基本信息
刘超  男  博导  中国科学院生态环境研究中心
电子邮件: chaoliu@rcees.ac.cn
通信地址: 北京市海淀区双清路18号
邮政编码: 100085

招生信息

   
招生专业
083002-环境工程
招生方向
复合水处理过程,水消毒氧化与副产物控制,输配水水质

教育背景

2006-09--2009-07   中国科学院生态环境研究中心   博士
2004-09--2006-07   暨南大学   硕士
2000-09--2004-07   安徽建筑大学   学士

工作经历

   

专利与奖励

   

出版信息

   
发表论文
[1] Liu, Hang, Zhang, Xian, Karanfil, Tanju, Liu, Chao. Insight into the chemical transformation and organic release of polyurethane microplastics during chlorination. ENVIRONMENTAL POLLUTION[J]. 2024, 341: http://dx.doi.org/10.1016/j.envpol.2023.122976.
[2] Environmental Pollutionnull. 2024, [3] Wang, Ao, Huo, Shouliang, Croue, JeanPhilippe, Liu, Chao. Reaction of Polyamide Membrane Model Monomers with Chlorine Dioxide: Kinetics, Pathways, and Implications. Water Research[J]. 2023, [4] Liu, Yunsi, Liu, Hang, Croue, JeanPhilippe, Liu, Chao. CuO Promotes the Formation of Halogenated Disinfection Byproducts during Chlorination via an Enhanced Oxidation Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY[J]. 2023, 57(47): 19043-19053, http://dx.doi.org/10.1021/acs.est.3c05975.
[5] Liu, Hang, Zhang, Xian, Ji, Bin, Qiang, Zhimin, Karanfil, Tanju, Liu, Chao. UV aging of microplastic polymers promotes their chemical transformation and byproduct formation upon chlorination. SCIENCE OF THE TOTAL ENVIRONMENT[J]. 2023, 858: http://dx.doi.org/10.1016/j.scitotenv.2022.159842.
[6] 张显, 英浩, 刘航, 刘蕴思, 季斌, 刘超. 臭氧预氧化对微塑料消毒副产物生成势的影响. 环境科学学报[J]. 2023, 43(10): 108-115, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=7578636&detailType=1.
[7] Yunsi Liu, Keqiang Liu, Michael J Plewa, Tanju Karanfil, Chao Liu. Formation of regulated and unregulated disinfection byproducts during chlorination and chloramination: Roles of dissolved organic matter type, bromide, and iodide. JOURNAL OF ENVIRONMENTAL SCIENCES[J]. 2022, https://doi.org/10.1016/j.jes.2022.04.014.
[8] Liu, Chao, Shin, YoungHwan, Wei, Xiao, Ersan, Mahmut S, Wagner, Elizabeth, Plewa, Michael J, Amy, Gary, Karanfil, Tanju. Preferential Halogenation of Algal Organic Matter by Iodine over Chlorine and Bromine: Formation of Disinfection Byproducts and Correlation with Toxicity of Disinfected Waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY[J]. 2022, 56(2): 1244-1256, [9] Liu, Hang, Li, Ziqi, Qiang, Zhimin, Karanfil, Tanju, Yang, Min, Liu, Chao. The elimination of cell-associated and non-cell-associated antibiotic resistance genes during membrane filtration processes: A review. SCIENCE OF THE TOTAL ENVIRONMENT[J]. 2022, 833: http://dx.doi.org/10.1016/j.scitotenv.2022.155250.
[10] Chao Liu. The role of metal oxides on oxidant decay and disinfection byproduct formation in drinking waters: Relevance to distribution systems. JOURNAL OF ENVIRONMENTAL SCIENCES[J]. 2021, http://dx.doi.org/10.1016/j.jes.2021.03.034.
[11] Dong, Huiyu, Duan, Shule, Liu, Chao, Yuan, Xiangjuan, Qiang, Zhimin. Why does dissolved oxygen govern Mn(III) formation and micro-pollutant abatement in the permanganate/bisulfite process?. CHEMICAL ENGINEERING JOURNAL[J]. 2020, 391: https://www.webofscience.com/wos/woscc/full-record/WOS:000545945100061.
[12] Erdem, Cagri Utku, Ateia, Mohamed, Liu, Chao, Karan, Tanju. Activated carbon and organic matter characteristics impact the adsorption of DBP precursors when chlorine is added prior to GAC contactors. WATER RESEARCH[J]. 2020, 184: http://dx.doi.org/10.1016/j.watres.2020.116146.
[13] Liu, Chao, Ersan, Mahmut S, Wagner, Elizabeth, Plewa, Michael J, Amy, Gary, Karan, Tanju. Toxicity of chlorinated algal-impacted waters: Formation of disinfection byproducts vs. reduction of cyanotoxins. WATER RESEARCH[J]. 2020, 184: http://dx.doi.org/10.1016/j.watres.2020.116145.
[14] Liu, Chao, Ersan, Mahmut S, Plewa, Michael J, Amy, Gary, Karanfil, Tanju. Formation of iodinated trihalomethanes and noniodinated disinfection byproducts during chloramination of algal organic matter extracted from Microcystis aeruginosa. WATER RESEARCH[J]. 2019, 162: 115-126, http://dx.doi.org/10.1016/j.watres.2019.06.053.
[15] Ersan, Mahmut S, Liu, Chao, Amy, Gary, Karanfil, Tanju. The interplay between natural organic matter and bromide on bromine substitution. SCIENCE OF THE TOTAL ENVIRONMENT[J]. 2019, 646: 1172-1181, http://dx.doi.org/10.1016/j.scitotenv.2018.07.384.
[16] Ersan, Mahmut S, Liu, Chao, Amy, Gary, Plewa, Michael J, Wagner, Elizabeth D, Karanfil, Tanju. Chloramination of iodide-containing waters: Formation of iodinated disinfection byproducts and toxicity correlation with total organic halides of treated waters. SCIENCE OF THE TOTAL ENVIRONMENT[J]. 2019, 697: http://dx.doi.org/10.1016/j.scitotenv.2019.134142.
[17] Liu, Chao, Ersan, Mahmut S, Plewa, Michael J, Amy, Gary, Karanfil, Tanju. Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae. WATER RESEARCH[J]. 2018, 142: 313-324, http://dx.doi.org/10.1016/j.watres.2018.05.051.
[18] Wang, Lu, Ben, Weiwei, Li, Yangang, Liu, Chao, Qiang, Zhimin. Behavior of tetracycline and macrolide antibiotics in activated sludge process and their subsequent removal during sludge reduction by ozone. CHEMOSPHERE[J]. 2018, 206: 184-191, http://ir.rcees.ac.cn/handle/311016/41320.
[19] Liu, Chao, Olivares, Christopher I, Pinto, Ameet J, Lauderdale, Chance V, Brown, Jess, Selbes, Meric, Karanfil, Tanju. The control of disinfection byproducts and their precursors in biologically active filtration processes. WATER RESEARCHnull. 2017, 124: 630-653, http://dx.doi.org/10.1016/j.watres.2017.07.080.
[20] Liu, Chao, Croue, JeanPhilippe. Formation of Bromate and Halogenated Disinfection Byproducts during Chlorination of Bromide-Containing Waters in the Presence of Dissolved Organic Matter and CuO. ENVIRONMENTAL SCIENCE & TECHNOLOGY[J]. 2016, 50(1): 135-144, https://www.webofscience.com/wos/woscc/full-record/WOS:000367866300016.
[21] Liu, Chao, Salhi, Elisabeth, Croue, JeanPhilippe, von Gunten, Urs. Chlorination of Iodide-Containing Waters in the Presence of CuO: Formation of Periodate. ENVIRONMENTAL SCIENCE & TECHNOLOGY[J]. 2014, 48(22): 13173-13180, https://www.webofscience.com/wos/woscc/full-record/WOS:000345262900020.
[22] Qiang, Zhimin, Tian, Fang, Liu, Wenjun, Liu, Chao. Degradation of methiocarb by monochloramine in water treatment: Kinetics and pathways. WATER RESEARCH[J]. 2014, 50(1): 237-244, http://dx.doi.org/10.1016/j.watres.2013.12.011.
[23] Liu, Chao, von Gunten, Urs, Croue, JeanPhilippe. Enhanced Chlorine Dioxide Decay in the Presence of Metal Oxides: Relevance to Drinking Water Distribution Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY[J]. 2013, 47(15): 8365-8372, https://www.webofscience.com/wos/woscc/full-record/WOS:000323013400037.
[24] Liu, Chao, von Gunten, Urs, Croue, JeanPhilippe. Chlorination of bromide-containing waters: Enhanced bromate formation in the presence of synthetic metal oxides and deposits formed in drinking water distribution systems. WATER RESEARCH[J]. 2013, 47(14): 5307-5315, http://dx.doi.org/10.1016/j.watres.2013.06.010.
[25] Liu, Chao, von Gunten, Urs, Croue, JeanPhilippe. Enhanced Bromate Formation during Chlorination of Bromide-Containing Waters in the Presence of CuO: Catalytic Disproportionation of Hypobromous Acid. ENVIRONMENTAL SCIENCE & TECHNOLOGY[J]. 2012, 46(20): 11054-11061, https://www.webofscience.com/wos/woscc/full-record/WOS:000309805000028.
[26] Qiang, Zhimin, Liu, Chao, Dong, Bingzhi, Zhang, Yalei. Degradation mechanism of alachlor during direct ozonation and O-3/H2O2 advanced oxidation process. CHEMOSPHERE[J]. 2010, 78(5): 517-526, http://dx.doi.org/10.1016/j.chemosphere.2009.11.037.
[27] Liu, Chao, Qiang, Zhimin, Tian, Fang, Zhang, Tao. Photodegradation of etridiazole by UV radiation during drinking water treatment. CHEMOSPHERE[J]. 2009, 76(5): 609-615, http://dx.doi.org/10.1016/j.chemosphere.2009.04.052.
[28] Liu, Chao, Qiang, Zhimin, Adams, Craig, Tian, Fang, Zhang, Tao. Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment. WATERRESEARCH[J]. 2009, 43(14): 3435-3442, http://dx.doi.org/10.1016/j.watres.2009.05.001.

科研活动

   
科研项目
( 1 ) 消毒副产物在饮用水生物过滤与输配过程中的转化机制及基于毒性的调控策略, 主持, 市地级, 2020-01--2022-12