发表论文
[1] 杨红生, 茹小尚, 张立斌, 林承刚. 试论淡水生态牧场发展理念与途径. 河南师范大学学报:自然科学版. 2021, 49(4): 90-97, [2] Xing, Lili, Sun, Lina, Liu, Shilin, Zhang, Libin, Sun, Jingchun, Yang, Hongsheng. Metabolomic analysis of white, green and purple morphs of sea cucumber Apostichopus japonicus during body color pigmentation process. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS[J]. 2021, 39: http://dx.doi.org/10.1016/j.cbd.2021.100827.[3] Ru, Xiaoshang, Zhang, Libin, Yang, Hongsheng. Plasticity of Locomotor Activity Permits Energy Homeostasis During Reproduction in a Female Sea Cucumber. FRONTIERS IN MARINE SCIENCE[J]. 2021, 8: http://dx.doi.org/10.3389/fmars.2021.748571.[4] Xing, Lili, Sun, Lina, Liu, Shilin, Zhang, Libin, Yang, Hongsheng. Comparative metabolomic analysis of the body wall from four varieties of the sea cucumber Apostichopus japonicus. FOOD CHEMISTRY[J]. 2021, 352: http://dx.doi.org/10.1016/j.foodchem.2021.129339.[5] Da Huo, Lina Sun, Jingchun Sun, Chenggang Lin, Shilin Liu, Libin Zhang, Hongsheng Yang. Emerging roles of circRNAs in regulating thermal and hypoxic stresses in Apostichopus japonicus (Echinodermata: Holothuroidea). Ecotoxicology and Environmental Safety[J]. 2021, 228: [6] Lin Chenggang, Liu Xiaolu, Sun Lina, Liu Shilin, Sun Jingchun, Zhang Libin, Yang Hongsheng. Effects of different flow velocities on behavior and TRPA1 expression in the sea cucumberApostichopus japonicas. JOURNAL OF OCEANOLOGY AND LIMNOLOGY[J]. 2020, 38(4): 1328-1340, http://lib.cqvip.com/Qikan/Article/Detail?id=7102292183.[7] Huo D, Sun L, Storey KB, Zhang L, Liu S, Sun J, Yang H. The regulation mechanism of lncRNAs and mRNAs in sea cucumbers under global climate changes: Defense against thermal and hypoxic stresses. 2020, http://119.78.100.158/handle/2HF3EXSE/158644.[8] 杨红生, 许帅, 林承刚, 孙景春, 张立斌. 典型海域生境修复与生物资源养护研究进展与展望. 海洋与湖沼[J]. 2020, 51(4): 809-820, http://lib.cqvip.com/Qikan/Article/Detail?id=7102346653.[9] Mohsen, Mohamed, Zhang, Libin, Sun, Lina, Lin, Chenggang, Wang, Qing, Yang, Hongsheng. Microplastic fibers transfer from the water to the internal fluid of the sea cucumber Apostichopus japonicus. ENVIRONMENTAL POLLUTION[J]. 2020, 257: http://dx.doi.org/10.1016/j.envpol.2019.113606.[10] Mohsen, Mohamed, Zhang, Libin, Sun, Lina, Lin, Chenggang, Liu, Shilin, Wang, Qing, Yang, Hongsheng. A deposit-feeder sea cucumber also ingests suspended particles through the mouth. JOURNAL OF EXPERIMENTAL BIOLOGY[J]. 2020, 223(24): https://www.webofscience.com/wos/woscc/full-record/WOS:000605472600010.[11] Huo, Da, Sun, Lina, Zhang, Libin, Ru, Xiaoshang, Liu, Shilin, Yang, Hongsheng. Metabolome responses of the sea cucumber Apostichopus japonicus to multiple environmental stresses: Heat and hypoxia. MARINE POLLUTION BULLETIN[J]. 2019, 138: 407-420, http://dx.doi.org/10.1016/j.marpolbul.2018.11.063.[12] Mohsen, Mohamed, Wang, Qing, Zhang, Libin, Sun, Lina, Lin, Chenggang, Yang, Hongsheng. Microplastic ingestion by the farmed sea cucumber Apostichopus japonicus in China. ENVIRONMENTAL POLLUTION[J]. 2019, 245: 1071-1078, http://dx.doi.org/10.1016/j.envpol.2018.11.083.[13] Zhang, Hongxia, Wang, Qing, Liu, Shilin, Huo, Da, Zhao, Jianmin, Zhang, Libin, Zhao, Ye, Sun, Lina, Yang, Hongsheng. Genomic and Metagenomic Insights Into the Microbial Community in the Regenerating Intestine of the Sea Cucumber Apostichopus japonicus. FRONTIERS IN MICROBIOLOGY[J]. 2019, 10: https://doaj.org/article/05d8ac5bcc8741c28d79233126e79159.[14] Huo, Da, Sun, Lina, Zhang, Libin, Ru, Xiaoshang, Liu, Shilin, Yang, Xinyuan, Yang, Hongsheng. Global-warming-caused changes of temperature and oxygen alter the proteomic profile of sea cucumber Apostichopus japonicus. JOURNAL OF PROTEOMICS[J]. 2019, 193: 27-43, http://ir.qdio.ac.cn/handle/337002/155313.[15] Mohsen, Mohamed, Wang, Qing, Zhang, Libin, Sun, Lina, Lin, Chenggang, Yang, Hongsheng. Heavy metals in sediment, microplastic and sea cucumber Apostichopus japonicus from farms in China. MARINE POLLUTION BULLETIN[J]. 2019, 143: 42-49, http://dx.doi.org/10.1016/j.marpolbul.2019.04.025.[16] Yang Hongsheng. De Novo assembly and comparative transcriptome analyses of purple and green morphs of Apostichopus japonicus during body wall pigmentation process. Comparative biochemistry and physiology. Comparative Biochemistry and Physiology Part D, Genomics & proteomics. 2018, [17] Huo, Da, Sun, Lina, Ru, Xiaoshang, Zhang, Libin, Lin, Chenggang, Liu, Shilin, Xin, Xiaoke, Yang, Hongsheng. Impact of hypoxia stress on the physiological responses of sea cucumber Apostichopus japonicus: respiration, digestion, immunity and oxidative damage. PEERJ[J]. 2018, 6: https://doaj.org/article/58cda92273134096b0f6ba4b441bf119.[18] Zhang Libin, Feng Qiming, Sun Lina, Ding Kui, Huo Da, Fang Yan, Zhang Tao, Yang Hongsheng. Differential gene expression in the intestine of sea cucumber (Apostichopus japonicus) under low and high salinity conditions.. Comparative biochemistry and physiology. Part D, Genomics & proteomics. 2018, http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=SJPD72B8DE4B61ABAFBBB361DBF32697E909&DbName=SJPD_06&DbCode=SJPD&yx=&pr=&URLID=&bsm=.[19] Yang Hongsheng. Transcriptome analysis provides insights into the mechanism of albinism during different pigmentation stages of the albino sea cucumber Apostichopus japonicus. Aquaculture. 2018, [20] Yang Hongsheng. Comparison of pigment composition and melanin content among white, light-green, dark-green, and purple morphs of sea cucumber, Apostichopus japonicas. Acta Oceanologica Sinica. 2017, [21] Xiaojun Zhang, Lina Sun, Jianbo Yuan, Yamin Sun, Yi Gao, Libin Zhang, Shihao Li, Hui Dai, JeanFranois Hamel, Chengzhang Liu, Yang Yu, Shilin Liu, Wenchao Lin, Kaimin Guo, Songjun Jin, Peng Xu, Kenneth B Storey, Pin Huan, Tao Zhang, Yi Zhou, Jiquan Zhang, Chenggang Lin, Xiaoni Li, Lili Xing, Da Huo, Mingzhe Sun, Lei Wang, Annie Mercier, Fuhua Li, Hongsheng Yang, Jianhai Xiang. The sea cucumber genome provides insights into morphological evolution and visceral regeneration.. PLoS Biology[J]. 2017, 15(10): IR_Article.[22] Yang Hongsheng. Growth, histology, ultrastructure and expression of MITF and astacin in the pigmentation stages of green, white and purple morphs of the sea cucumber, Apostichopus japonicus.. Aquaculture Research. 2017, [23] Ru, Xiaoshang, Zhang, Libin, Liu, Shilin, Yang, Hongsheng. Reproduction affects locomotor behaviour and muscle physiology in the sea cucumber, Apostichopus japonicus. ANIMAL BEHAVIOUR[J]. 2017, 133: 223-228, http://ir.qdio.ac.cn/handle/337002/143073.[24] Yang Hongsheng. Genome-wide analysis of gene expression profile in the respiratory tree of sea cucumber (Apostichopus japonicus) in response to hypoxia conditions.. Journal of the Marine Biological Association of the United Kingdom. 2017, [25] Huo, Da, Sun, Lina, Li, Xiaoni, Ru, Xiaoshang, Liu, Shilin, Zhang, Libin, Xing, Lili, Yang, Hongsheng. Differential Expression of miRNAs in the Respiratory Tree of the Sea Cucumber Apostichopus japonicus Under Hypoxia Stress. G3-GENES GENOMES GENETICS[J]. 2017, 7(11): 3681-3692, http://ir.qdio.ac.cn/handle/337002/143075.[26] 杨红生. 海岸带生态农牧场新模式构建设想与途径——以黄河三角洲为例. 中国科学院院刊[J]. 2017, 32(10): 1111-1117, [27] Xing Lili, Sun Lina, Liu Shilin, Li Xiaoni, Zhang Libin, Yang Hongsheng. IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus. Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics[J]. 2017, [28] Li Xiaoni, Sun Lina, Yang Hongsheng, Zhang Libin, Miao Ting, Xing Lili, Huo Da. Identification and expression characterization of WntA during intestinal regeneration in the sea cucumber Apostichopus japonicus. Comparative Biochemistry and Physiology - Part B: Biochemistry and Molecular Biology[J]. 2017, [29] Liu, Shilin, Zhou, Yi, Ru, Xiaoshang, Zhang, Mingzhu, Cao, Xuebin, Yang, Hongsheng. Differences in immune function and metabolites between aestivating and non-aestivating Apostichopus japonicus. AQUACULTURE[J]. 2016, 459: 36-42, http://dx.doi.org/10.1016/j.aquaculture.2016.03.029.[30] Xu, Dongxue, Sun, Lina, Liu, Shilin, Zhang, Libin, Yang, Hongsheng. Understanding the Heat Shock Response in the Sea Cucumber Apostichopus japonicus, Using iTRAQ-Based Proteomics. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES[J]. 2016, 17(2): https://doaj.org/article/ad88ed71d5234616a949f4e0d9ed69c7.[31] Zhang, Hongye, Xu, Qiang, Zhao, Ye, Yang, Hongsheng. Sea cucumber (Apostichopus japonicus) eukaryotic food source composition determined by 18s rDNA barcoding. MARINE BIOLOGY[J]. 2016, 163(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000379528900008.[32] Sun, Jiamin, Zhang, Libin, Pan, Yang, Lin, Chenggang, Wang, Fang, Kan, Rentao, Yang, Hongsheng. Feeding behavior and digestive physiology in sea cucumber Apostichopus japonicus. PHYSIOLOGY & BEHAVIOR[J]. 2015, 139: 336-343, http://dx.doi.org/10.1016/j.physbeh.2014.11.051.[33] Xu, Dongxue, Sun, Lina, Liu, Shilin, Zhang, Libin, Yang, Hongsheng. Histological, ultrastructural and heat shock protein 70 (HSP70) responses to heat stress in the sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY[J]. 2015, 45(2): 321-326, http://dx.doi.org/10.1016/j.fsi.2015.04.015.[34] Yang Hongsheng. Understanding the Heat Shock Response in the SeaCucumber Apostichopus japonicus, UsingiTRAQ-Based Proteomics. International Journal of Molecular Sciences. 2015, [35] Sun, Lina, Yang, Hongsheng, Chen, Muyan, Ma, Deyou, Lin, Chenggang. RNA-Seq Reveals Dynamic Changes of Gene Expression in Key Stages of Intestine Regeneration in the Sea Cucumber Apostichopus japonicas. PLOS ONE[J]. 2013, 8(8): https://www.webofscience.com/wos/woscc/full-record/WOS:000324401500009.