基本信息
董芳 女 硕导 中国科学院兰州化学物理研究所
电子邮件: dongfang@licp.cas.cn
通信地址: 甘肃省兰州市城关区天水中路18号
邮政编码: 730000
电子邮件: dongfang@licp.cas.cn
通信地址: 甘肃省兰州市城关区天水中路18号
邮政编码: 730000
招生信息
招生专业
070304-物理化学
招生方向
催化化学,环境催化,纳米材料
教育背景
2011-09--2016-06 中国科学院山西煤炭化学研究所 博士学位2007-09--2011-06 西北师范大学 学士学位
工作经历
工作简历
2021-08~现在, 中国科学院兰州化学物理研究所, 副研究员2016-07~2021-08,中国科学院兰州化学物理研究所, 助理研究员
专利与奖励
专利成果
[1] 唐志诚, 赵海军, 韩维亮, 董芳, 张国栋. 一种有机聚合物盐渍土改良剂及其制备方法. 202111311803.5, 2021-11-08.[2] 唐志诚, 赵海军, 张国栋, 韩维亮, 董芳. 一种催化氧化脱除烟气中二噁英的蜂窝式催化剂及其制备方法. CN: CN112191267A, 2021-01-08.[3] 唐志诚, 赵海军, 张国栋, 韩维亮, 董芳. 一种用于催化氧化消除窑炉烟气中二噁英的催化剂及其制备方法. CN: CN110586073A, 2019-12-20.[4] 唐志诚, 韩维亮, 张国栋, 董芳. 一种CO常温催化氧化催化剂. CN: CN108126708A, 2018-06-08.[5] 唐志诚, 韩维亮, 张国栋, 董芳, 韩维高. 一种绿色环保无碱无氯液体速凝剂及其制备方法. CN: CN116621494A, 2023-08-22.[6] 唐志诚, 董芳, 韩维亮, 席云泰, 张国栋. 一种整体式VOCs催化燃烧催化剂及其制备方法. CN: CN116571244A, 2023-08-11.[7] 唐志诚, 赵海军, 张国栋, 韩维亮, 董芳. 一种用于催化氧化消除窑炉烟气中二噁英的催化剂及其制备方法. CN: CN110586073B, 2022-03-25.
出版信息
发表论文
[1] Fang Dong, Yu Meng, Weitong Ling, Weigao Han, Weiliang Han, Xiaona Li, Zhicheng Tang. Single atomic Pt confined into lattice defect sites for low-temperature catalytic oxidation of VOCs. APPLIED CATALYSIS B: ENVIRONMENT AND ENERGY[J]. 2024, 346: http://dx.doi.org/10.1016/j.apcatb.2024.123779.[2] Weigao Han, Weitong Ling, Peng Gao, Fang Dong, Zhicheng Tang. Engineering Pt single atom catalyst with abundant lattice oxygen by dual nanospace confinement strategy for the efficient catalytic elimination of VOCs. APPLIED CATALYSIS B: ENVIRONMENT AND ENERGY[J]. 2024, 345: http://dx.doi.org/10.1016/j.apcatb.2023.123687.[3] Xiuzi He, Fang Dong, Weigao Han, Zhicheng Tang, Yong Ding. Recent advances and future challenges in the catalytic combustion of light hydrocarbon VOCs. Journal of Materials Chemistry A[J]. 2024, 12: 7470-7507, [4] Siyi Ma, Fang Dong, Shixing Wu, Weitong Ling, Weiliang Han, Weigao Han, Zhicheng Tang. Silica-assisted Pt1/CeO2 single-atom catalyst for enhancing the catalytic combustion performance of VOCs by inducing H2O activation. Applied Catalysis B: Environment and Energy[J]. 2024, 354: 124152, [5] Liu, Liqiong, Han, Weiliang, Dong, Fang, Feng, Hua, Tang, Zhicheng. Designing ordered mesoporous confined Pt/Ti0.1AlOy catalysts for the catalytic combustion of propane. NEW JOURNAL OF CHEMISTRY[J]. 2023, 47(11): 5519-5533, http://dx.doi.org/10.1039/d2nj05893f.[6] Weitong Ling, Peng Gao, Wenyan Du, Shilin Wu, Haijun Zhao, Fang Dong, Fei Zha, Zhicheng Tang. Facile construction of new coronal-like MnCeOx hollow nanosphere for efficiently removing o-dichlorobenzene. APPLIED CATALYSIS B: ENVIRONMENTAL. 2023, 330: http://dx.doi.org/10.1016/j.apcatb.2023.122637.[7] Ma, Siyi, Han, Weigao, Han, Weiliang, Dong, Fang, Tang, Zhicheng. Recent advances and future perspectives in MOF-derived single-atom catalysts and their application: a review. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2023, 11(7): 3315-3363, http://dx.doi.org/10.1039/d2ta08735a.[8] Yuntai Xi, Fang Dong, Zhongying Ji, Zhicheng Tang, Jiyi Zhang. Design order macro-meso porous structure monolithic Co3O4/SiO2 catalyst via a novel 3D printing for the highly efficient catalytic combustion of toluene. JOURNAL OF CLEANER PRODUCTION[J]. 2022, 379: http://dx.doi.org/10.1016/j.jclepro.2022.134694.[9] Weigao Han, Fang Dong, weiliang han, Jianfei Yao, Yu Meng, Zhicheng Tang. new strategy for designing highly efficient Co3O4 catalyst with the molecular space configurations for toluene catalytic combustion. Chemical Engineering Journal[J]. 2022, [10] Ma, Siyi, Han, Weiliang, Dong, Fang, Tang, Zhicheng. Construction of a Nanorod Structure-Confined Pt@CeO2 Catalyst by an In-Situ Encapsulation Strategy for Low-Temperature Catalytic Oxidation of Toluene. CHEMISTRY-AN ASIAN JOURNAL[J]. 2022, 17(8): http://dx.doi.org/10.1002/asia.202200074.[11] Wen, Meng, Dong, Fang, Yao, Jianfei, Tang, Zhicheng, Zhang, Jiyi. Pt nanoparticles confined in the ordered mesoporous CeO2 as a highly efficient catalyst for the elimination of VOCs. JOURNAL OF CATALYSIS[J]. 2022, 412: 42-58, http://dx.doi.org/10.1016/j.jcat.2022.05.022.[12] Dong, Fang, Han, Weigao, Han, Weiliang, Tang, Zhicheng. Assembling core-shell SiO2@NiaCobOx nanotube decorated by hierarchical NiCo-Phyllisilicate ultrathin nanosheets for highly efficient catalytic combustion of VOCs. APPLIED CATALYSIS B-ENVIRONMENTAL[J]. 2022, 315: http://dx.doi.org/10.1016/j.apcatb.2022.121524.[13] Liang, Xiaolong, Dong, Fang, Tang, Zhicheng, Wang, Qingchun. The Pt/g-C3N4-CNS catalyst via in situ synthesis process with excellent performance for methanol electrocatalytic oxidation reaction. NEW JOURNAL OF CHEMISTRY[J]. 2022, 46(7): 3121-3129, http://dx.doi.org/10.1039/d1nj05858d.[14] Yao, Jianfei, Dong, Fang, Feng, Hua, Tang, Zhicheng. Construction of superhydrophobic layer for enhancing the water-resistant performance of VOCs catalytic combustion. FUEL[J]. 2022, 314: [15] Xiaosheng Huang, Fang Dong, Guodong Zhang, Zhicheng Tang. Constructing TiO2@CeMnOx nanocages by self-sacrificial hydrolytic etching MIL-125 for efficient wide-temperature selective catalytic reduction of nitrogen oxides. CHEMICAL ENGINEERING JOURNAL[J]. 2022, 432: [16] Wen, Meng, Dong, Fang, Tang, Zhicheng, Zhang, Jiyi. Engineering order mesoporous CeCoOx catalyst via in-situ confined encapsulation strategy for VOCs catalytic combustion. MOLECULAR CATALYSIS[J]. 2022, 519: http://dx.doi.org/10.1016/j.mcat.2022.112149.[17] Liang, Xiaolong, Liu, Shuyan, Dong, Fang, Tang, Zhicheng. Constructing CNT@NiCo Texture Anchoring Pt Nanoparticle Catalyst for Highly Efficient Methanol Electrocatalytic Oxidation. CHEMISTRYSELECT[J]. 2022, 7(29): http://dx.doi.org/10.1002/slct.202200373.[18] Jianfei Yao, Fang Dong, Xin Xu, Meng Wen, Zhongying Ji, Hua Feng, Xiaolong Wang, Zhicheng Tang. Rational Design and Construction of Monolithic Ordered Mesoporous Co3O4@SiO2 Catalyst by a Novel 3D Printed Technology for Catalytic Oxidation of Toluene. ACS Applied Materials & Interfaces[J]. 2022, https://pubs.acs.org/doi/10.1021/acsami.2c03850?goto=supporting-info.[19] Yao, Jianfei, Dong, Fang, Feng, Hua, Tang, Zhicheng. Hierarchical MnOx/Co3O4 Nanoarrays on Ni Foam for Catalytic Oxidation of Volatile Organic Compounds. ACS APPLIED NANO MATERIALS[J]. 2021, 4(9): 9322-9332, http://dx.doi.org/10.1021/acsanm.1c01799.[20] Chengxiu Ding, Fang Dong, Zhicheng Tang. Controllable synthesis of core-shell PtOx/CoOy@C catalysts with enriched oxygen functional groups for electrocatalytic oxidation of methanol. JOURNALOFELECTROANALYTICALCHEMISTRY[J]. 2021, 895: [21] Meng Wen, Fang Dong, Zhicheng Tang, Jiyi Zhang. In situ confined encapsulation strategy for construction of Co3O4 @SiO2 catalyst for the efficient elimination of toluene. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2021, 322(322): 111156, [22] Liu, Shuyan, Dong, Fang, Tang, Zhicheng, Wang, Qingchun. The formation of wrapping type Pt-Ni alloy on three-dimensional carbon nanosheet for electrocatalytic oxidation of methanol. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2021, 46(29): 15431-15441, http://dx.doi.org/10.1016/j.ijhydene.2021.02.050.[23] Liang, Xiaolong, Dong, Fang, Tang, Zhicheng, Wang, Qingchun. The significant promotion of g-C3N4 on Pt/CNS catalyst for the electrocatalytic oxidation of methanol. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2021, 46(80): 39645-39657, [24] Dong, Fang, Han, Weigao, Guo, Yan, Han, Weiliang, Tang, Zhicheng. CeCoOx-MNS catalyst derived from three-dimensional mesh nanosheet Co-based metal-organic frameworks for highly efficient catalytic combustion of VOCs. CHEMICAL ENGINEERING JOURNAL[J]. 2021, 405: http://dx.doi.org/10.1016/j.cej.2020.126948.[25] Ding, Chengxiu, Dong, Fang, Tang, Zhicheng. Construction of hollow carbon polyhedron supported Pt catalyst for methanol electrocatalytic oxidation. ELECTROCHIMICA ACTA[J]. 2021, 390(390): http://dx.doi.org/10.1016/j.electacta.2021.138790.[26] Wu, Shilin, Zhao, Haijun, Dong, Fang, Ling, Weitong, Tang, Zhicheng, Zhang, Jiyi. Construction of Superhydrophobic Ru/TiCeOx Catalysts for the Enhanced Water Resistance of o-Dichlorobenzene Catalytic Combustion. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(2): 2610-2621, https://www.webofscience.com/wos/woscc/full-record/WOS:000612551400043.[27] Wen, Meng, Dong, Fang, Tang, Zhicheng, Zhang, Jiyi. In situ confined encapsulation strategy for construction of Co3O4@SiO2 catalyst for the efficient elimination of toluene. MICROPOROU AND MESOPOROUS MATERIALS[J]. 2021, 322: http://dx.doi.org/10.1016/j.micromeso.2021.111156.[28] Huang, Xiaosheng, Dong, Fang, Zhang, Guodong, Guo, Yan, Tang, Zhicheng. A strategy for constructing highly efficient yolk-shell Ce@Mn@TiOx catalyst with dual active sites for low-temperature selective catalytic reduction of NO with NH3. CHEMICAL ENGINEERING JOURNAL[J]. 2021, 419: http://dx.doi.org/10.1016/j.cej.2021.129572.[29] Du, Xuebi, Dong, Fang, Tang, Zhicheng, Zhang, Jiyi. The synthesis of hollow In2O3 @ Pd-Co3O4 core/shell nanofibers with ultra-thin shell for the low-temperature CO oxidation reaction. APPLIED SURFACE SCIENCE[J]. 2020, 505(505): http://dx.doi.org/10.1016/j.apsusc.2019.144471.[30] Han, Weigao, Dong, Fang, Han, Weiliang, Tang, Zhicheng. A strategy to construct uniform MOFs/PAN nanowire derived bead-like Co3O4 for VOC catalytic combustion. CHEMICAL COMMUNICATIONS[J]. 2020, 56(91): 14307-14310, https://www.webofscience.com/wos/woscc/full-record/WOS:000590124000036.[31] Han, Weigao, Dong, Fang, Han, Weiliang, Tang, Zhicheng. Mn-Polyacrylonitrile Nanofibers Decorated with Co-Metal-Organic Frameworks as Precursors of CoMnOx Catalysts for the Combustion of Toluene. ACS APPLIED NANO MATERIALS[J]. 2020, 3(8): 7818-7828, http://dx.doi.org/10.1021/acsanm.0c01308.[32] Huang, Xiaosheng, Dong, Fang, Zhang, Guodong, Tang, Zhicheng. Modification of composite catalytic material CumVnOx@CeO(2)core-shell nanorods with tungsten for NH3-SCR. NANOSCALE[J]. 2020, 12(30): 16366-16380, http://dx.doi.org/10.1039/d0nr04165c.[33] Chang, Xiaomei, Dong, Fang, Zha, Fei, Tang, Zhicheng. The three-dimensional carbon nanosheets as high performance catalyst support for methanol electrooxidation. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2020, 45(15): 8975-8984, http://dx.doi.org/10.1016/j.ijhydene.2020.01.088.[34] Du, Xuebi, Dong, Fang, Tang, Zhicheng, Zhang, Jiyi. Precise design and synthesis of Pd/InOx@CoO(x)core-shell nanofibers for the highly efficient catalytic combustion of toluene. NANOSCALE[J]. 2020, 12(22): 12133-12145, https://www.webofscience.com/wos/woscc/full-record/WOS:000542747100033.[35] Liu, Shuyan, Dong, Fang, Tang, Zhicheng, Wang, Qingchun. Methanol electrocatalytic oxidation over Pt nanoparticles anchoring on three-dimensional carbon nanosheet rich in oxygen functional groups. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2020, 45(55): 30547-30558, http://dx.doi.org/10.1016/j.ijhydene.2020.08.123.[36] Huang Xiaosheng, Zhang Guodong, Dong Fang, Tang Zhicheng. An environmentally friendly wide temperature CeWTiOx catalyst with superior performance for the selective catalytic reduction NOx with NH3. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY[J]. 2019, 69: 66-76, http://dx.doi.org/10.1016/j.jiec.2018.09.006.[37] Yang, Sai, Zhao, Haijun, Dong, Fang, Tang, Zhicheng, Zha, Fei. Three-dimensional flower-like OMS-2 supported Ru catalysts for application in the combustion reaction of o-dichlorobenzene. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2019, 9(22): 6503-6516, https://www.webofscience.com/wos/woscc/full-record/WOS:000496465000025.[38] Han, Weiliang, Dong, Fang, Zhao, Haijun, Zhang, Guodong, Tang, Zhicheng. Exploring the Influence of Pd Species Valence State and Chemisorbed Oxygen Concentration on the Catalytic Oxidation Performance of Toluene. CATALYSIS SURVEYS FROM ASIA[J]. 2019, 23(2): 110-125, https://www.webofscience.com/wos/woscc/full-record/WOS:000467902600006.[39] Dong, Fang, Meng, Yu, Han, Weiliang, Zhao, Haijun, Tang, Zhicheng. Morphology effects on surface chemical properties and lattice defects of Cu/CeO2 catalysts applied for low-temperature CO oxidation. SCIENTIFIC REPORTS[J]. 2019, 9(1): https://doaj.org/article/9d6c24705f6c4307b4c8586d06d26139.[40] Chang, Xiaomei, Dong, Fang, Yang, Sai, Tang, Zhicheng, Zha, Fei. Well dispersed Pt nanoparticles on commercial carbon black oxidized by ozone possess significantly high electro-catalytic activity for methanol oxidation. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2019, 44(39): 21559-21568, http://dx.doi.org/10.1016/j.ijhydene.2019.06.084.[41] Chang, Xiaomei, Dong, Fang, Tang, Zhicheng, Zha, Fei. Construction of carboxyl functional groups and their enhancement effect for methanol electrocatalytic oxidation reaction. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY[J]. 2019, 44(50): 27445-27454, http://dx.doi.org/10.1016/j.ijhydene.2019.08.193.[42] Han, Weigao, Dong, Fang, Han, Weiliang, Tang, Zhicheng. Fabrication of homogeneous and highly dispersed CoMn catalysts for outstanding low temperature catalytic oxidation performance. NEW JOURNAL OF CHEMISTRY[J]. 2019, 43(32): 12846-12857, https://www.webofscience.com/wos/woscc/full-record/WOS:000482832200037.[43] Yang, Sai, Zhao, Haijun, Dong, Fang, Zha, Fei, Tang, Zhicheng. Highly efficient catalytic combustion of o-dichlorobenzene over three-dimensional ordered mesoporous cerium manganese bimetallic oxides: A new concept of chlorine removal mechanism. MOLECULAR CATALYSIS[J]. 2019, 463: 119-129, http://dx.doi.org/10.1016/j.mcat.2018.12.006.[44] Yang, Sai, Zhao, Haijun, Dong, Fang, Tang, Zhicheng, Zha, Fei. Highly efficient catalytic combustion of o-dichlorobenzene over lattice-distorted Ru/OMS-2: The rapidly replenishing effect of surface adsorbed oxygen on lattice oxygen. MOLECULAR CATALYSIS[J]. 2019, 470: 127-137, http://dx.doi.org/10.1016/j.mcat.2019.03.029.[45] Dong, Fang, Han, Weiliang, Zhao, Haijun, Zhang, Guodong, Tang, Zhicheng. Porous hollow CoInOx nanocubes as a highly efficient catalyst for the catalytic combustion of toluene. NANOSCALE[J]. 2019, 11(20): 9937-9948, https://www.webofscience.com/wos/woscc/full-record/WOS:000469246100012.[46] Zhao, Jiuhu, Tang, Zhicheng, Dong, Fang, Zhang, Jiyi. Controlled porous hollow Co3O4 polyhedral nanocages derived from metal-organic frameworks (MOFs) for toluene catalytic oxidation. MOLECULAR CATALYSIS[J]. 2019, 463: 77-86, http://dx.doi.org/10.1016/j.mcat.2018.10.020.[47] Zhao, Yinshuang, Dong, Fang, Han, Weiliang, Zhao, Haijun, Tang, Zhicheng. The synergistic catalytic effect between graphene oxide and three-dimensional ordered mesoporous Co3O4 nanoparticles for low-temperature CO oxidation. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2019, 273: 1-9, http://dx.doi.org/10.1016/j.micromeso.2018.06.042.[48] Huang, Xiaosheng, Zhang, Guodong, Dong, Fang, Tang, Zhicheng. The remarkable promotional effect of Sn on CeVO4 catalyst for wide temperature NH3-SCR process by citric acid-assisted solvothermal synthesis and post-hydrothermal treatment. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2018, 8(21): 5604-5615, http://210.77.64.217/handle/362003/24274.[49] Zong, Luyao, Zhang, Guodong, Zhao, Jiuhu, Dong, Fang, Zhang, Jiyi, Tang, Zhicheng. Morphology-controlled synthesis of 3D flower-like TiO2 and the superior performance for selective catalytic reduction of NOx with NH3. CHEMICAL ENGINEERING JOURNAL[J]. 2018, 343: 500-511, http://dx.doi.org/10.1016/j.cej.2018.03.035.[50] Zhao, Yinshuang, Dong, Fang, Han, Weiliang, Zhao, Haijun, Tang, Zhicheng. Construction of Cu-Ce/graphene catalysts via a one-step hydrothermal method and their excellent CO catalytic oxidation performance. RSC ADVANCES[J]. 2018, 8(3): 1583-1592, http://ir.licp.ac.cn/handle/362003/23778.[51] Zhao, Jiuhu, Han, Weiliang, Dong, Fang, Zhang, Jiyi, Tang, Zhicheng. Solvothermal Systhesis of Size-Controlled Porous Co3O4 Nanostructure Catalyst and Their Catalytic Properties for VOCs Removal. CHEMISTRYSELECT[J]. 2018, 3(37): 10408-10417, http://210.77.64.217/handle/362003/24272.[52] Han, Weiliang, Dong, Fang, Zhao, Haijun, Tang, Zhicheng. Outstanding Water-Resistance Pd-Co Nanoparticles Functionalized Mesoporous Carbon Catalyst for CO Catalytic Oxidation at Room Temperature. CHEMISTRYSELECT[J]. 2018, 3(23): 6601-6610, http://210.77.64.217/handle/362003/24266.[53] Li, Liyan, Han, Weiliang, Dong, Fang, Zong, Luyao, Tang, Zhicheng, Zhang, Jiyi. Controlled pore size of ordered mesoporous Al2O3-supported Mn/Cu catalysts for CO oxidation. MICROPOROUS AND MESOPOROUS MATERIALS[J]. 2017, 249: 1-9, http://dx.doi.org/10.1016/j.micromeso.2017.04.046.[54] Zhao, Yinshuang, Dong, Fang, Han, Weiliang, Zhao, Haijun, Tang, Zhicheng. Promotion effect of oxygen-containing functional groups and Fe species on Pd@graphene for CO catalytic oxidation. NEW JOURNAL OF CHEMISTRY[J]. 2017, 41(20): 12052-12060, http://ir.licp.ac.cn/handle/362003/22487.[55] 韩维亮, Li Liyan, 董芳, 赵海军, 唐志诚, 吕功煊, 唐志诚. Controllable modulation of oxygen functional groups and structure defects of porous carbon spheres for CO oxidation. JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL[J]. 2017, 430: 20-28, http://ir.licp.ac.cn/handle/362003/22179.[56] Zhao, Haijun, Fang, Kegong, Dong, Fang, Lin, Minggui, Sun, Yuhan, Tang, Zhicheng. Textual properties of Cu-Mn mixed oxides and application for methyl formate synthesis from syngas. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY[J]. 2017, 54: 117-125, http://dx.doi.org/10.1016/j.jiec.2017.05.024.[57] Dong, Fang, Zhu, Yulei, Zhao, Haijun, Tang, Zhicheng. Ratio-controlled synthesis of phyllosilicate-like materials as precursors for highly efficient catalysis of the formyl group. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2017, 7(9): 1880-1891, http://ir.licp.ac.cn/handle/362003/21901.[58] Dong, Fang, Zhao, Yinshuang, Han, Weiliang, Zhao, Haijun, Lu, Gongxuan, Tang, Zhicheng. Co nanoparticles anchoring three dimensional graphene lattice as bifunctional catalyst for low-temperature CO oxidation. MOLECULAR CATALYSIS[J]. 2017, 439: 118-127, http://dx.doi.org/10.1016/j.mcat.2017.06.022.[59] Zong, Luyao, Dong, Fang, Zhang, Guodong, Han, Weiliang, Tang, Zhicheng, Zhang, Jiyi. Highly Efficient Mesoporous V2O5/WO3-TiO2 Catalyst for Selective Catalytic Reduction of NOx: Effect of the Valence of V on the Catalytic Performance. CATALYSIS SURVEYS FROM ASIA[J]. 2017, 21(3): 103-113, https://www.webofscience.com/wos/woscc/full-record/WOS:000410180600001.[60] Dong, Fang, Ding, Guoqiang, Zheng, Hongyan, Xiang, Xiaoming, Chen, Linfeng, Zhu, Yulei, Lia, Yongwang. Highly dispersed Cu nanoparticles as an efficient catalyst for the synthesis of the biofuel 2-methylfuran. CATALYSIS SCIENCE & TECHNOLOGY[J]. 2016, 6(3): 767-779, https://www.webofscience.com/wos/woscc/full-record/WOS:000369533400021.[61] Zhang, Guodong, Han, Weiliang, Dong, Fang, Zong, Luyao, Lu, Gongxuan, Tang, Zhicheng. One pot synthesis of a highly efficient mesoporous ceria-titanium catalyst for selective catalytic reduction of NO. RSC ADVANCES[J]. 2016, 6(80): 76556-76567, http://www.irgrid.ac.cn/handle/1471x/1143083.[62] Dong, Fang, Zhu, Yulei, Zheng, Hongyan, Zhu, Yifeng, Li, Xianqing, Li, Yongwang. Cr-free Cu-catalysts for the selective hydrogenation of biomass-derived furfural to 2-methylfuran: The synergistic effect of metal and acid sites. JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL[J]. 2015, 398: 140-148, http://dx.doi.org/10.1016/j.molcata.2014.12.001.[63] Dong, Fang, Zhu, Yulei, Ding, Guoqiang, Cui, Jinglei, Li, Xianqing, Li, Yongwang. One-step Conversion of Furfural into 2-Methyltetrahydrofuran under Mild Conditions. CHEMSUSCHEM[J]. 2015, 8(9): 1534-1537, https://www.webofscience.com/wos/woscc/full-record/WOS:000354365000003.
科研活动
科研项目
( 1 ) 有序介孔原位封装超细金属纳米粒子限域催化剂构建及其在VOCs氧化反应中作用机制研究, 主持, 国家级, 2020-01--2022-12( 2 ) 低碳烷烃类VOCs催化燃烧反应行为与失活机理研究及催化剂开发, 主持, 部委级, 2021-07--2023-06( 3 ) 基于3D打印技术精准构筑大孔-有序介孔Co3O4/SiO2催化剂及应用于VOCs催化燃烧反应, 主持, 市地级, 2021-01--2022-12( 4 ) 有序介孔CeMnOx双金属氧化物催化剂的制备及其在VOCs催化氧化反应中的作用机制研究, 主持, 省级, 2021-02--2024-01( 5 ) 三维结构石墨烯复合催化材料的构筑及其CO低温催化氧化性能研究, 主持, 部委级, 2017-01--2019-12