基本信息
刘舒曼  女  博导  中国科学院半导体研究所
电子邮件: liusm@semi.ac.cn
通信地址: 中国科学院半导体所材料重点实验室
邮政编码: 100083

研究领域

       长期从事低维半导体结构材料生长与器件研究,目前主要研究III-V族半导体量子阱、量子点、超晶格等低维结构的MBE和MOCVD外延生长和基于这些材料的光电子器件的研究。

招生信息

    欢迎半导体相关物理、微电子、材料专业并对半导体光电子器件的研发感兴趣的同学报考。

招生专业
0805Z2-半导体材料与器件
080501-材料物理与化学
招生方向
低维半导体结构与器件研制
低维半导体材料外延生长

教育背景

1997-09--2000-06   中国科学院半导体研究所   博士
1990-09--1997-06   武汉理工大学   学士、硕士

工作经历

   
工作简历
2015-01~现在, 中国科学院半导体研究所, 研究员
2007-11~2014-12,中国科学院半导体研究所, 副研究员
2005-10~2007-10,日本东京大学, 物性研究所研究员
2003-10~2005-10,日本姬路工业大学, JSPS研究员
2000-09~2003-10,北京交通大学, 博士后,副教授

教授课程

红外光电子技术
红外光电材料与物理
红外光电子材料物理

专利与奖励

   

出版信息

   
发表论文
[1] 宁超, 于天, 刘舒曼, 张锦川, 王利军, 刘俊岐, 卓宁, 翟慎强, 李远, 刘峰奇. Interband cascade lasers with short electron injector. Chinese Optics Letters[J]. 2022, [2] 宁超, 孙瑞轩, 于天, 刘舒曼, 张锦川, 卓宁, 王利军, 刘俊岐, 翟慎强, 李远, 刘峰奇. 带间级联激光器电子注入区优化研究(特邀). 光子学报[J]. 2022, 51(2): 90-96, [3] Kun Li, 刘舒曼, Ning Zhuo, Jun-Qi Liu, Yi-Xian Zhu, Kai Guo, Shen-Qiang Zhai, Jin-Chuan Zhang, Li-Jun Wang, Feng-Qi Liu. Quantum cascade detectors with enhanced responsivity using coupled double-well structures. APPLIED PHYSICS EXPRESS[J]. 2022, [4] Tian Yu, Chao Ning, Ruixuan Sun, ShuMan Liu, Jinchuan Zhang, Junqi Liu, Lijun Wang, Ning Zhuo, Shenqiang Zhai, Xiaoling Ye, Yuan Li, Fengqi Liu. Strain mapping in interband cascade lasers. AIP Advances[J]. 2022, 12(1): [5] Yang, Ke, Liu, Junqi, Zhai, Shenqiang, Zhang, Jinchuan, Zhuo, Ning, Wang, Lijun, Liu, Shuman, Liu, Fengqi. Room-temperature quantum cascade laser packaged module at similar to 8 mu m designed for high-frequency response. ELECTRONICS LETTERS[J]. 2021, 57(17): 665-667, http://dx.doi.org/10.1049/ell2.12214.
[6] Zhou, Yuhong, Liu, Junqi, Zhai, Shenqiang, Zhuo, Ning, Zhang, Jinchuan, Liu, Shuman, Wang, Lijun, Liu, Fengqi, Wang, Zhanguo. High-speed operation of single-mode tunable quantum cascade laser based on ultra-short resonant cavity. AIP ADVANCES[J]. 2021, 11(1): https://doaj.org/article/07977241c1bd4ce7929cbdc9d51033db.
[7] Sun, YongQiang, Zhang, JinChuan, Cheng, FengMin, Ning, Chao, Zhuo, Ning, Zhai, ShenQiang, Liu, FengQi, Liu, JunQi, Liu, ShuMan, Wang, ZhanGuo. Beam steering characteristics in high-power quantum-cascade lasers emitting at similar to 4.6 mu m*. CHINESE PHYSICS B[J]. 2021, 30(3): http://dx.doi.org/10.1088/1674-1056/abd6fe.
[8] Fan, ZhuoFei, Deng, Yu, Ning, Chao, Liu, ShuMan, Wang, Cheng. Differential gain and gain compression of an overdamped interband cascade laser. APPLIED PHYSICS LETTERS[J]. 2021, 119(8): [9] Li, YuanYuan, Zhao, FangYuan, Ma, Yu, Li, WeiJiang, Liu, JunQi, Liu, FengQi, Luo, JunWei, Zhang, JinChuan, Zhai, ShenQiang, Zhuo, Ning, Wang, LiJun, Liu, ShuMan. Terahertz quantum cascade laser array with spatially-separated beams. OPTICS AND LASER TECHNOLOGY[J]. 2021, 143: http://dx.doi.org/10.1016/j.optlastec.2021.107346.
[10] 刘舒曼, 刘俊岐, 翟慎强, 卓宁, 张锦川, 王利军, 李远, 刘峰奇. 具有新型有源区的量子级联探测器(特邀). 光子学报[J]. 2021, 50(10): 233-243, [11] Li, Kun, Ren, Fei, Liu, ShuMan, Liu, JunQi, Zhuo, Ning, Zhu, YiXuan, Zhai, ShenQiang, Zhang, JinChuan, Wang, LiJun, Li, Yuan, Liu, FengQi. High responsivity quantum cascade detectors with bound-to-miniband diagonal transition. APPLIED PHYSICS LETTERS[J]. 2021, 119(5): [12] 刘峰奇, 张锦川, 刘俊岐, 卓宁, 王利军, 刘舒曼, 翟慎强, 梁平, 胡颖, 王占国. 量子级联激光器研究进展. 中国激光. 2020, 47(7): 71-83, http://lib.cqvip.com/Qikan/Article/Detail?id=7102611257.
[13] Guan, YanJiao, Jia, XueFeng, Li, SenSen, Wang, LiJun, Zhuo, Ning, Zhang, JinChuan, Zhai, ShenQiang, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. High Power Tapered Sampling Grating Distributed Feedback Quantum Cascade Lasers. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2020, 32(6): 305-308, https://www.webofscience.com/wos/woscc/full-record/WOS:000526544500002.
[14] Wang, Huan, Zhang, Jinchuan, Cheng, Fengmin, Zhuo, Ning, Zhai, Shenqiang, Liu, Junqi, Wang, Lijun, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo. Watt-level, high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 7.7 mu m. OPTICS EXPRESS[J]. 2020, 28(26): 40155-40163, http://dx.doi.org/10.1364/OE.412943.
[15] Cheng, Fengmin, Zhang, Jinchuan, Guan, Yanjiao, Yang, Pengchang, Zhuo, Ning, Zhai, Shenqiang, Liu, Junqi, Wang, Lijun, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo. Ultralow power consumption of a quantum cascade laser operating in continuous-wave mode at room temperature. OPTICS EXPRESS[J]. 2020, 28(24): 36497-36504, http://dx.doi.org/10.1364/OE.405528.
[16] Zhu, Yingbin, Wen, Huihui, Zhang, Hongye, Liu, Zhanwei, Liu, Chao, Liu, Shuman. Real-time in situ observation of extended defect evolution near a crack tip in GaSb crystal under thermal loading. APPLIED SURFACE SCIENCE[J]. 2020, 515: http://dx.doi.org/10.1016/j.apsusc.2020.145934.
[17] Jia, Xuefeng, Wang, Lijun, Zhuo, Ning, Guan, Yanjiao, Niu, Shouzhu, Zhang, Jinchuan, Zhai, Shenqiang, Liu, Junqi, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo. Design and fabrication of a quantum cascade laser with a chirped sampling grating. OSA CONTINUUM[J]. 2019, 2(5): 1783-1790, [18] Cheng, FengMin, Zhang, JinChuan, Wang, DongBo, Gu, Zenghui, Zhuo, Ning, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. Demonstration of High-Power and Stable Single-Mode in a Quantum Cascade Laser Using Buried Sampled Grating. Nanoscale Research Letters[J]. 2019, 14(1): 1-8, https://doaj.org/article/c88e519e44754a86afaf92c9aef07ded.
[19] Liu, Junqi, Zhao, Fangyuan, Li, Yuanyuan, Zhang, Jinchuan, Zhai, Shenqiang, Zhuo, Ning, Wang, Lijun, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo, IEEE. THz Quantum Cascade Lasers with Optimized Beam Divergence. 2019 44TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ)null. 2019, [20] Zhao, Fangyuan, Li, Yuanyuan, Liu, Junqi, Liu, Fengqi, Zhang, Jinchuan, Zhai, Shenqiang, Zhuo, Ning, Wang, Lijun, Liu, Shuman, Wang, Zhanguo. Sampled grating terahertz quantum cascade lasers. APPLIED PHYSICS LETTERS[J]. 2019, 114(14): [21] Wang, DongBo, Zhuo, Ning, Cheng, FengMin, Gu, ZengHui, Zhang, JinChuan, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. High-power, low-lateral divergence InP type-I lasers around 2 mu m with tapered waveguide structures. OSA CONTINUUM[J]. 2019, 2(5): 1612-1620, [22] Niu, Shouzhu, Liu, Junqi, Cheng, Fengmin, Wang, Huan, Zhang, Jinchuan, Zhuo, Ning, Zhai, Shenqiang, Wang, Lijun, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo, Wang, Xiaohua, Wei, Zhipeng. 14 mu m quantum cascade lasers based on diagonal transition and nonresonant extraction. PHOTONICS RESEARCH[J]. 2019, 7(11): 1244-1248, https://www.webofscience.com/wos/woscc/full-record/WOS:000493999100010.
[23] Cheng, FengMin, Zhang, JinChuan, Gu, Zenghui, Wang, DongBo, Zhuo, Ning, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. Anomalous Mode Transitions in High Power Distributed Bragg Reflector Quantum Cascade Lasers. Nanoscale Research Letters[J]. 2019, 14(1): 1-6, https://doaj.org/article/c38870aac48f4a7f93b3c24c147c1b40.
[24] Wang, DongBo, Zhang, JinChuan, Li, SenSen, Cheng, FengMin, Gu, ZengHui, Zhu, YiXuan, Zhuo, Ning, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. InP-Based Surface-Emitting Distributed Feedback Lasers Operating at 2004 nm. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2019, 31(21): 1701-1704, [25] Shouzhu Niu, Junqi Liu, Fengmin Cheng, Huan Wang, Jinchuan Zhang, Ning Zhuo, Shenqiang Zhai, Lijun Wang, Shuman Liu, Fengqi Liu, Zhanguo Wang, Xiaohua Wang, Zhipeng Wei. 14 μm quantum cascade lasers based on diagonal transition and nonresonant extraction. 光子学研究:英文版[J]. 2019, 7(11): 1244-1248, http://lib.cqvip.com/Qikan/Article/Detail?id=7100511688.
[26] Liu, Chuanwei, Zhai, Shenqiang, Zhang, Jinchuan, Zhao, Yue, Wang, Lijun, Liu, Junqi, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo. High Spectral-Purity Quantum Cascade Laser for Isotopic Analysis of Carbon Dioxide. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2018, 18(11): 7489-7492, https://www.webofscience.com/wos/woscc/full-record/WOS:000443946600027.
[27] Wang, FengJiao, Liu, ShuMan, Ye, XiaoLing, Zhuo, Ning, Liu, JunQi, Wang, LiJun, Zhang, JinChuan, Zhai, ShenQiang, Liu, FengQi, Wang, ZhanGuo. Long Wavelength Infrared Quantum Cascade Detector. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2018, 18(11): 7604-7607, https://www.webofscience.com/wos/woscc/full-record/WOS:000443946600050.
[28] Zhao, Yue, Zhang, JinChuan, Zhuo, Ning, Cheng, FengMin, Wang, DongBo, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. Low voltage-defect quantum cascade lasers based on excited-states injection at lambda similar to 8.5 mu m. APPLIED OPTICS[J]. 2018, 57(26): 7579-7583, https://www.webofscience.com/wos/woscc/full-record/WOS:000444085500020.
[29] Zhao, Yue, Zhang, JinChuan, Liu, ChuanWei, Zhuo, Ning, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. Chirped coupled ridge waveguide quantum cascade laser arrays with stable single-lobe far-field patterns. PHOTONICS RESEARCH[J]. 2018, 6(8): 821-824, http://lib.cqvip.com/Qikan/Article/Detail?id=676286192.
[30] Wang, DongBo, Zhang, JinChuan, Cheng, FengMin, Zhao, Yue, Zhuo, Ning, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. Stable Single-Mode Operation of Distributed Feedback Quantum Cascade Laser by Optimized Reflectivity Facet Coatings. NANOSCALE RESEARCH LETTERS[J]. 2018, 13(1): https://doaj.org/article/14b773f6917048379de280777dc39e6a.
[31] Hou, Chuncai, Zhao, Yue, Zhang, Jinchuan, Zhai, Shenqiang, Zhuo, Ning, Liu, Junqi, Wang, Lijun, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo. Room temperature continuous wave operation of quantum cascade laser at lambda similar to 9.4 mu m. JOURNAL OF SEMICONDUCTORS[J]. 2018, 39(3): [32] Zhao, Yue, Zhang, JinChuan, Cheng, FengMin, Wang, DongBo, Liu, ChuanWei, Zhuo, Ning, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. Tapered Quantum Cascade Laser Arrays Integrated with Talbot Cavities. NANOSCALE RESEARCH LETTERS[J]. 2018, 13(1): https://doaj.org/article/cfd351237e674c6dbb6c041e94b62221.
[33] Jia, Xuefeng, Wang, Lijun, Jia, Zhiwei, Zhuo, Ning, Zhang, Jinchuan, Zhai, Shenqiang, Liu, Junqi, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo. Fast Swept-Wavelength, Low Threshold-Current, Continuous-Wave External Cavity Quantum Cascade Laser. NANOSCALE RESEARCH LETTERS[J]. 2018, 13(1): https://doaj.org/article/e62ce0238ce24074af36704dce089774.
[34] Wang, Dongbo, Zhuo, Ning, Gu, Zenghui, Zhao, Yue, Cheng, Fengmin, Zhang, Jinchuan, Zhai, Shenqiang, Liu, Junqi, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo. Room temperature operation of InAsSb quantum dashes laser near 1.8 mu m based on InP (001) substrate. AIP ADVANCES[J]. 2018, 8(12): [35] Liu Junqi, Li Yuanyuan, Liu Fengqi, Zhang Jinchuan, Zhai Shenqiang, Zhuo Ning, Wang Lijun, Liu Shuman, Wang Zhanguo, IEEE. High-performance THz Quantum Cascade Lasers in Single-mode. 2018 43RD INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ)null. 2018, [36] Zhao, Yue, Zhang, JinChuan, Liu, ChuanWei, Zhuo, Ning, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. High Power Quantum Cascade Laser at lambda similar to 5.1 mu m Based on Low Strain Compensation Design. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2018, 18(11): 7508-7511, https://www.webofscience.com/wos/woscc/full-record/WOS:000443946600031.
[37] Wang, Dongbo, Zhuo, Ning, Zhao, Yue, Cheng, Fengmin, Niu, Shouzhu, Zhang, Jinchuan, Zhai, Shenqiang, Wang, Lijun, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo. Improved performance of InP-based 2.1 mu m InGaAsSb quantum well lasers using Sb as a surfactant. APPLIED PHYSICS LETTERS[J]. 2018, 113(25): [38] Hou Chuncai, Zhao Yue, Zhang Jinchuan, Zhai Shenqiang, Zhuo Ning, Liu Junqi, Wang Lijun, Liu Shuman, Liu Fengqi, Wang Zhanguo. Room temperature continuous wave operation of quantum cascade laser at λ~9.4 μm. 半导体学报:英文版[J]. 2018, 39(3): 034001-1, http://lib.cqvip.com/Qikan/Article/Detail?id=674826722.
[39] Wen, Huihui, Zhang, Hongye, Liu, Zhanwei, Liu, Chao, Liu, Shuman, Yang, Xinan, Liu, Fengqi, Xie, Huimin. Quantitative evaluation of the interface lattice quality of a strain superlattice by strain analysis. NANOSCALE[J]. 2018, 10(37): 17567-17575, https://www.webofscience.com/wos/woscc/full-record/WOS:000450934400013.
[40] Jia, XueFeng, Wang, LiJun, Zhuo, Ning, Zhang, JinChuan, Zhai, ShenQiang, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, Zhanguo. Multi-wavelength sampled Bragg grating quantum cascade laser arrays. PHOTONICS RESEARCH[J]. 2018, 6(7): 721-725, http://lib.cqvip.com/Qikan/Article/Detail?id=676128778.
[41] Jia, Xuefeng, Wang, Lijun, Zhuo, Ning, Zhang, Jinchuan, Zhai, Shenqiang, Liu, Junqi, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo. Transverse Bragg Resonance Waveguide Quantum Cascade Lasers. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2018, 18(11): 7600-7603, https://www.webofscience.com/wos/woscc/full-record/WOS:000443946600049.
[42] Yu, Tian, Liu, ShuMan, Ye, XiaoLing, Zhuo, Ning, Liu, FengQi, Xu, Bo, Wang, ZhanGuo. Defect Formation and Elimination During the Growth of GaSb Epilayer. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2018, 18(11): 7455-7459, https://www.webofscience.com/wos/woscc/full-record/WOS:000443946600021.
[43] Liu, Jianqi, Wang, Fengjiao, Zhai, Shenqiang, Zhang, Jinchuan, Liu, Shuman, Liu, Junqi, Wang, Lijun, Liu, Fengqi, Wang, Zhanguo. Normal-incidence quantum cascade detector coupled by nanopore structure. APPLIED PHYSICS EXPRESS[J]. 2018, 11(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000431307300001.
[44] Liu, ChuanWei, Zhang, JinChuan, Cheng, FengMin, Zhao, Yue, Zhuo, Ning, Zhai, ShenQiang, Wang, Li Jun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ThanGuo. High Efficiency Quantum Cascade Lasers Based on Excited-States Injection. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2018, 30(4): 299-302, https://www.webofscience.com/wos/woscc/full-record/WOS:000424058900001.
[45] Tian Yu, Shuman Liu, Jinchuan Zhang, Bo Xu, Lijun Wang, Junqi Liu, Ning Zhuo, Shenqiang Zhai, Xiaoling Ye, Yonghai Chen, Fengqi Liu, Zhanguo Wang. InAs-based interband cascade lasers at 4.0 μm operating at room temperature. 半导体学报(英文版)[J]. 2018, 39(11): 36-39, http://lib.cqvip.com/Qikan/Article/Detail?id=676666949.
[46] Wang, FengJiao, Liu, ShuMan, Zhuo, Ning, Ye, XiaoLing, Liu, JunQi, Wang, LiJun, Zhang, JinChuan, Zhai, ShenQiang, Liu, FengQi, Wang, ZhanGuo. Influence of Quantum Dots on Response of Quantum Cascade Detector. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2018, 18(11): 7394-7399, https://www.webofscience.com/wos/woscc/full-record/WOS:000443946600011.
[47] Liu, Jianqi, Zhai, Shenqiang, Liu, Shuman, Wang, Fengjiao, Zhang, Jinchuan, Zhuo, Ning, Liu, Junqi, Wang, Lijun, Liu, Fengqi, Wang, Zhanguo. Improved Performance of Quantum Dot Cascade Infrared Photodetectors with Nano-Pore Structure. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2018, 18(11): 7435-7439, https://www.webofscience.com/wos/woscc/full-record/WOS:000443946600017.
[48] Liu, Junqi, Zhou, Yuhong, Zhai, Shenqiang, Liu, Fengqi, Liu, Shuman, Zhang, Jinchuan, Zhuo, Ning, Wang, Lijun, Wang, Zhanguo. High-frequency very long wave infrared quantum cascade detectors. SEMICONDUCTOR SCIENCE AND TECHNOLOGY[J]. 2018, 33(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000450238400001.
[49] Liu, Shuman, Liu, Fengqi, Chen, Wei. A Special Section Dedicated to the 80th Birthday of Professor Zhanguo Wang of the Chinese Academy of Sciences. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGYnull. 2018, 18(11): 7317-7318, https://www.webofscience.com/wos/woscc/full-record/WOS:000443946600001.
[50] Wen, Huihui, Zhang, Hongye, Liu, Zhanwei, Liu, Chao, Liu, Shuman, Yang, Xinan, Liu, Fengqi, Xie, Huimin. Stress mapping of a strain superlattice using scanning moire fringe imaging. APPLIED PHYSICS LETTERS[J]. 2018, 113(3): http://dx.doi.org/10.1063/1.5022842.
[51] Yu, Tian, Liu, Shuman, Zhang, Jinchuan, Xu, Bo, Wang, Lijun, Liu, Junqi, Zhuo, Ning, Zhai, Shenqiang, Ye, Xiaoling, Chen, Yonghai, Liu, Fengqi, Wang, Zhanguo. InAs-based interband cascade lasers at 4.0 mu m operating at room temperature. JOURNAL OF SEMICONDUCTORS[J]. 2018, 39(11): [52] Niu, Shouzhu, Liu, Junqi, Zhao, Yue, Cheng, Fengmin, Zhang, Jinchuan, Wang, Lijun, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo, Wei, Zhipeng, Wang, Xiaohua. High-Performance Bound-to-Continuum Quantum Cascade Lasers at lambda similar to 8 mu m. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2018, 18(11): 7498-7501, https://www.webofscience.com/wos/woscc/full-record/WOS:000443946600029.
[53] Chuncai Hou, Yue Zhao, Jinchuan Zhang, Shenqiang Zhai, Ning Zhuo, Junqi Liu, Lijun Wang, Shuman Liu, Fengqi Liu, Zhanguo Wang. Room temperature continuous wave operation of quantum cascade laser at λ~9.4 μm. 半导体学报:英文版. 2018, 39(3): 34-37, http://lib.cqvip.com/Qikan/Article/Detail?id=674826722.
[54] Cheng, FengMin, Zhang, JinChuan, Jia, ZhiWei, Zhao, Yue, Wang, DongBo, Zhuo, Ning, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. High Power Substrate-Emitting Quantum Cascade Laser With a Symmetric Mode. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2017, 29(22): 1994-1997, http://ir.semi.ac.cn/handle/172111/28300.
[55] Zhiwei Jia, Lei Wang, Jinchuan Zhang, Yue Zhao, Chuanwei Liu, Shenqiang Zhai, Ning Zhuo, Junqi Liu, Lijun Wang, Shuman Liu, Fengqi Liu, Zhanguo Wang. Response to "Comment on ‘Phase-locked array of quantum cascade lasers with an intracavity spatial filter’". Appl. Phys. Lett.[J]. 2017, 111: 256102-, http://ir.semi.ac.cn/handle/172111/28322.
[56] Cheng, FengMin, Jia, ZhiWei, Zhang, JinChuan, Zhuo, Ning, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. Stable single-mode operation of a distributed feedback quantum cascade laser integrated with a distributed Bragg reflector. PHOTONICS RESEARCH[J]. 2017, 5(4): 320-323, http://lib.cqvip.com/Qikan/Article/Detail?id=71908874504849554852484856.
[57] Jia, Zhiwei, Wang, Lei, Zhang, Jinchuan, Zhao, Yue, Liu, Chuanwei, Zhai, Shenqiang, Zhuo, Ning, Liu, JunQi, Wang, LiJun, Liu, ShuMan, Liu, Fengqi, Wang, Zhanguo. Phase-locked array of quantum cascade lasers with an intracavity spatial filter. APPLIED PHYSICS LETTERS[J]. 2017, 111(6): http://ir.semi.ac.cn/handle/172111/28321.
[58] Liu, ChuanWei, Zhang, JinChuan, Jia, ZhiWei, Zhuo, Ning, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. Low Power Consumption Substrate-Emitting DFB Quantum Cascade Lasers. NANOSCALE RESEARCH LETTERS[J]. 2017, 12(1): http://ir.semi.ac.cn/handle/172111/28621.
[59] Zhuo, Ning, Zhang, JinChuan, Wang, FengJiao, Liu, YingHui, Zhai, ShenQiang, Zhao, Yue, Wang, DongBo, Jia, ZhiWei, Zhou, YuHong, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo, Khurgin, Jacob B, Sun, Greg. Room temperature continuous wave quantum dot cascade laser emitting at 7.2 mu m. OPTICS EXPRESS[J]. 2017, 25(12): 13807-13815, [60] Wang Fengjiao, Zhuo Ning, Liu Shuman, Ren Fei, Zhai Shenqiang, Liu Junqi, Zhang Jinchuan, Liu Fengqi, Wang Zhanguo. Quantum dot quantum cascade photodetector using a laser structure. 中国光学快报:英文版[J]. 2017, 15(10): 102301-1, http://lib.cqvip.com/Qikan/Article/Detail?id=673608379.
[61] Wang, Fengjiao, Zhuo, Ning, Liu, Shuman, Ren, Fei, Zhai, Shenqiang, Liu, Junqi, Zhang, Jinchuan, Liu, Fengqi, Wang, Zhanguo. Quantum dot quantum cascade photodetector using a laser structure. CHINESE OPTICS LETTERS[J]. 2017, 15(10): 85-89, http://lib.cqvip.com/Qikan/Article/Detail?id=673608379.
[62] Liu, ChuanWei, Zhang, JinChuan, Jia, ZhiWei, Zhao, Yue, Zhuo, Ning, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Liu, FengQi, Wang, ZhanGuo. Coupled Ridge Waveguide Substrate-Emitting DFB Quantum Cascade Laser Arrays. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2017, 29(2): 213-216, http://ir.semi.ac.cn/handle/172111/28620.
[63] Jia, Zhiwei, Wang, Lei, Zhang, Jinchuan, Zhao, Yue, Liu, Chuanwei, Zhai, Shenqiang, Zhuo, Ning, Liu, Junqi, Wang, Lijun, Liu, Shuman, Liu, Fengqi, Wang, Zhanguo. Response to "Comment on 'Phase-locked array of quantum cascade lasers with an intracavity spatial filter'" Appl. Phys. Lett. 111, 256101 (2017). APPLIED PHYSICS LETTERSnull. 2017, 111(25): https://www.webofscience.com/wos/woscc/full-record/WOS:000418648800050.
[64] Liu Junqi, Li Yuanyuan, Liu Fengqi, Zhang Jinchuan, Zhai Shenqiang, Wang Lijun, Liu Shuman, Wang Zhanguo, IEEE. Continuous-wave THz Quantum Cascade Lasers. 2016 41ST INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES (IRMMW-THZ)null. 2016, [65] Wang, Lei, Zhai, ShenQiang, Wang, FengJiao, Liu, JunQi, Liu, ShuMan, Zhuo, Ning, Zhang, ChuanJin, Wang, LiJun, Liu, FengQi, Wang, ZhanGuo. A Polarization-Dependent Normal Incident Quantum Cascade Detector Enhanced Via Metamaterial Resonators. NANOSCALE RESEARCH LETTERS[J]. 2016, 11(1): http://dx.doi.org/10.1186/s11671-016-1749-2.
[66] Liu, YingHui, Zhang, JinChuan, Yan, FangLiang, Jia, ZhiWei, Liu, FengQi, Liang, Ping, Zhuo, Ning, Zhai, ShenQiang, Wang, LiJun, Liu, JunQi, Liu, ShuMan, Wang, ZhanGuo. High efficiency, single-lobe surface-emitting DFB/DBR quantum cascade lasers. OPTICS EXPRESS[J]. 2016, 24(17): 19545-19551, https://www.webofscience.com/wos/woscc/full-record/WOS:000385227100066.
[67] Zhou, Yuhong, Zhai, Shenqiang, Wang, Fengjiao, Liu, Junqi, Liu, Fengqi, Liu, Shuman, Zhang, Jinchuan, Zhuo, Ning, Wang, Lijun, Wang, ZhanGuo. High-speed, room-temperature quantum cascade detectors at 4.3 mu m. AIP ADVANCES[J]. 2016, 6(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000373684200085.
[68] Ning, ZhenDong, Liu, ShuMan, Luo, Shuai, Ren, Fei, Wang, Fengjiao, Yang, Tao, Liu, FengQi, Wang, ZhanGuo, Zhao, LianCheng. Growth and characterization of InAs/InAsSb superlattices by metal organic chemical vapor deposition for mid-wavelength infrared photodetectors. MATERIALS LETTERS[J]. 2016, 164(1): 213-216, http://dx.doi.org/10.1016/j.matlet.2015.10.140.
[69] Ning, ZhenDong, Liu, ShuMan, Luo, Shuai, Ren, Fei, Wang, FengJiao, Yang, Tao, Liu, FengQi, Wang, ZhanGuo, Zhao, LianCheng. Structural and optical properties of InAs/InAsSb superlattices grown by metal organic chemical vapor deposition for mid-wavelength infrared photodetectors. APPLIED SURFACE SCIENCE[J]. 2016, 368: 110-113, http://dx.doi.org/10.1016/j.apsusc.2016.01.255.
[70] Fei Ren, Feng-Jiao Wang, Shuman Liu, Zhen-Dong Ning, Ning Zhuo, Xiao-Ling Ye, Jun-Qi Liu, Li-Jun Wang, Feng-Qi Liu, Zhan-Guo Wang. Double wavelength intersubband electroluminescence from InGaAs/InAlAs quantum cascade structure. Applied Physics Express[J]. 2016, [71] Wang, FengJiao, Zhuo, Ning, Liu, ShuMan, Ren, Fei, Ning, ZhenDong, Ye, XiaoLing, Liu, JunQi, Zhai, ShenQiang, Liu, FengQi, Wang, ZhanGuo. Temperature independent infrared responsivity of a quantum dot quantum cascade photodetector. APPLIED PHYSICS LETTERS[J]. 2016, 108(25): http://ir.semi.ac.cn/handle/172111/27699.
[72] Ning, ZhenDong, Liu, Shuman, Ren, Fei, Wang, Fengjiao, Wang, Lijun, Liu, Fengqi, Wang, Zhanguo, Zhao, Liancheng. Metal organic chemical vapor deposition growth and characterization of InAs/GaSb type-II superlattices on GaAs (001) substrates. MATERIALS LETTERS[J]. 2015, 143: 223-225, http://dx.doi.org/10.1016/j.matlet.2014.12.116.
[73] Li Yuanyuan, Liu Junqi, Wang Tao, Liu Fengqi, Zhai Shenqiang, Zhang Jinchuan, Zhuo Ning, Wang Lijun, Liu Shuman, Wang Zhanguo. High-Power and High-Efficiency Operation of Terahertz Quantum Cascade Lasers at 3.3 THz. 中国物理快报:英文版. 2015, 41-43, http://lib.cqvip.com/Qikan/Article/Detail?id=666304858.
[74] Li YuanYuan, Liu JunQi, Wang Tao, Liu FengQi, Zhai ShenQiang, Zhang JinChuan, Zhuo Ning, Wang LiJun, Liu ShuMan, Wang ZhanGuo. High-Power and High-Efficiency Operation of Terahertz Quantum Cascade Lasers at 3.3 THz. CHINESE PHYSICS LETTERS[J]. 2015, 32(10): http://lib.cqvip.com/Qikan/Article/Detail?id=666304858.
[75] ZhenDong Ning, Shuman Liu, Fei Ren, Fengjiao Wang, Lijun Wang, Fengqi Liu, Zhanguo Wang, Liancheng Zhao. Metal organic chemical vapor deposition growth and characterization of InAs/GaSb type-II superlattices on GaAs(001) substrates. Material letter[J]. 2015, 143: 223–225-, http://ir.semi.ac.cn/handle/172111/26774.
[76] Sang, Ling, Zhu, Qin Sheng, Yang, Shao Yan, Liu, Gui Peng, Li, Hui Jie, Wei, Hong Yuan, Jiao, Chun Mei, Liu, Shu Man, Wang, Zhan Guo, Zhou, Xiao Wei, Mao, Wei, Hao, Yue, Shen, Bo. Band offsets of non-polar A-plane GaN/AlN and AlN/GaN heterostructures measured by X-ray photoemission spectroscopy. NANOSCALE RESEARCH LETTERS[J]. 2014, 9: http://ir.semi.ac.cn/handle/172111/26179.
[77] 张世著, 叶小玲, 徐波, 刘舒曼, 周文飞, 王占国. Fabrication of Low-Density Long-Wavelength InAs Quantum Dots using a Formation-Dissolution-Regrowth Method. CHINESE PHYSICS LETTERS[J]. 2013, 30(8): 181-184, http://ir.semi.ac.cn/handle/172111/24471.
[78] Li, LiGong, Liu, ShuMan, Luo, Shuai, Yang, Tao, Wang, LiJun, Liu, FengQi, Ye, XiaoLing, Xu, Bo, Wang, ZhanGuo. Metalorganic chemical vapor deposition growth of InAs/GaSb type II superlattices with controllable As (x) Sb1-x interfaces. NANOSCALE RESEARCH LETTERS[J]. 2012, 7(1): 1-7, http://ir.semi.ac.cn/handle/172111/23961.
[79] Li, Huijie, Liu, Xianglin, Wang, Jianxia, Jin, Dongdong, Zhang, Heng, Yang, Shaoyan, Liu, Shuman, Mao, Wei, Hao, Yue, Zhu, QinSheng, Wang, Zhanguo. Calculation of discrepancies in measured valence band offsets of heterojunctions with different crystal polarities. JOURNAL OF APPLIED PHYSICS[J]. 2012, 112(11): http://ir.semi.ac.cn/handle/172111/23765.
[80] Li, LiGong, Liu, ShuMan, Luo, Shuai, Yang, Tao, Wang, LiJun, Liu, FengQi, Ye, XiaoLing, Xu, Bo, Wang, ZhanGuo. Formation of AsxSb1-x mixing interfaces in InAs/GaSb superlattices grown by metalorganic chemical vapor deposition. EPL[J]. 2012, 97(3): http://ir.semi.ac.cn/handle/172111/23715.
[81] Li, LiGong, Liu, ShuMan, Luo, Shuai, Yang, Tao, Wang, LiJun, Liu, JunQi, Liu, FengQi, Ye, XiaoLing, Xu, Bo, Wang, ZhanGuo. Effect of growth temperature on surface morphology and structure of InAs/GaSb superlattices grown by metalorganic chemical vapor deposition. JOURNAL OF CRYSTAL GROWTH[J]. 2012, 359: 55-59, http://dx.doi.org/10.1016/j.jcrysgro.2012.08.009.
[82] 李立功, 刘舒曼, 罗帅, 杨涛, 王利军, 刘峰奇, 叶小玲, 徐波, 王占国. Metalorganic Chemical Vapor Deposition Growth of InAs/GaSb Superlattices on GaAs Substrates and Doping Studies of P-GaSb and N-InAs. CHINESE PHYSICS LETTERS[J]. 2012, 29(7): 207-209, https://www.webofscience.com/wos/woscc/full-record/WOS:000306551200054.
[83] Li, Ligong, Liu, Shuman, Ye, Xiaoling, Hossu, Marius, Jiang, Ke, Chen, Wei, Wang, Zhanguo. Formation Mechanism and Characterization of Black Silicon Surface by a Single-Step Wet-Chemical Process. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2012, 12(5): 3954-3958, http://ir.semi.ac.cn/handle/172111/23660.
[84] Liu, Guipeng, Wu, Ju, Zhao, Guijuan, Liu, Shuman, Mao, Wei, Hao, Yue, Liu, Changbo, Yang, Shaoyan, Liu, Xianglin, Zhu, Qinsheng, Wang, Zhanguo. Impact of the misfit dislocations on two-dimensional electron gas mobility in semi-polar AlGaN/GaN heterostructures. APPLIED PHYSICS LETTERS[J]. 2012, 100(8): http://ir.semi.ac.cn/handle/172111/23986.
[85] 李立功, 刘舒曼, 罗帅, 杨涛, 王利军, 刘峰奇, 叶小玲, 徐波, 王占国. Metalorganic Chemical Vapor Deposition Growth of InAs/GaSb Superlattice on GaAs substrate and Doping Studies of p-GaSb and n-InAs. Chin. Phys. Lett.[J]. 2012, [86] 李立功, 刘舒曼, 罗帅, 杨涛, 王利军, 刘峰奇, 叶小玲, 徐波, 王占国. Effect of Interface Bond Type on the Structure of InAs/GaSb Superlattices Grown by Metalorganic Chemical Vapor Deposition. CHINESE PHYSICS LETTERS[J]. 2011, 28(11): 194-197, http://ir.semi.ac.cn/handle/172111/22900.
[87] Liu, ShuMan, Chen, Wei, Wang, ZhanGuo. Luminescence Nanocrystals for Solar Cell Enhancement. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGYnull. 2010, 10(3): 1418-1429, http://ir.semi.ac.cn/handle/172111/13530.
[88] Shuman Liu. Luminescent Silicon Nanoparticles Formed in Solution (review). J. Nanosci. Nanotechnol.. 2008, [89] 刘舒曼, 徐征, Wageh S, 徐叙瑢. CdSe纳米晶的制备及性能表征. 光电子.激光[J]. 2003, 14(1): 46-49, http://lib.cqvip.com/Qikan/Article/Detail?id=7319618.
[90] 李庆福, 黄世华, 刘舒曼, 张希清. ZnO:Eu3+纳米晶的制备及其光谱分析. 激光与红外. 2003, 33(2): 145-147, http://lib.cqvip.com/Qikan/Article/Detail?id=7918448.
[91] 刘舒曼, 徐征, Wageh S, 徐叙瑢. CdSe/PVK纳米晶薄膜及其电致发光特性. 光电子.激光[J]. 2003, 14(2): 118-121, http://lib.cqvip.com/Qikan/Article/Detail?id=7496174.
[92] 李庆福, 黄世华, 刘舒曼, 张希清. ZnO:Eu~(3+)纳米昌的制备及其光谱分析. 激光与红外[J]. 2003, 33(2): 145-147, [93] 高新, 王振家, 邓振波, 刘舒曼, 陈晓红, 张希清, 白峰, 韩建民. PVK掺杂稀土铕配合物的电致发光中的能量传递过程. 中国稀土学报[J]. 2002, 20(2): 173-175, http://lib.cqvip.com/Qikan/Article/Detail?id=6313192.
[94] WagehS, 刘舒曼. 用巯基乙酸作稳定剂制备CdSe纳米晶的光学性质. 发光学报. 2002, 23(2): 145-151, http://lib.cqvip.com/Qikan/Article/Detail?id=6185356.
[95] 张希清, 高新, 刘舒曼, 徐怡庄, 吴瑾光, 徐叙, 段宁, 陶栋梁. 一种新型的稀土有机电致发光材料:Tb(asprin)_3phen. 光谱学与光谱分析. 2001, 21(3): 267-, [96] 刘舒曼, 张志华, 王占国, 郭海清, 刘峰奇. ZnO∶Tb纳米晶的制备、结构与发光性质. 半导体学报[J]. 2001, 22(4): 418-, http://ir.semi.ac.cn/handle/172111/18701.
[97] 刘舒曼, 章婷, 张希清, 吴瑾光, 徐征, 高新, 杨盛谊, 董金凤, 张莉, 杨展澜. 聚乙烯基咔唑对稀土络合物发光特性的影响. 光电子.激光[J]. 2001, 12(5): 480-, http://lib.cqvip.com/Qikan/Article/Detail?id=5279113.
[98] 林兆军, 彭浩, 马莉, 王少阶, 刘舒曼. Y沸石中组装CdSe纳米团簇的实验研究. 武汉大学学报:自然科学版. 2000, 46(3): 327-330, http://lib.cqvip.com/Qikan/Article/Detail?id=4358069.
[99] 刘舒曼. II-VI族半导体纳米团簇的制备及性质研究. 2000, http://ir.semi.ac.cn/handle/172111/4981.
[100] 张志华, 刘舒曼, 郭海清, 王占国, 吕美华. 侧基发光性单体与无机纳米颗粒的组装及其光学性质. 物理化学学报. 2000, 16(11): 968-971, http://lib.cqvip.com/Qikan/Article/Detail?id=4770113.
[101] 刘舒曼, 王占国, 张志华, 郭海清, 刘峰奇. ZnO:Tb纳米晶的协同发光现象. 物理学报. 2000, 49(11): 2307-2309, http://lib.cqvip.com/Qikan/Article/Detail?id=4787236.

科研活动

   
科研项目
( 1 ) MOCVD 生长InAs/GaSbII 类超晶格中界面形成动力学及其, 主持, 国家级, 2013-01--2016-12
( 2 ) 高工作温度长波红外量子级联探测器关键技术研究, 主持, 国家级, 2018-01--2021-12
( 3 ) 3-4微米锑化物单管与阵列激光器, 主持, 国家级, 2018-01--2022-12
( 4 ) 中红外激光器及其与III-V族MOSFET器件集成, 主持, 国家级, 2019-08--2023-06

指导学生

现指导学生

宁超  博士研究生  0805Z2-半导体材料与器件