olefins. APPLIED CATALYSIS B: ENVIRONMENTAL[J]. 2023, 第 2 作者 通讯作者 331: 122697, http://dx.doi.org/10.1016/j.apcatb.2023.122697.[7] Kun Gong, Yao Wei, Yuanyuan Dai, Tiejun Lin, Fei Yu, Yunlei An, Xinxing Wang, Fanfei Sun, Zheng Jiang, Liangshu Zhong. Carbon-encapsulated metallic Co nanoparticles for Fischer-Tropsch to olefins with low CO2 selectivity. APPLIED CATALYSIS B: ENVIRONMENTAL. 2022, 第 4 作者 通讯作者 316: http://dx.doi.org/10.1016/j.apcatb.2022.121700.[8] Yu, Hailing, Wang, Caiqi, Lin, Tiejun, An, Yunlei, Wang, Yuchen, Chang, Qingyu, Yu, Fei, Wei, Yao, Sun, Fanfei, Jiang, Zheng, Li, Shenggang, Sun, Yuhan, Zhong, Liangshu. Direct production of olefins from syngas with ultrahigh carbon efficiency. NATURE COMMUNICATIONS[J]. 2022, 第 3 作者13(1): http://dx.doi.org/10.1038/s41467-022-33715-w.[9] Lin, Tiejun, An, Yunlei, Yu, Fei, Gong, Kun, Yu, Hailing, Wang, Caiqi, Sun, Yuhan, Zhong, Liangshu. Advances in Selectivity Control for Fischer-Tropsch Synthesis to Fuels and Chemicals with High Carbon Efficiency. ACS CATALYSIS[J]. 2022, 第 1 作者12(19): 12092-12112, http://dx.doi.org/10.1021/acscatal.2c03404.[10] Wu, Bo, Lin, Tiejun, Huang, Min, Li, Shenggang, Li, Ji, Yu, Xing, Yang, Ruoou, Sun, Fanfei, Jiang, Zheng, Sun, Yuhan, Zhong, Liangshu. Tandem Catalysis for Selective Oxidation of Methane to Oxygenates Using Oxygen over PdCu/Zeolite. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2022, 第 2 作者61(24): http://dx.doi.org/10.1002/anie.202204116.[11] Lin, Tiejun, Yu, Fei, An, Yunlei, Qin, Tingting, Li, Liusha, Gong, Kun, Zhong, Liangshu, Sun, Yuhan. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity. ACCOUNTS OF CHEMICAL RESEARCH[J]. 2021, 第 1 作者54(8): 1961-1971, http://dx.doi.org/10.1021/acs.accounts.0c00883.[12] Wu, Bo, Lin, Tiejun, Yang, Ruoou, Huang, Min, Zhang, Huan, Li, Ji, Sun, Fanfei, Song, Fei, Jiang, Zheng, Zhong, Liangshu, Sun, Yuhan. Ru single atoms for efficient chemoselective hydrogenation of nitrobenzene to azoxybenzene. GREEN CHEMISTRY[J]. 2021, 第 2 作者23(13): 4753-4761, http://dx.doi.org/10.1039/d1gc01439k.[13] Qin, Tingting, Lin, Tiejun, Qi, Xingzhen, Wang, Caiqi, Li, Liusha, Tang, Zhiyong, Zhong, Liangshu, Sun, Yuhan. Tuning chemical environment and synergistic relay reaction to promote higher alcohols synthesis via syngas conversion. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2021, 第 2 作者285: http://dx.doi.org/10.1016/j.apcatb.2020.119840.[14] Li, Xiao, Li, Liusha, Qin, Tingting, Gun, Gong, Lin, Tiejun, Zhong, Liangshu. Atomically dispersed Rh on hydroxyapatite as an effective catalyst for tandem hydroaminomethylation of olefins. MOLECULAR CATALYSIS[J]. 2021, 第 5 作者509: http://dx.doi.org/10.1016/j.mcat.2021.111671.[15] Lin, Tiejun, Liu, Peigong, Gong, Kun, An, Yunlei, Yu, Fei, Wang, Xinxing, Zhong, Liangshu, Sun, Yuhan. Designing silica-coated CoMn-based catalyst for Fischer-Tropsch synthesis to olefins with low CO2 emission. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2021, 第 1 作者299: 120683, http://dx.doi.org/10.1016/j.apcatb.2021.120683.[16] Wang, Caiqi, Lin, Tiejun, Qi, Xingzhen, Yu, Fei, Lu, Yongwu, Zhong, Liangshu, Sun, Yuhan. Direct Conversion of Syngas to Higher Alcohols over Multifunctional Catalyst: The Role of Copper-Based Component and Catalytic Mechanism. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2021, 第 2 作者125(11): 6137-6146, http://dx.doi.org/10.1021/acs.jpcc.1c01006.[17] Li, Xiao, Qin, Tingting, Li, Liusha, Wu, Bo, Lin, Tiejun, Zhong, Liangshu. One-pot Synthesis of Acetals by Tandem Hydroformylation-acetalization of Olefins Using Heterogeneous Supported Catalysts. CATALYSIS LETTERS[J]. 2021, 第 5 作者151(9): 2638-2646, http://dx.doi.org/10.1007/s10562-020-03504-5.[18] Qin, Tingting, Dang, Yaru, Lin, Tiejun, Mei, Bingbao, Wu, Bo, Li, Xiao, Li, Shenggang, Jiang, Zheng, Tang, Zhiyong, Zhong, Liangshu, Sun, Yuhan. Single-atom Ru catalyst for selective synthesis of 3-pentanone via ethylene hydroformylation. GREEN CHEMISTRY[J]. 2021, 第 3 作者23(22): 9038-9047, http://dx.doi.org/10.1039/d1gc02464g.[19] Gong, Kun, Lin, Tiejun, An, Yunlei, Wang, Xinxing, Yu, Fei, Wu, Bo, Li, Xiao, Li, Shenggang, Lu, Yongwu, Zhong, Liangshu, Sun, Yuhan. Fischer-Tropsch to olefins over CoMn-based catalysts: Effect of preparation methods. APPLIED CATALYSIS A-GENERAL[J]. 2020, 第 2 作者592: http://dx.doi.org/10.1016/j.apcata.2020.117414.[20] Sun, Tao, Lin, Tiejun, An, Yunlei, Gong, Kun, Zhong, Liangshu, Sun, Yuhan. Syngas Conversion to Aromatics over the Co2C-Based Catalyst and HZSM-5 via a Tandem System. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2020, 第 2 作者59(10): 4419-4427, http://dx.doi.org/10.1021/acs.iecr.0c00237.[21] An, Yunlei, Lin, Tiejun, Gong, Kun, Wang, Xinxing, Zhong, Liangshu, Wang, Hui, Sun, Yuhan. Tuning the Facet Proportion of Co2C Nanoprisms for Fischer-Tropsch Synthesis to Olefins. CHEMCATCHEM[J]. 2020, 第 2 作者12(6): 1630-1638, http://dx.doi.org/10.1002/cctc.201902273.[22] Li, Liusha, Lin, Tiejun, Li, Xiao, Wang, Caiqi, Qin, Tingting, An, Yunlei, Lu, Yongwu, Zhong, Liangshu, Sun, Yuhan. Control of Co-0/Co2C dual active sites for higher alcohols synthesis from syngas. APPLIED CATALYSIS A-GENERAL[J]. 2020, 第 2 作者602: http://dx.doi.org/10.1016/j.apcata.2020.117704.[23] Wu, Bo, Yang, Ruoou, Shi, Lei, Lin, Tiejun, Yu, Xing, Huang, Min, Gong, Kun, Sun, Fanfei, Jiang, Zheng, Li, Shenggang, Zhong, Liangshu, Sun, Yuhan. Cu single-atoms embedded in porous carbon nitride for selective oxidation of methane to oxygenates. CHEMICAL COMMUNICATIONS[J]. 2020, 第 4 作者56(93): 14677-14680, https://www.webofscience.com/wos/woscc/full-record/WOS:000592062700024.[24] Lin, Tiejun, Qi, Xingzhen, Wang, Xinxing, Xia, Lin, Wang, Caiqi, Yu, Fei, Wang, Hui, Li, Shenggang, Zhong, Liangshu, Sun, Yuhan. Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2019, 第 1 作者58(14): 4627-4631, https://www.webofscience.com/wos/woscc/full-record/WOS:000462622700030.[25] Lin, Tiejun, Gong, Kun, Wang, Caiqi, An, Yunlei, Wang, Xinxing, Qi, Xingzhen, Li, Shenggang, Lu, Yongwu, Zhong, Liangshu, Sun, Yuhan. Fischer-Tropsch Synthesis to Olefins: Catalytic Performance and Structure Evolution of Co2C-Based Catalysts under a CO2 Environment. ACS CATALYSIS[J]. 2019, 第 1 作者9(10): 9554-9567, [26] Dai, Yuanyuan, Zhao, Yonghui, Lin, Tiejun, Li, Shenggang, Yu, Fei, An, Yunlei, Wang, Xinxing, Xiao, Kang, Sun, Fanfei, Jiang, Zheng, Lu, Yongwu, Wang, Hui, Zhong, Liangshu, Sun, Yuhan. Particle Size Effects of Cobalt Carbide for Fischer-Tropsch to Olefins. ACS CATALYSIS[J]. 2019, 第 3 作者9(2): 798-809, http://dx.doi.org/10.1021/acscatal.8b03631.[27] Wang, Xinxing, Lin, Tiejun, Li, Jie, Yu, Fei, Lv, Dong, Qi, Xingzhen, Wang, Hui, Zhong, Liangshu, Sun, Yuhan. Direct production of olefins via syngas conversion over Co2C-based catalyst in slurry bed reactor. RSC ADVANCES[J]. 2019, 第 2 作者9(8): 4131-4139, https://www.webofscience.com/wos/woscc/full-record/WOS:000459896700004.[28] Yu, Fei, Lin, Tiejun, Wang, Xinxing, Li, Shenggang, Lu, Yongwu, Wang, Hui, Zhong, Liangshu, Sun, Yuhan. Highly selective production of olefins from syngas with modified ASF distribution model. APPLIED CATALYSIS A-GENERAL[J]. 2018, 第 2 作者563: 146-153, http://dx.doi.org/10.1016/j.apcata.2018.07.006.[29] Wang, Xinxing, Chen, Wen, Lin, Tiejun, Li, Jie, Yu, Fei, An, Yunlei, Dai, Yuanyuan, Wang, Hui, Zhong, Liangshu, Sun, Yuhan. Effect of the support on cobalt carbide catalysts for sustainable production of olefins from syngas. CHINESE JOURNAL OF CATALYSIS[J]. 2018, 第 3 作者39(12): 1869-1880, http://dx.doi.org/10.1016/S1872-2067(18)63153-5.[30] An, Yunlei, Zhao, Yonghui, Yu, Fei, Lin, Tiejun, Lu, Yongwu, Li, Shenggang, Li, Zhengjia, Dai, Yuanyuan, Wang, Xinxing, Wang, Hui, Zhong, Liangshu, Sun, Yuhan. Morphology control of Co2C nanostructures via the reduction process for direct production of lower olefins from syngas. JOURNAL OF CATALYSIS[J]. 2018, 第 4 作者366: 289-299, http://dx.doi.org/10.1016/j.jcat.2018.03.024.[31] Yang, Yanzhang, Lin, Tiejun, Qi, Xingzhen, Yu, Fei, An, Yunlei, Li, Zhengjia, Dai, Yuanyuan, Zhong, Liangshu, Wang, Hui, Sun, Yuhan. Direct synthesis of long-chain alcohols from syngas over CoMn catalysts. APPLIED CATALYSIS A-GENERAL[J]. 2018, 第 2 作者549: 179-187, http://dx.doi.org/10.1016/j.apcata.2017.09.037.[32] Chen, Wen, Lin, Tiejun, Dai, Yuanyuan, An, Yunlei, Yu, Fei, Zhong, Liangshu, Li, Shenggang, Sun, Yuhan. Recent advances in the investigation of nanoeffects of Fischer-Tropsch catalysts. CATALYSIS TODAY[J]. 2018, 第 2 作者311: 8-22, http://www.corc.org.cn/handle/1471x/2173737.[33] Yang, Mingfang, Zhang, Chen, Fan, Yonghui, Lin, Tiejun, Chen, Xinqing, Lu, Yongwu, Wang, Hui, Zhong, Liangshu, Sun, Yuhan. ZIF-67-derived Co3O4 micro/nano composite structures for efficient photocatalytic degradation. MATERIALS LETTERS[J]. 2018, 第 4 作者222: 92-95, http://www.corc.org.cn/handle/1471x/2179545.[34] Yuanyuan Dai, Fei Yu, Zhengjia Li, Yunlei An, Tiejun Lin, Yanzhang Yang, Liangshu Zhong, Hui wang, Yuhan Sun. Effect of Sodium on the Structure-Performance Relationship of Co/SiO2 for Fischer-Tropsch Synthesis. CHINESE JOURNAL OF CHEMISTRY[J]. 2017, 第 5 作者35(6): 918-926, http://lib.cqvip.com/Qikan/Article/Detail?id=673296505.[35] An, Yunlei, Lin, Tiejun, Yu, Fei, Yang, Yanzhang, Zhong, Liangshu, Wu, Minghong, Sun, Yuhan. Advances in direct production of value-added chemicals via syngas conversion. SCIENCE CHINA-CHEMISTRY[J]. 2017, 第 2 作者60(7): 887-903, http://www.corc.org.cn/handle/1471x/2188618.[36] Li, Zhenjia, Lin, Tiejun, Yu, Fei, An, Yunlei, Dai, Yuanyuan, Li, Shenggang, Zhong, Liangshu, Wang, Hui, Gao, Peng, Sun, Yuhan, He, Mingyuan. Mechanism of the Mn Promoter via CoMn Spinel for Morphology Control: Formation of Co2C Nanoprisms for Fischer-Tropsch to Olefins Reaction. ACS CATALYSIS[J]. 2017, 第 2 作者7(12): 8023-8032, http://www.corc.org.cn/handle/1471x/2182819.[37] Dai, Yuanyuan, Yu, Fei, Li, Zhengjia, An, Yunlei, Lin, Tiejun, Yang, Yanzhang, Zhong, Liangshu, Wang, Hui, Sun, Yuhan. Effect of Sodium on the Structure-Performance Relationship of Co/SiO2 for Fischer-Tropsch Synthesis. CHINESE JOURNAL OF CHEMISTRY[J]. 2017, 第 5 作者35(6): 918-926, http://lib.cqvip.com/Qikan/Article/Detail?id=673296505.[38] Li, Zhengjia, Zhong, Liangshu, Yu, Fei, An, Yunlei, Dai, Yuanyuan, Yang, Yanzhang, Lin, Tiejun, Li, Shenggang, Wang, Hui, Gao, Peng, Sun, Yuhan, He, Mingyuan. Effects of Sodium on the Catalytic Performance of CoMn Catalysts for Fischer-Tropsch to Olefin Reactions. ACS CATALYSIS[J]. 2017, 第 7 作者7(5): 3622-3631, http://www.corc.org.cn/handle/1471x/2188986.[39] Xie, Hao, Lin, Tiejun, Shi, Li, Meng, Xuan. Acetylene carbonylation over Ni-containing catalysts: role of surface structure and active site distribution. RSC ADVANCES[J]. 2016, 第 2 作者6(99): 97285-97292, https://www.webofscience.com/wos/woscc/full-record/WOS:000386242500103.[40] Zhong, Liangshu, Yu, Fei, An, Yunlei, Zhao, Yonghui, Sun, Yuhan, Li, Zhengjia, Lin, Tiejun, Lin, Yanjun, Qi, Xingzhen, Dai, Yuanyuan, Gu, Lin, Hu, Jinsong, Jin, Shifeng, Shen, Qun, Wang, Hui. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. NATURE[J]. 2016, 第 7 作者538(7623): 84-+, http://dx.doi.org/10.1038/nature19786.[41] Lin, Tie Jun, Xie, Hao, Meng, Xuan, Shi, Li. Characterization and catalytic application of Bi2O3/NiO composite oxides in the Reppe carbonylation to acrylic acid. CATALYSIS COMMUNICATIONS[J]. 2015, 第 1 作者68: 88-92, http://dx.doi.org/10.1016/j.catcom.2015.04.032.[42] Lin, Tie Jun, Meng, Xuan, Shi, Li. Catalytic hydrocarboxylation of acetylene to acrylic acid using Ni2O3 and cupric bromide as combined catalysts. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL[J]. 2015, 第 1 作者396: 77-83, http://dx.doi.org/10.1016/j.molcata.2014.09.027.[43] Lin, Tie Jun, Meng, Xuan, Shi, Li. Ni-exchanged Y-zeolite. An efficient heterogeneous catalyst for acetylene hydrocarboxylation. APPLIED CATALYSIS A-GENERAL[J]. 2014, 第 1 作者485: 163-171, http://dx.doi.org/10.1016/j.apcata.2014.07.036.[44] Lin, Tiejun, Meng, Xuan, Shi, Li. Activity and Sediments Study for the Hydrocarboxylation of Acetylene with Carbon Monoxide to Acrylic Acid on Ni-Cu Homogeneous Catalyst. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2013, 第 1 作者52(39): 14125-14132, https://www.webofscience.com/wos/woscc/full-record/WOS:000326300400028.[45] Lin, Tiejun, Meng, Xuan, Shi, Li. Attrition Studies of an Iron Fischer-Tropsch Catalyst Used in a Pilot-Scale Stirred Tank Slurry Reactor. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2012, 第 1 作者51(40): 13123-13131, https://www.webofscience.com/wos/woscc/full-record/WOS:000309624500015.
科研活动
科研项目
( 1 ) 基于强化含氧化过程概念构筑的合成气直接制高碳醇多功能催化剂及其耦合机制研究, 负责人, 国家任务, 2021-01--2024-12( 2 ) 中科院青年创新促进会会员项目, 负责人, 中国科学院计划, 2020-01--2023-12( 3 ) 碳化钴界面功能强化对合成气转化碳效和氧效调控机制研究, 负责人, 地方任务, 2021-07--2024-06( 4 ) 基于动态现场原位谱学的合成气制高碳醇反应耦合效应和构效关系研究, 负责人, 研究所自主部署, 2020-01--2023-06( 5 ) 煤经合成气直接制烯烃浆态床技术研发, 参与, 中国科学院计划, 2018-04--2023-04( 6 ) 合成气催化转化制乙醇等C2+含氧化合物, 参与, 国家任务, 2020-01--2022-12( 7 ) 多能源互补的光化学/热化学协同转化方法, 负责人, 国家任务, 2021-12--2026-11( 8 ) 内蒙古鄂尔多斯循环经济技术研发有限公司, 负责人, 境内委托项目, 2022-08--2023-07( 9 ) 中氢源安(北京)科技有限公司, 负责人, 境内委托项目, 2023-06--2024-08( 10 ) 合成气高选择性转化制C6+高碳醇, 负责人, 国家任务, 2023-12--2027-11