基本信息

刘晓 男 研究员 博导 中国科学院微生物研究所
电子邮件: liux@im.ac.cn
通信地址: 北京市朝阳区北辰西路1号院3号中国科学院微生物研究所
邮政编码: 100101
研究领域
1. 真菌生物钟调控机制
生物钟是指生物生命活动的内在节律性,并通过生化反应、细胞、发育和行为等层面表现出来,对于生物有效适应地球环境具有重要意义。生物钟基因突变会引发睡眠障碍、情绪低落、代谢综合症等人类疾病。 课题组利用粗糙脉孢菌和病原真菌为材料,研究生物钟调控机制以及生物钟对病原真菌与宿主互作的调控作用。研究内容包括:(1)生物钟系统感应光、温度和营养等信号的机制;(2)表观遗传调控因子对生物钟基因表达的调控作用;(3)生物钟的温度补偿机制;(4)生物钟对真菌发育及其与宿主互作的调控作用。相关研究不仅解析生物钟对真菌遗传发育和致病性的调控机制,还促进理解不同物种保守的生物钟运行机制。
2. 真菌表观遗传调控机制
表观遗传调控是基因表达调控的重要环节,包括DNA甲基化、组蛋白修饰和染色质重塑等。表观遗传调控与人类发育、代谢、免疫和肿瘤疾病等密切相关。课题组以粗糙脉孢菌和病原真菌为材料,研究表观遗传调控因子如何感应外界光照、温度、营养等环境信号和耐药、DNA损伤和真菌病毒等压力胁迫,通过调控基因表达帮助真菌更好的适应环境变化。相关研究致力于揭示微生物适应环境胁迫以及药物耐受等过程中的表观遗传调控作用和不同物种保守的表观遗传调控机制。
3. 真菌与病毒的相互作用机制
真菌病毒包括RNA病毒和DNA病毒,感染真菌并在其体内增殖。真菌病毒侵染真菌并影响真菌的生长发育,例如造成蘑菇等真菌的减产或减弱植物病原真菌病害。在长期进化过程中,真菌体内形成拮抗病毒感染的宿主防御系统。课题组一方面研究病毒如何侵染病原真菌,为病原真菌的生物防治提供理论基础;另一方面,研究真菌体内的新型宿主防御系统,为开发新型基因编辑工具奠定理论基础。
招生信息
招生专业
071005-微生物学086000-生物与医药
招生方向
真菌分子遗传学真菌与病毒互作机制
教育背景
2009-09--2014-07 中国农业大学 博士
工作经历
2014年博士毕业于中国农业大学,2014-2019年在美国德克萨斯大学西南医学中心进行博士后研究工作。2019年3月入职中国科学院微生物研究所,真菌学国家重点实验室,担任研究组长。兼任中国菌物学会菌物遗传及分子生物学专业委员会副主任,中国菌物学会青年工作委员会副主任,中国细胞生物学会生物节律分会委员,以及Mycology、Frontiers in Fungal Biology、微生物学通报等期刊的编委。主要从事真菌分子遗传与环境适应机制的研究,包括真菌表观遗传、真菌生物钟调控以及真菌与病毒互作的机制。研究成果以第一或通讯(含共同)作者发表于Mol Cell、 Nat Commun、 Nucleic Acids Res、PNAS、eLife、mBio、PLoS Genet等国际主流学术期刊。
工作简历
2019-03~现在, 中国科学院微生物研究所, 研究员2014-10~2019-03,美国德克萨斯大学西南医学中心, 博士后
社会兼职
2021-12-01-今,中国菌物学会菌物遗传及分子生物学专业委员会, 副主任
2021-10-01-今,微生物学通报, 编委
2020-07-31-今,Frontiers in Fungal Biology, Review Editor
2020-03-31-今,中国菌物学会青年工作委员会, 副主任
2019-04-26-今,中国细胞学会生物节律分会, 委员
2019-03-04-今,Mycology, Associate Editor
2021-10-01-今,微生物学通报, 编委
2020-07-31-今,Frontiers in Fungal Biology, Review Editor
2020-03-31-今,中国菌物学会青年工作委员会, 副主任
2019-04-26-今,中国细胞学会生物节律分会, 委员
2019-03-04-今,Mycology, Associate Editor
出版信息
发表论文
[1] XiaoLan Liu, Zeyu Duan, Muqun Yu, Xiao Liu. Epigenetic control of circadian clocks by environmental signals. TRENDS IN CELL BIOLOGY[J]. 2024, http://dx.doi.org/10.1016/j.tcb.2024.02.005.[2] Zili Song, Shuang Zhou, Hongjiao Zhang, Nancy P. Keller, Berl R. Oakley, Xiao Liu, Yin, Wen-Bing. Fungal secondary metabolism is governed by an RNA-binding protein CsdA/RsdA complex. Nature communication[J]. 2023, [3] Shuangjie Shen, Chengcheng Zhang, Yuanhao Meng, Guofei Cui, Ying Wang, Xiao Liu, Qun He. Sensing of H2O2-induced oxidative stress by the UPF factor complex is crucial for activation of catalase-3 expression in Neurospora.. PLOS GENETICS[J]. 2023, 19(10): https://doaj.org/article/b7ebad41f537431eb50e11affa9344d0.[4] Xiao-Lan Liu, Yuling Yang, Yue Hu, Jingjing Wu, Chuqiao Han, Qiaojia Lu, Xihui Gan, Shaohua Qi, Jinhu Guo, Qun He, Yi Liu, Xiao Liu. The nutrient-sensing GCN2 signaling pathway is essential for circadian clock function by regulating histone acetylation under amino acid starvation. eLife[J]. 2023, 12: e85241-, https://doi.org/10.7554/elife.85241.[5] Chen, Xianyun, Liu, Xiaolan, Gan, Xihui, Li, Silin, Ma, Huan, Zhang, Lin, Wang, Peiliang, Li, Yunzhen, Huang, Tianyu, Yang, Xiaolin, Fang, Ling, Liang, Yingying, Wu, Jingjing, Chen, Tongyue, Zhou, Zengxuan, Liu, Xiao, Guo, Jinhu. Differential regulation of phosphorylation, structure, and stability of circadian clock protein FRQ isoforms. JOURNAL OF BIOLOGICAL CHEMISTRY[J]. 2023, 299(4): http://dx.doi.org/10.1016/j.jbc.2023.104597.[6] Chen, Ahai, Liu, Na, Xu, Chenghui, Wu, Siqi, Liu, Chao, Qi, Hao, Ren, Yiyi, Han, Xingmin, Yang, Kunlong, Liu, Xiao, Ma, Zhonghua, Chen, Yun. The STRIPAK complex orchestrates cell wall integrity signalling to govern the fungal development and virulence of Fusarium graminearum. MOLECULAR PLANT PATHOLOGY. 2023, 24(9): 1139-1153, http://dx.doi.org/10.1111/mpp.13359.[7] Pengjie Hu, Hao Ding, Huimin Liu, Yulin Yang, Lei Chen, Guang-Jun He, Weixin Ke, Ping Zhu, Xiuyun Tian, Yan Peng, Zhenghao Shen, Xiaoxia Yao, Changyu Tao, Ence Yang, Guojian Liao, Xiao Liu, Linqi Wang. Regulatory basis for reproductive flexibility in a meningitis-causing fungal pathogen. NATURE COMMUNICATIONS[J]. 2022, 13(1): http://dx.doi.org/10.1038/s41467-022-35549-y.[8] Weixin Ke, Yuyan Xie, Yue Hu, Hao Ding, Xin Fan, Jingjing Huang, Xiuyun Tian, Baokun Zhang, Yingchun Xu, Xiao Liu, Ying Yang, Linqi Wang. A forkhead transcription factor contributes to the regulatory differences of pathogenicity in closely related fungal pathogens. mLife[J]. 2022, 1(1): 79-91, http://lib.cqvip.com/Qikan/Article/Detail?id=7106947746.[9] Yue Hu, Xiaolan Liu, Qiaojia Lu, Yulin Yang, Qun He, Yi Liu, Xiao Liu. FRQ-CK1 Interaction Underlies Temperature Compensation of the Neurospora Circadian Clock. MBIO[J]. 2021, 12(3): https://journals.asm.org/doi/10.1128/mBio.01425-21.[10] Duan, Jiabin, Liu, Qingqing, Su, Sodgerel, Cha, Joonseok, Zhou, Yike, Tang, Ruiqi, Liu, Xiao, Wang, Ying, Liu, Yi, He, Qun. The Neurospora RNA polymerase II kinase CTK negatively regulates catalase expression in a chromatin context-dependent manner. ENVIRONMENTAL MICROBIOLOGY[J]. 2020, 22(1): 76-90, http://dx.doi.org/10.1111/1462-2920.14821.[11] Cui, Guofei, Dong, Qing, Duan, Jiabin, Zhang, Chengcheng, Liu, Xiao, He, Qun. NC2 complex is a key factor for the activation of catalase-3 transcription by regulating H2A.Z deposition. NUCLEIC ACIDS RESEARCH[J]. 2020, 48(15): 8332-8348, https://www.webofscience.com/wos/woscc/full-record/WOS:000574315100016.[12] Liu, Xiao, Chen, Ahai, CaicedoCasso, Angelica, Cui, Guofei, Du, Mingjian, He, Qun, Lim, Sookkyung, Kim, Hang J, Hong, Christian I, Liu, Yi. FRQ-CK1 interaction determines the period of circadian rhythms in Neurospora. NATURE COMMUNICATIONS[J]. 2019, 10(1): [13] Cao, Xuemei, Liu, Xiao, Li, Hongda, Fan, Yumeng, Duan, Jiabin, Liu, Yi, He, Qun. Transcription factor CBF-1 is critical for circadian gene expression by modulating WHITE COLLAR complex recruitment to the frq locus. PLOS GENETICS[J]. 2018, 14(9): http://dx.doi.org/10.1371/journal.pgen.1007570.[14] Liu, Xiao, Dang, Yunkun, Matsuura, Toru, He, Yubo, He, Qun, Hong, Christian I, Liu, Yi. DNA Replication Is Required for Circadian Clock Function by Regulating Rhythmic Nucleosome Composition. MOLECULAR CELL[J]. 2017, 67(2): 203-+, http://dx.doi.org/10.1016/j.molcel.2017.05.029.[15] Gai, Kexin, Cao, Xuemei, Dong, Qing, Ding, Zhaolan, Wei, Yashang, Liu, Yingchun, Liu, Xiao, He, Qun. Transcriptional repression of frequency by the IEC-1-INO80 complex is required for normal Neurospora circadian clock function. PLOS GENETICS[J]. 2017, 13(4): https://doaj.org/article/7c6de4df786c4045b28f1f509abc10bb.[16] Sun Guangyan, Zhou Zhipeng, Liu Xiao, Gai Kexin, Liu Qingqing, Cha Joonseok, Kaleri Farah Naz, Wang Ying, He Qun. Suppression of WHITE COLLAR-independent frequency Transcription by Histone H3 Lysine 36 Methyltransferase SET-2 Is Necessary for Clock Function in Neurospora. THE JOURNAL OF BIOLOGICAL CHEMISTRY[J]. 2016, 291(21): 11055-11063, http://dx.doi.org/10.1074/jbc.M115.711333.[17] Liu, Xiao, Li, Hongda, Liu, Qingqing, Niu, Yanling, Hu, Qiwen, Deng, Haiteng, Cha, Joonseok, Wang, Ying, Liu, Yi, He, Qun. Role for Protein Kinase A in the Neurospora Circadian Clock by Regulating White Collar-Independent frequency Transcription through Phosphorylation of RCM-1. MOLECULAR AND CELLULAR BIOLOGY[J]. 2015, 35(12): 2088-2102, https://www.webofscience.com/wos/woscc/full-record/WOS:000354618200004.[18] Zhou, Zhipeng, Liu, Xiao, Hu, Qiwen, Zhang, Ning, Sun, Guangyan, Cha, Joonseok, Wang, Ying, Liu, Yi, He, Qun. Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA[J]. 2013, 110(50): E4867-E4874, https://www.webofscience.com/wos/woscc/full-record/WOS:000328061700009.
科研活动
科研项目
( 1 ) 脉孢菌酪蛋白激酶CK1调控生物钟温度补偿的分子机制研究, 负责人, 国家任务, 2020-01--2023-12( 2 ) 粗糙脉孢菌生物钟基因的mRNA前体剪接因子筛选及其作用机制研究, 负责人, 地方任务, 2020-01--2022-12( 3 ) 脉孢菌分子遗传学, 负责人, 研究所自主部署, 2019-03--2023-12( 4 ) 真菌与病毒互作机制解析, 负责人, 研究所自主部署, 2020-09--2022-09( 5 ) 粗糙脉孢菌氨基酸感应信号通路调控生物钟的机制研究, 负责人, 国家任务, 2022-01--2025-12( 6 ) 耐药真菌诊疗的基因回路设计合成, 负责人, 国家任务, 2022-01--2026-12( 7 ) 感染相关真菌病毒资源本底调查, 负责人, 国家任务, 2022-10--2025-09( 8 ) 尖孢镰刀菌生物钟基因frq的表达调控和功能研究, 负责人, 国家任务, 2024-01--2027-12
参与会议
(1)真菌与环境互作—生物钟功能和调控机制研究 中国菌物学青年科学家前沿论坛 2023-05-21(2)The nutrient-sensing GCN2 signaling pathway is essential for circadian clock function by regulating histone acetylation under amino acid starvation 2023年中国细胞生物学学会生物节律全国大会 2023-04-11(3)FRQ-CK1 Interaction Underlies Temperature Compensation of the Neurospora Circadian Clock 5th Asian Forum on chronobiology &2021 Conference of CSBR 2021-07-14(4)Molecular mechanisms of circadian clock and its interconnection with cell cycle in Neurospora 2020年中国微生物学会学术年会 2020-10-24(5)Molecular mechanisms of circadian clock and its interconnection with cell cycle in Neurospora 中国菌物学会2019年学术年会 2019-08-03(6)Molecular mechanism of circadian period determination 2019年第十二届中国模式真菌研讨会 2019-05-11(7)Molecular mechanism of circadian period determination and temperature compensation the V World Congress of Chronobiology 2019 2019-04-26(8) DNA replication is required for circadian clock function by regulating rhythmic nucleosome composition The 2018 Society for Research on Biological Rhythms meeting 2018-05-13
指导学生
已指导学生
卢悄佳 硕士研究生 085238-生物工程
现指导学生
杨钰琳 博士研究生 071005-微生物学
王泽宇 博士研究生 071005-微生物学
吴京京 硕士研究生 071005-微生物学
张亚豪 硕士研究生 071005-微生物学
宋淋浩 博士研究生 071005-微生物学
袁光玉 硕士研究生 071005-微生物学
卢悄佳 博士研究生 071005-微生物学