基本信息
徐庆 男 硕导 中国科学院上海高等研究院
电子邮件: xuqing@sari.ac.cn
通信地址: 上海市浦东新区海科路100号9A楼
邮政编码:
电子邮件: xuqing@sari.ac.cn
通信地址: 上海市浦东新区海科路100号9A楼
邮政编码:
研究领域
有机多孔材料;电化学催化
招生信息
招生专业
070304-物理化学
招生方向
有机多孔材料,电化学催化
教育背景
2012-09--2015-03 上海交通大学 硕士2012-04--2018-03 日本综合研究大学院大学 博士2008-09--2012-07 中国矿业大学 本科
专利与奖励
专利成果
( 1 ) 一种2D共价有机骨架材料及其制备方法和应用, 发明专利, 2021, 第 6 作者, 专利号: CN113087917A( 2 ) 一种共价有机框架材料及其制备方法和用途, 发明专利, 2021, 第 3 作者, 专利号: CN113061221A( 3 ) 一种锌电极、制备方法及应用, 发明专利, 2021, 第 6 作者, 专利号: CN112886079A( 4 ) 一种3D共价有机骨架材料、制备方法及应用, 发明专利, 2021, 第 5 作者, 专利号: CN112447989A
出版信息
发表论文
[1] Yang, Xiubei, Li, Xuewen, Liu, Minghao, Yang, Shuai, Xu, Qing, Zeng, Gaofeng. Confined Synthesis of Dual-Atoms Within Pores of Covalent Organic Frameworks for Oxygen Reduction Reaction. SMALL. 2023, http://dx.doi.org/10.1002/smll.202306295.[2] Yang, Xiubei, Li, Xuewen, Liu, Minghao, Yang, Shuai, Niu, Qianyuan, Zhai, Lipeng, Jiang, Zheng, Xu, Qing, Zeng, Gaofeng. Modulating Electrochemical CO2 Reduction Performance via Sulfur-Containing Linkages Engineering in Metallophthalocyanine Based Covalent Organic Frameworks. ACS MATERIALS LETTERS[J]. 2023, 5(6): 1611-1618, http://dx.doi.org/10.1021/acsmaterialslett.3c00168.[3] Liu, Minghao, Liu, Sijia, Xu, Qing, Miao, Qiyang, Yang, Shuai, Hanson, Svenja, Chen, George Zheng, He, Jun, Jiang, Zheng, Zeng, Gaofeng. Dual atomic catalysts from COF-derived carbon for CO2RR by suppressing HER through synergistic effects. CARBON ENERGY[J]. 2023, 5(6): https://doaj.org/article/b8c72857f1a0412a8b58f0e584467fa8.[4] Yang, Shuai, Lu, Lanlu, Li, Ji, Cheng, Qingqing, Mei, Bingbao, Li, Xuewen, Mao, Jianing, Qiao, Panzhe, Sun, Fanfei, Ma, Jingyuan, Xu, Qing, Jiang, Zheng. Boosting hydrogen peroxide production via establishment and reconstruction of single-metal sites in covalent organic frameworks. SUSMAT[J]. 2023, 3(3): 379-389, http://dx.doi.org/10.1002/sus2.125.[5] An, Shuhao, Li, Xuewen, Shang, Shuaishuai, Xu, Ting, Yang, Shuai, Cui, ChengXing, Peng, Changjun, Liu, Honglai, Xu, Qing, Jiang, Zheng, Hu, Jun. One-Dimensional Covalent Organic Frameworks for the 2e(-) Oxygen Reduction Reaction. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2023, 62(14): http://dx.doi.org/10.1002/anie.202218742.[6] Liu, Sijia, Liu, Minghao, Li, Xuewen, Yang, Shuai, Miao, Qiyang, Xu, Qing, Zeng, Gaofeng. Metal organic polymers with dual catalytic sites for oxygen reduction and oxygen evolution reactions. CARBON ENERGY[J]. 2023, 5(5): http://dx.doi.org/10.1002/cey2.303.[7] Liu, Minghao, Kong, HuiYuan, Bi, Shuai, Ding, Xuesong, Chen, George Zheng, He, Jun, Xu, Qing, Han, BaoHang, Zeng, Gaofeng. Non-Interpenetrated 3D Covalent Organic Framework with Dia Topology for Au Ions Capture. ADVANCED FUNCTIONAL MATERIALS[J]. 2023, 33(33): http://dx.doi.org/10.1002/adfm.202302637.[8] Guo, Zhuangyan, Yang, Shuai, Liu, Minghao, Xu, Qing, Zeng, Gaofeng. Construction of Core-Shelled Covalent/Metal-Organic Frameworks for Oxygen Evolution Reaction. SMALL. 2023, http://dx.doi.org/10.1002/smll.202308598.[9] Liu, Minghao, Yang, Shuai, Yang, Xiubei, Cui, ChengXing, Liu, Guojuan, Li, Xuewen, He, Jun, Chen, George Zheng, Xu, Qing, Zeng, Gaofeng. Post-synthetic modification of covalent organic frameworks for CO2 electroreduction. NATURE COMMUNICATIONS[J]. 2023, 14(1): http://dx.doi.org/10.1038/s41467-023-39544-9.[10] Liu, Minghao, Jiang, Di, Fu, Yubin, Chen, George Zheng, Bi, Shuai, Ding, Xuesong, He, Jun, Han, BaoHang, Xu, Qing, Zeng, Gaofeng. Modulating Skeletons of Covalent Organic Framework for High-Efficiency Gold Recovery. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2023, http://dx.doi.org/10.1002/anie.202317015.[11] Liu, Sijia, Liu, Minghao, Li, Xuewen, Xu, Qing, Sun, Yuhan, Zeng, Gaofeng. Construction of dense H-bond acceptors in the channels of covalent organic frameworks for proton conduction. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2023, 11(26): 13965-13970, http://dx.doi.org/10.1039/d3ta01907a.[12] Qing Xu. Constructing Synergistic Triazine and Acetylene Cores in Fully Conjugated Covalent Organic Frameworks for Cascade Photocatalytic H2O2 Production. Chemistry of Materials[J]. 2022, [13] 徐庆. Decorating Covalent Organic Frameworks with High-density Chelate Groups for Uranium Extraction. 高等学校化学学报[J]. 2022, [14] Shuai Yang, Xuewen Li, Tingyuan Tan, Jianing Mao, Qing Xu, Minghao Liu, Qiyang Miao, BingBao Mei, Panzhe Qiao, Songqi Gu, Fanfei Sun, Jingyuan Ma, Gaofeng Zeng, Zheng Jiang. A fully-conjugated covalent organic framework-derived carbon supporting ultra-close single atom sites for ORR. APPLIED CATALYSIS B: ENVIRONMENTAL[J]. 2022, 307: [15] Sijia Liu, Minghao Liu, Qing Xu, Gaofeng Zeng. Lithium Ion Conduction in Covalent Organic Frameworks. Chin. J. Struct. Chem[J]. 2022, [16] 宋肖锴, 罗世鹏, 张慧, 刘维桥, 徐庆, 史壮志. 基础有机化学教学与前沿科学研究的融合——共价有机骨架材料的成键方式. 大学化学[J]. 2022, 37(1): 60-69, http://lib.cqvip.com/Qikan/Article/Detail?id=7106623037.[17] Qing Xu. Interface engineering for modulating catalytic selectivity of covalent organic frameworks for oxygen reduction. Mater. Today Chem.[J]. 2022, [18] Gaofeng Zeng, Qing Xu. Atomic Co-N4 and Co nanoparticles confined in COF@ZIF-67 derived core-shell carbon frameworks: Bifunctional non-precious metal catalysts toward ORR and HER. Journal of Materials Chemistry A[J]. 2022, [19] Duan, Zhiliang, Liu, Minghao, Li, Xuewen, Yang, Shuai, Liu, Sijia, Xu, Qing, Zeng, Gaofeng. Integrating multifunctional catalytic sites in COF@ZIF-67 derived carbon for the HER and ORR. CHEMICAL COMMUNICATIONS[J]. 2022, 58(95): 13214-13217, [20] Miao, Qiyang, Yang, Shuai, Xu, Qing, Liu, Minghao, Wu, Ping, Liu, Guojuan, Yu, Chengbin, Jiang, Zheng, Sun, Yuhan, Zeng, Gaofeng. Constructing Synergistic Zn-N-4 and Fe-N4O Dual-Sites from the COF@MOF Derived Hollow Carbon for Oxygen Reduction Reaction. SMALL STRUCTURES[J]. 2022, 3(4): http://dx.doi.org/10.1002/sstr.202100225.[21] Tao, Shanshan, Xu, Hong, Xu, Qing, Hijikata, Yuh, Jiang, Qiuhong, Irle, Stephan, Jiang, Donglin. Hydroxide Anion Transport in Covalent Organic Frameworks. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2021, 143(24): 8970-8975, http://dx.doi.org/10.1021/jacs.1c03268.[22] Zhai, Lipeng, Sun, Shuzhuan, Chen, Pengjing, Zhang, Yuwei, Sun, Qikun, Xu, Qing, Wu, Yujie, Nie, Riming, Li, Zhongping, Mi, Liwei. Constructing cationic covalent organic frameworks by a post-function process for an exceptional iodine capture via electrostatic interactions. MATERIALS CHEMISTRY FRONTIERS[J]. 2021, 5(14): 5463-5470, http://dx.doi.org/10.1039/d1qm00416f.[23] Yang, Shuai, Cheng, Qingqing, Mao, Jianing, Xu, Qing, Zhang, Yaojia, Guo, Yu, Tan, Tingyuan, Luo, Wei, Yang, Hui, Jiang, Zheng. Rational design of edges of covalent organic networks for catalyzing hydrogen peroxide production. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2021, 298: http://dx.doi.org/10.1016/j.apcatb.2021.120605.[24] Qing Xu. Design of Photothermal Covalent Organic Frameworks by Radical Immobilization. CCS Chemistry[J]. 2021, [25] Guo, Yu, Yang, Shuai, Xu, Qing, Wu, Ping, Jiang, Zheng, Zeng, Gaofeng. Hierarchical confinement of PtZn alloy nanoparticles and single-dispersed Zn atoms on COF@MOF-derived carbon towards efficient oxygen reduction reaction. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2021, 9(23): 13625-13630, http://dx.doi.org/10.1039/d1ta03019a.[26] Han, YuShu, An, Shuhao, Dai, Jialin, Hu, Jun, Xu, Qing, Song, Fan, Li, Mingyan, Peng, Changjun, Liu, Honglai. Defect-Engineering of Anionic Porous Aromatic Frameworks for Ammonia Capture. ACS APPLIED POLYMER MATERIALS[J]. 2021, 3(9): 4534-4542, http://dx.doi.org/10.1021/acsapm.1c00589.[27] Lin, Chao, Kim, SungHae, Xu, Qing, Kim, DongHyung, Ali, Gohar, Shinde, Sambhaji S, Yang, Shuai, Yang, Yuqi, Li, Xiaopeng, Jiang, Zheng, Lee, JungHo. High-voltage asymmetric metal-air batteries based on polymeric single-Zn2+-ion conductor. MATTER[J]. 2021, 4(4): 1287-1304, http://dx.doi.org/10.1016/j.matt.2021.01.004.[28] An, Shuhao, Xu, Qing, Ni, Zhihui, Hu, Jun, Peng, Changjun, Zhai, Lipeng, Guo, Yu, Liu, Honglai. Construction of Covalent Organic Frameworks with Crown Ether Struts. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2021, 60(18): 9959-9963, https://www.webofscience.com/wos/woscc/full-record/WOS:000629781900001.[29] An, Shuhao, Lu, Chenbao, Xu, Qing, Lian, Cheng, Peng, Changjun, Hu, Jun, Zhuang, Xiaodong, Liu, Honglai. Constructing Catalytic Crown Ether-Based Covalent Organic Frameworks for Electroreduction of CO2. ACS ENERGY LETTERS[J]. 2021, 6(10): 3496-3502, [30] Guo, Yu, Xu, Qing, Yang, Shuai, Jiang, Zheng, Yu, Chengbing, Zeng, Gaofeng. Precise Design of Covalent Organic Frameworks for Electrocatalytic Hydrogen Peroxide Production. CHEMISTRY-AN ASIAN JOURNAL[J]. 2021, 16(5): 498-502, https://www.webofscience.com/wos/woscc/full-record/WOS:000609894900001.[31] Xu, Qing, Qian, Jing, Luo, Dan, Liu, Guojuan, Guo, Yu, Zeng, Gaofeng. Ni/Fe Clusters and Nanoparticles Confined by Covalent Organic Framework Derived Carbon as Highly Active Catalysts toward Oxygen Reduction Reaction and Oxygen Evolution Reaction. ADVANCED SUSTAINABLE SYSTEMS[J]. 2020, 4(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000538618300001.[32] Zhai, Lipeng, Yang, Shuai, Yang, Xiubei, Ye, Wanyu, Wang, Jing, Chen, Weihua, Guo, Yu, Mi, Liwei, Wu, Zijie, Soutis, Constantinos, Xu, Qing, Jiang, Zheng. Conjugated Covalent Organic Frameworks as Platinum Nanoparticle Supports for Catalyzing the Oxygen Reduction Reaction. CHEMISTRY OF MATERIALS[J]. 2020, 32(22): 9747-9752, http://dx.doi.org/10.1021/acs.chemmater.0c03614.[33] Xu, Qing, Li, Qian, Guo, Yu, Luo, Dan, Qian, Jing, Li, Xiaopeng, Wang, Yong. Multiscale Hierarchically Engineered Carbon Nanosheets Derived from Covalent Organic Framework for Potassium-Ion Batteries. SMALL METHODS[J]. 2020, 4(9): http://dx.doi.org/10.1002/smtd.202000159.[34] Xu, Qing, Tao, Shanshan, Jiang, Qiuhong, Jiang, Donglin. Designing Covalent Organic Frameworks with a Tailored Ionic Interface for Ion Transport across One-Dimensional Channels. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2020, 59(11): 4557-4563, https://www.webofscience.com/wos/woscc/full-record/WOS:000509774400001.[35] Zhang, Haojie, Zhao, Yonghui, Sun, Yu, Xu, Qing, Yang, Ruoou, Zhang, Hao, Lin, Chao, Kato, Kenichi, Li, Xiaopeng, Yamauchi, Miho, Jiang, Zheng. A novel self-assembly approach for synthesizing nanofiber aerogel supported platinum single atoms. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2020, 8(30): 15094-15102, https://www.webofscience.com/wos/woscc/full-record/WOS:000555361700021.[36] Ni, Shenglin, Zhang, Haojie, Zhao, Yonghui, Li, Xiaopeng, Sun, Yu, Qian, Jin, Xu, Qing, Gao, Peng, Wu, Dekun, Kato, Kenichi, Yamauchi, Miho, Sun, Yuhan. Single atomic Ag enhances the bifunctional activity and cycling stability of MnO2. CHEMICAL ENGINEERING JOURNAL[J]. 2019, 366: 631-638, http://www.corc.org.cn/handle/1471x/2162387.[37] Wu, Dekun, Xu, Qing, Qian, Jing, Li, Xiaopeng, Sun, Yuhan. Bimetallic Covalent Organic Frameworks for Constructing Multifunctional Electrocatalyst. CHEMISTRY-A EUROPEAN JOURNAL[J]. 2019, 25(12): 3105-3111, http://dx.doi.org/10.1002/chem.201805550.[38] Luo, Dan, Xu, Qing, Qian, Jing, Li, Xiaopeng. Interface-Engineered Intermediate Temperature Solid Oxide Electrolysis Cell. ENERGY TECHNOLOGY[J]. 2019, 7(10): http://dx.doi.org/10.1002/ente.201900704.[39] Xu, Qing, Zhang, Kailong, Qian, Jing, Guo, Yu, Song, Xiaokai, Pan, Honglin, Wang, Di, Li, Xiaopeng. Boosting Lithium-Sulfur Battery Performance by Integrating a Redox-Active Covalent Organic Framework in the Separator. ACS APPLIED ENERGY MATERIALS[J]. 2019, 2(8): 5793-5798, http://dx.doi.org/10.1021/acsaem.9b00920.[40] Xu, Qing, Tao, Shanshan, Jiang, Qiuhong, Jiang, Donglin. Ion Conduction in Polyelectrolyte Covalent Organic Frameworks. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2018, 140(24): 7429-7432, https://www.webofscience.com/wos/woscc/full-record/WOS:000436211600014.[41] Wang, Ping, Xu, Qing, Li, Zhongping, Jiang, Weiming, Jiang, Qiuhong, Jiang, Donglin. Exceptional Iodine Capture in 2D Covalent Organic Frameworks. ADVANCED MATERIALS[J]. 2018, 30(29): https://www.webofscience.com/wos/woscc/full-record/WOS:000438709400031.[42] Xu, Qing, Zhang, Xiaobin, Oshima, Yoshifumi, Chen, Qiuhong, Jiang, Donglin. Template Conversion of Covalent Organic Frameworks into 2D Conducting Nanocarbons for Catalyzing Oxygen Reduction Reaction. ADVANCED MATERIALS[J]. 2018, 30(15): https://www.webofscience.com/wos/woscc/full-record/WOS:000430101200017.[43] Tang, Yanping, Zhai, Lipeng, Chen, Qiuhong, Jiang, Donglin, Xu Qing. Pyrolysis of covalent organic frameworks: a general strategy for template converting conventional skeletons into conducting microporous carbons for high-performance energy storage. CHEMICAL COMMUNICATIONS[J]. 2017, 53(85): 11690-11693, https://www.webofscience.com/wos/woscc/full-record/WOS:000413637900017.[44] Xu, Qing, Dalapati, Sasanka, Jiang, Donglin. Charge Up in Wired Covalent Organic Frameworks. ACS CENTRAL SCIENCE[J]. 2016, 2(9): 586-587, https://doaj.org/article/cd91a784dedd4ebd9f1213920c512a9b.
科研活动
科研项目
( 1 ) 共价有机框架材料衍生的竖立碳层负载的单原子催化剂的设计、合成与应用研究, 负责人, 地方任务, 2020-07--2023-06( 2 ) 共价有机框架中的孔道环境对离子传输性能影响研究, 负责人, 地方任务, 2019-10--2021-09