发表论文
[1] Angew. Chem. Int. Ed.. 2024, [2] Angew. Chem. Int. Ed.. 2024, [3] Yi-Fan Tian, Shuang-Jie Tan, Chunpeng Yang, Yu-Ming Zhao, Di-Xin Xu, Zhuo-Ya Lu, Ge Li, Jin-Yi Li, Xu-Sheng Zhang, Chao-Hui Zhang, Jilin Tang, Yao Zhao, Fuyi Wang, Rui Wen, Quan Xu, Yu-Guo Guo. Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode. NATURE COMMUNICATIONS[J]. 2023, 14(1): http://dx.doi.org/10.1038/s41467-023-43093-6.[4] Shi, Shang, Shen, Zhenzhen, Li, Shanshan, Wang, Qian, Wen, Rui, Liu, Bing. High-Yield Synthesis of Colloidal Carbon Rings and Their Applications in Self-Standing Electrodes of Li−O2 Batteries. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2023, 145(50): 27664-27671, [5] Zhang, QianKui, Zhang, XueQiang, Wan, Jing, Yao, Nan, Song, TingLu, Xie, Jin, Hou, LiPeng, Zhou, MingYue, Chen, Xiang, Li, BoQuan, Wen, Rui, Peng, HongJie, Zhang, Qiang, Huang, JiaQi. Homogeneous and mechanically stable solid-electrolyte interphase enabled by trioxane-modulated electrolytes for lithium metal batteries. NATURE ENERGY[J]. 2023, 8(7): 725-735, http://dx.doi.org/10.1038/s41560-023-01275-y.[6] Hou, LiPeng, Li, Yuan, Li, Zheng, Zhang, QianKui, Li, BoQuan, Bi, ChenXi, Chen, ZiXian, Su, LiLing, Huang, JiaQi, Wen, Rui, Zhang, XueQiang, Zhang, Qiang. Electrolyte Design for Improving Mechanical Stability of Solid Electrolyte Interphase in Lithium-Sulfur Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2023, http://dx.doi.org/10.1002/anie.202305466.[7] Meng, Qinghai, Fan, Min, Chang, Xin, Li, Hongliang, Wang, Wen-Peng, Zhu, Yu-Hui, Wan, Jing, Zhao, Yao, Wang, Fuyi, Wen, Rui, 辛森, Guo, Yu-Guo. A Functional Prelithiation Separator Promises Sustainable High-Energy Lithium-Ion Batteries. Advanced Energy Materials[J]. 2023, 13(19): 2300507, http://dx.doi.org/10.1002/aenm.202300507.[8] Tian, YiFan, Tan, ShuangJie, Lu, ZhuoYa, Xu, DiXin, Chen, HanXian, Zhang, ChaoHui, Zhang, XuSheng, Li, Ge, Zhao, YuMing, Chen, WanPing, Xu, Quan, Wen, Rui, Zhang, Juan, Guo, YuGuo. Insights into Anion-Solvent Interactions to Boost Stable Operation of Ether-Based Electrolytes in Pure-SiOx||LiNi0.8Mn0.1Co0.1O2 Full Cells. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2023, http://dx.doi.org/10.1002/anie.202305988.[9] Guo, JunChen, Tan, ShuangJie, Zhang, ChaoHui, Wang, WenPeng, Zhao, Yao, Wang, Fuyi, Zhang, XuSheng, Wen, Rui, Zhang, Ying, Fan, Min, 辛森, Zhang, Juan, Guo, YuGuo. A Self-Reconfigured, Dual-Layered Artificial Interphase Toward High-Current-Density Quasi-Solid-State Lithium Metal Batteries. Advanced Materials[J]. 2023, 35(24): 2300350, http://dx.doi.org/10.1002/adma.202300350.[10] Yan, Min, Wang, Chen-Yang, Fan, Min, Zhang, Yuying, 辛森, Yue, Junpei, Zeng, Xian-Xiang, Liang, Jia-Yan, Song, Yue-Xian, Yin, Ya-Xia, Wen, Rui, Liu, Zhitian, Wan, Li-Jun, Guo, Yu-Guo. In Situ Derived Mixed Ion/Electron Conducting Layer on Top of a Functional Separator for High-Performance, Dendrite-Free Rechargeable Lithium-Metal Batteries. Advanced Functional Materials[J]. 2023, 2301638, http://dx.doi.org/10.1002/adfm.202301638.[11] Liu, RuiZhi, Shen, ZhenZhen, Wen, Rui, Wan, Li Jun. Recent advances in the application of scanning probe microscopy in interfacial electroanalytical chemistry. JOURNAL OF ELECTROANALYTICAL CHEMISTRY[J]. 2023, 938: http://dx.doi.org/10.1016/j.jelechem.2023.117443.[12] Li, Zheng, Li, Yuan, Bi, ChenXi, Zhang, QianKui, Hou, LiPeng, Li, XiYao, Ma, Jin, Zhang, XueQiang, Li, BoQuan, Wen, Rui, Zhang, Qiang. Construction of Organic-Rich Solid Electrolyte Interphase for Long-Cycling Lithium-Sulfur Batteries. ADVANCED FUNCTIONAL MATERIALS. 2023, http://dx.doi.org/10.1002/adfm.202304541.[13] Huo, Jiawei, Li, Jie, Liu, Yang, Yang, Libin, Cao, Xinran, Zhao, Chong, Lu, Yicheng, Zhou, Wei, Li, Shumu, Liu, Jianan, Li, Jiao, Li, Xing, Wan, Jing, Wen, Rui, Zhen, Mingming, Wang, Chunru, Bai, Chunli. Amphiphilic Aminated Derivatives of 60Fullerene as Potent Inhibitors of Tumor Growth and Metastasis. ADVANCED SCIENCE[J]. 2022, 9(29): http://dx.doi.org/10.1002/advs.202201541.[14] Tian, YiFan, Li, Ge, Xu, DiXin, Lu, ZhuoYa, Yan, MingYan, Wan, Jing, Li, JinYi, Xu, Quan, Xin, Sen, Wen, Rui, Guo, YuGuo. Micrometer-Sized SiMgyOx with Stable Internal Structure Evolution for High-Performance Li-Ion Battery Anodes. ADVANCED MATERIALS[J]. 2022, 34(15): https://www.doi.org/10.1002/adma.202200672.[15] Jing Wan, 严会娟, Rui Wen, Li-Jun Wan. In Situ Visualization of Electrochemical Processes in Solid-State Lithium Batteries. ACS Energy Lett.[J]. 2022, 7: 2988-2988, https://doi.org/10.1021/acsenergylett.2c01069.[16] Hu, Taiping, Tian, Jianxin, Dai, Fuzhi, Wang, Xiaoxu, Wen, Rui, Xu, Shenzhen. Impact of the Local Environment on Li Ion Transport in Inorganic Components of Solid Electrolyte Interphases. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. 2022, [17] Sheng, Hang, Meng, XinHai, Xiao, DongDong, Fan, Min, Chen, WanPing, Wan, Jing, Tang, Jilin, Zou, YuGang, Wang, Fuyi, Wen, Rui, Shi, JiLei, Guo, YuGuo. An Air-Stable High-Nickel Cathode with Reinforced Electrochemical Performance Enabled by Convertible Amorphous Li2CO3 Modification. ADVANCED MATERIALS[J]. 2022, 34(12): http://dx.doi.org/10.1002/adma.202108947.[18] Angew. Chem. Int. Ed.. 2022, [19] Angew. Chem. Int. Ed.. 2022, [20] J. Am. Chem. Soc.. 2022, [21] Chen, WanPing, Duan, Hui, Shi, JiLei, Qian, Yumin, Wan, Jing, Zhang, XuDong, Sheng, Hang, Guan, Bo, Wen, Rui, Yin, YaXia, Xin, Sen, Guo, YuGuo, Wan, LiJun. Bridging Interparticle Li+ Conduction in a Soft Ceramic Oxide Electrolyte. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2021, 143(15): 5717-5726, http://dx.doi.org/10.1021/jacs.0c12965.[22] Yang Shi, GuiXian Liu, Jing Wan, Rui Wen, LiJun Wan. In-situ nanoscale insights into the evolution of solid electrolyte interphase shells: revealing interfacial degradation in lithium metal batteries. SCIENCE CHINA-CHEMISTRY[J]. 2021, 64(5): 734-738, https://www.webofscience.com/wos/woscc/full-record/WOS:000632755600001.[23] Wan, Jing, Song, YueXian, Chen, WanPing, Guo, HuiJuan, Shi, Yang, Guo, YuJie, Shi, JiLei, Guo, YuGuo, Jia, FeiFei, Wang, FuYi, Wen, Rui, Wan, LiJun. Micromechanism in All-Solid-State Alloy-Metal Batteries: Regulating Homogeneous Lithium Precipitation and Flexible Solid Electrolyte Interphase Evolution. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2021, 143(2): 839-848, https://www.webofscience.com/wos/woscc/full-record/WOS:000612557200037.[24] ShuangJie Tan, Junpei Yue, YiFan Tian, Qiang Ma, Jing Wan, Yao Xiao, Juan Zhang, YaXia Yin, Rui Wen, Sen Xin, YuGuo Guo. In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable quasi-solid-state lithium metal batteries. ENERGY STORAGE MATERIALS. 2021, 39: 186-193, http://dx.doi.org/10.1016/j.ensm.2021.04.020.[25] Mao, Heng, Yu, Wei, Cai, Zhuanyun, Liu, Guixian, Liu, Limin, Wen, Rui, Su, Yaqiong, Kou, Huari, Xi, Kai, Li, Benqiang, Zhao, Hongyang, Da, Xinyu, Wu, Hu, Yan, Wei, Ding, Shujiang. Current-Density Regulating Lithium Metal Directional Deposition for Long Cycle-Life Li Metal Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2021, 60(35): 19306-19313, http://dx.doi.org/10.1002/anie.202105831.[26] 万静, 沈珍珍, 文锐, 万立骏. 锂电池电极过程的原位电化学原子力显微镜研究进展. 中国科学:化学[J]. 2021, 51(3): 264-280, https://www.sciengine.com/doi/10.1360/SSC-2020-0195.[27] Tan, ShuangJie, Yue, Junpei, Tian, YiFan, Ma, Qiang, Wan, Jing, Xiao, Yao, Zhang, Juan, Yin, YaXia, Wen, Rui, Xin, Sen, Guo, YuGuo. In-situ encapsulating flame-retardant phosphate into robust polymer matrix for safe and stable lithium metal batteries. ENERGY STORAGE MATERIALS[J]. 2021, 39: 186-193, http://dx.doi.org/10.1016/j.ensm.2021.04.020.[28] 田建鑫, 郭慧娟, 万静, 刘桂贤, 严会娟, 文锐, 万立骏. 固态锂电池电极过程的原位研究进展. 化学学报[J]. 2021, 79(10): 1197-1213, http://lib.cqvip.com/Qikan/Article/Detail?id=7105846212.[29] J. Am. Chem. Soc.. 2021, [30] J. Am. Chem. Soc.. 2021, [31] Jiang, Zhipeng, Guo, HuiJuan, Zeng, Ziqi, Han, Zhilong, Hu, Wei, Wen, Rui, Xie, Jia. Reconfiguring Organosulfur Cathode by Over-Lithiation to Enable Ultrathick Lithium Metal Anode toward Practical Lithium-Sulfur Batteries. ACS NANO[J]. 2020, 14(10): 13784-13793, [32] Bai, Ruipeng, Xue, Man, Lin, Yuan, Wen, Rui, Guo, Yuan, Zhang, Zhen. Adsorption and Oxidation Dynamics of Disperse Orange 3 on a Polycrystalline Pt Electrode Studied by In Situ Second Harmonic Generation. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2020, 124(39): 21625-21634, https://www.webofscience.com/wos/woscc/full-record/WOS:000577151900040.[33] Guo, HuiJuan, Wang, HuaiXiang, Guo, YuJie, Liu, GuiXian, Wan, Jing, Song, YueXian, Yang, XinAn, Jia, FeiFei, Wang, FuYi, Guo, YuGuo, Wen, Rui, Wan, LiJun. Dynamic Evolution of a Cathode Interphase Layer at the Surface of LiNi0.5Co0.2Mn0.3O2 in Quasi-Solid-State Lithium Batteries. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2020, 142(49): 20752-20762, https://www.webofscience.com/wos/woscc/full-record/WOS:000599506900034.[34] Shi, Yang, Wan, Jing, Liu, GuiXian, Zuo, TongTong, Song, YueXian, Liu, Bing, Guo, YuGuo, Wen, Rui, Wan, LiJun. Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi-Solid-State Lithium-Metal Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2020, 59(41): 18120-18125, https://www.webofscience.com/wos/woscc/full-record/WOS:000560301100001.[35] Zhang, Ying, Shi, Yang, Hu, XinCheng, Wang, WenPeng, Wen, Rui, Xin, Sen, Guo, YuGuo. A 3D Lithium/Carbon Fiber Anode with Sustained Electrolyte Contact for Solid-State Batteries. ADVANCED ENERGY MATERIALS[J]. 2020, 10(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000500340900001.[36] Lang, ShuangYan, Shen, ZhenZhen, Hu, XinCheng, Shi, Yang, Guo, YuGuo, Jia, FeiFei, Wang, FuYi, Wen, Rui, Wan, LiJun. Tunable structure and dynamics of solid electrolyte interphase at lithium metal anode. NANO ENERGY[J]. 2020, 75: http://dx.doi.org/10.1016/j.nanoen.2020.104967.[37] Hu, XinCheng, Shen, ZhenZhen, Wan, Jing, Song, YueXian, Liu, Bing, Yan, HuiJuan, Wen, Rui, Wan, LiJun. Insight into interfacial processes and degradation mechanism in magnesium metal batteries. NANO ENERGY[J]. 2020, 78: http://dx.doi.org/10.1016/j.nanoen.2020.105338.[38] Shen, ZhenZhen, Lang, ShuangYan, Zhou, Chi, Wen, Rui, Wan, LiJun. In Situ Realization of Water-Mediated Interfacial Processes at Nanoscale in Aprotic Li-O-2 Batteries. ADVANCED ENERGY MATERIALS[J]. 2020, 10(46): https://www.webofscience.com/wos/woscc/full-record/WOS:000583754400001.[39] Liu, Haining, Wang, Xinsheng, Wu, Juanxia, Chen, Yuansha, Wan, Jing, Wen, Rui, Yang, Jinbo, Liu, Ying, Song, Zhigang, Xie, Liming. Vapor Deposition of Magnetic Van der Waals NiI2 Crystals. ACS NANO[J]. 2020, 14(8): 10544-10551, https://www.webofscience.com/wos/woscc/full-record/WOS:000566341000115.[40] Shen, ZhenZhen, Zhou, Chi, Wen, Rui, Wan, LiJun. Surface Mechanism of Catalytic Electrodes in Lithium-Oxygen Batteries: How Nanostructures Mediate the Interfacial Reactions. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2020, 142(37): 16007-16015, https://www.webofscience.com/wos/woscc/full-record/WOS:000573374400042.[41] J. Am. Chem. Soc.. 2020, [42] J. Am. Chem. Soc.. 2020, [43] Angew. Chem. Int. Ed.. 2020, [44] 郎双雁, 胡新成, 文锐, 万立骏. 锂硫电池中电极过程的原位可视化研究进展. 电化学[J]. 2019, 25(2): 141-159, http://lib.cqvip.com/Qikan/Article/Detail?id=7002176036.[45] Song, YueXian, Shi, Yang, Wan, Jing, Lang, ShuangYan, Hu, XinCheng, Yan, HuiJuan, Liu, Bing, Guo, YuGuo, Wen, Rui, Wan, LiJun. Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium-sulfur batteries: a degradation mechanism study. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2019, 12(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000479082800011.[46] Shen, ZhenZhen, Lang, ShuangYan, Shi, Yang, Ma, JianMin, Wen, Rui, Wan, LiJun. Revealing the Surface Effect of the Soluble Catalyst on Oxygen Reduction/Evolution in Li-O-2 Batteries. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2019, 141(17): 6900-6905, https://www.webofscience.com/wos/woscc/full-record/WOS:000466987900020.[47] Li, Xiu, Hu, Xincheng, Zhou, Lin, Wen, Rui, Xu, Xun, Chou, Shulei, Chen, Libao, Cao, AnMin, Dou, Shixue. A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2019, 7(19): 11976-11984, http://dx.doi.org/10.1039/c9ta01615e.[48] Lang, ShuangYan, Shi, Yang, Hu, XinCheng, Yan, HuiJuan, Wen, Rui, Wan, LiJun. Recent progress in the application of in situ atomic force microscopy for rechargeable batteries. CURRENT OPINION IN ELECTROCHEMISTRY. 2019, 17: 134-142, http://dx.doi.org/10.1016/j.coelec.2019.05.004.[49] Zheng, ZiJian, Su, Qi, Zhang, Qiao, Hu, XinCheng, Yin, YaXia, Wen, Rui, Ye, Huan, Wang, ZhengBang, Guo, YuGuo. Low volume change composite lithium metal anodes. NANO ENERGY[J]. 2019, 64: 103910, http://dx.doi.org/10.1016/j.nanoen.2019.103910.[50] Wu, Na, Shi, YaRu, Lang, ShuangYan, Zhou, JinMing, Liang, JiaYan, Wang, Wei, Tan, ShuangJie, Yin, YaXia, Wen, Rui, Guo, YuGuo. Self-Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2019, 58(50): 18146-18149, https://www.webofscience.com/wos/woscc/full-record/WOS:000493154400001.[51] Tan, ShuangJie, Yue, Junpei, Hu, XinCheng, Shen, ZhenZhen, Wang, WenPeng, Li, JinYi, Zuo, TongTong, Duan, Hui, Xiao, Yao, Yin, YaXia, Wen, Rui, Guo, YuGuo. Nitriding-Interface-Regulated Lithium Plating Enables Flame-Retardant Electrolytes for High-Voltage Lithium Metal Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2019, 58(23): 7802-7807, https://www.webofscience.com/wos/woscc/full-record/WOS:000474804800045.[52] Jing Wan, Yang Hao, Yang Shi, YueXian Song, HuiJuan Yan, Jian Zheng, Rui Wen, LiJun Wan. Ultra-thin solid electrolyte interphase evolution and wrinkling processes in molybdenum disulfide-based lithium-ion batteries. NATURE COMMUNICATIONS[J]. 2019, 10(1): 1-10, [53] Shi, Yang, Wan, Jing, Li, JinYi, Hu, XinCheng, Lang, ShuangYan, Shen, ZhenZhen, Li, Ge, Yan, HuiJuan, Jiang, KeCheng, Guo, YuGuo, Wen, Rui, Wan, LiJun. Elucidating the interfacial evolution and anisotropic dynamics on silicon anodes in lithium-ion batteries. NANO ENERGY[J]. 2019, 61: 304-310, http://dx.doi.org/10.1016/j.nanoen.2019.04.074.[54] Nat. Commun.. 2019, [55] J. Am. Chem. Soc.. 2019, [56] Zeng, XianXiang, Yin, YaXia, Shi, Yang, Zhang, XuDong, Yao, HuRong, Wen, Rui, Wu, XiongWei, Guo, YuGuo. Lithiation-Derived Repellent toward Lithium Anode Safeguard in Quasi-solid Batteries. CHEM[J]. 2018, 4(2): 298-307, http://dx.doi.org/10.1016/j.chempr.2017.12.003.[57] Duan, Hui, Yin, YaXia, Shi, Yang, Wang, PengFei, Zhang, XuDong, Yang, ChunPeng, Shi, JiLei, Wen, Rui, Guo, YuGuo, Wan, LiJun. Dendrite-Free Li-Metal Battery Enabled by a Thin Asymmetric Solid Electrolyte with Engineered Layers. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2018, 140(1): 82-85, https://www.webofscience.com/wos/woscc/full-record/WOS:000422813300021.[58] Lang, ShuangYan, Xiao, RuiJuan, Gu, Lin, Guo, YuGuo, Wen, Rui, Wan, LiJun. Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2018, 140(26): 8147-8155, https://www.webofscience.com/wos/woscc/full-record/WOS:000438309400019.[59] Li, NianWu, Shi, Yang, Yin, YaXia, Zeng, XianXiang, Li, JinYi, Li, CongJu, Wan, LiJun, Wen, Rui, Guo, YuGuo. A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2018, 57(6): 1505-1509, https://www.webofscience.com/wos/woscc/full-record/WOS:000423494500010.[60] Duan, Hui, Yin, YaXia, Zeng, XianXiang, Li, JinYi, Shi, JiLei, Shi, Yang, Wen, Rui, Guo, YuGuo, Wan, LiJun. In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. ENERGY STORAGE MATERIALS[J]. 2018, 10: 85-91, http://dx.doi.org/10.1016/j.ensm.2017.06.017.[61] Dong, Wei, Zeng, XianXiang, Zhang, XuDong, Li, JinYi, Shi, JiLie, Xiao, Yao, Shi, Yang, Wen, Rui, Yin, YaXia, Wang, Taishan, Wang, ChunRu, Guo, YuGuo. Gradiently Polymerized Solid Electrolyte Meets with Micro-/Nanostructured Cathode Array. ACSAPPLIEDMATERIALSINTERFACES[J]. 2018, 10(21): 18005-18011, https://www.webofscience.com/wos/woscc/full-record/WOS:000434101200051.[62] Hu, XinCheng, Shi, Yang, Lang, ShuangYan, Zhang, Xing, Gu, Lin, Guo, YuGuo, Wen, Rui, Wan, LiJun. Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium-sulfur batteries. NANO ENERGY[J]. 2018, 49: 453-459, http://dx.doi.org/10.1016/j.nanoen.2018.04.066.[63] Zuo, TongTong, Shi, Yang, Wu, XiongWei, Wang, PengFei, Wang, ShuHua, Yin, YaXia, Wang, WenPeng, Ma, Qiang, Zeng, XianXiang, Ye, Huan, Wen, Rui, Guo, YuGuo. Constructing a Stable Lithium Metal-Gel Electrolyte Interface for Quasi-Solid-State Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(36): 30065-30070, https://www.webofscience.com/wos/woscc/full-record/WOS:000444793000009.[64] Shi, Yang, Yan, HuiJuan, Wen, Rui, Wan, LiJun. Direct Visualization of Nucleation and Growth Processes of Solid Electrolyte Interphase Film Using in Situ Atomic Force Microscopy. ACS APPLIED MATERIALS & INTERFACES[J]. 2017, 9(26): 22063-22067, https://www.webofscience.com/wos/woscc/full-record/WOS:000405159100052.[65] Ye, Huan, Yin, YaXia, Zhang, ShuaiFeng, Shi, Yang, Liu, Lin, Zeng, XianXiang, Wen, Rui, Guo, YuGuo, Wan, LiJun. Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. NANO ENERGY[J]. 2017, 36: 411-417, http://dx.doi.org/10.1016/j.nanoen.2017.04.056.[66] Lang, ShuangYan, Shi, Yang, Guo, YuGuo, Wen, Rui, Wan, LiJun. High-Temperature Formation of a Functional Film at the Cathode/Electrolyte Interface in Lithium-Sulfur Batteries: An In Situ AFM Study. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2017, 56(46): 14433-14437, http://dx.doi.org/10.1002/anie.201706979.[67] Lang, ShuangYan, Shi, Yang, Guo, YuGuo, Wang, Dong, Wen, Rui, Wan, LiJun. Insight into the Interfacial Process and Mechanism in Lithium-Sulfur Batteries: An In Situ AFM Study. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2016, 55(51): 15835-15839, https://www.webofscience.com/wos/woscc/full-record/WOS:000390599400022.[68] Wen, Rui, Rahn, Bjorn, Magnussen, Olaf M. In Situ Video-STM Study of Adlayer Structure and Surface Dynamics at the Ionic Liquid/Au (111) Interface. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2016, 120(29): 15765-15771, http://ir.iccas.ac.cn/handle/121111/35218.[69] 文锐. Donor/acceptor complex of triphenylene and trinitrotoluene on Au(111): a scanning tunneling microscopy study. CHEM. COMMUN.[J]. 2011, 47: 6915-6917, http://www.irgrid.ac.cn/handle/1471x/897918.[70] Wen, Rui, Yan, CunJi, Yan, HuiJuan, Pan, GeBo, Wan, LiJun. Donor/acceptor complex of triphenylene and trinitrotoluene on Au(111): a scanning tunneling microscopy study. CHEMICAL COMMUNICATIONS[J]. 2011, 47(24): 6915-6917, http://www.irgrid.ac.cn/handle/1471x/897918.[71] 文锐. Au(Ⅲ)表面硝基化合物吸附沉积及痕量分析的电化学STM研究. 2008, http://ir.iccas.ac.cn/handle/121111/31704.[72] Wen, Rui, Pan, GeBo, Wan, LiJun. Oriented organic islands and one-dimensional chains on a Au(111) surface fabricated by electrodeposition: An STM study. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2008, 130(36): 12123-12127, https://www.webofscience.com/wos/woscc/full-record/WOS:000258950500053.