基本信息
杨晓飞  男  博导  中国科学院大连化学物理研究所
电子邮件: yangxf@dicp.ac.cn
通信地址: 辽宁省大连市沙河口区中山路457号
邮政编码: 116023

研究领域

1)固态电池关键材料合成及界面研究

2)锂硫电池电极材料和结构设计

3)同步辐射X射线用于电池界面和机理研究。

招生信息



招生专业
081701-化学工程
招生方向
化学工程,能源电化学,锂电池,固态电池

教育背景

2013-09--2018-06   中国科学院大连化学物理研究所   工学博士学位
2009-09--2013-06   安徽大学   工学学士学位
学历

博士研究生

学位

​博士

工作经历

   
工作简历
2022-01~现在, 中国科学院大连化学物理研究所, 研究员
2021-10~2022-01,中国科学院大连化学物理研究所, 副研究员
2018-07~2021-07,西安大略大学, 博士后
社会兼职
2022-06-02-今,Frontier in Energy Research, 客座编辑
2022-05-31-今,Ecomat, 青年编委
2022-05-15-今,Frontier in Materials, 审稿编辑
2022-01-20-今,Materials Research Letters, 青年编委
2021-10-20-今,Materials Today Energy, 青年编委
2021-08-01-今,Crystals, 编委

专利与奖励

   
奖励信息
(1) Mitacs Elevate Followship, , 其他, 2020
(2) 延长石油优秀博士生奖学金, 三等奖, 其他, 2018
(3) 博士研究生国家奖学金, 国家级, 2017
(4) “卢嘉锡”优秀研究生奖, , 其他, 2017
(5) 延长石油优秀博士生奖学金, 三等奖, 其他, 2016
专利成果
[1] 张洪章, 张华民, 杨晓飞, 于滢, 李先锋, 陈雨晴. 一种锂硫电池用碳材料及其制备和应用. CN: CN109873158A, 2019-06-11.
[2] 张洪章, 张华民, 杨晓飞, 李先锋, 于滢, 陈雨晴. 一种三连续Si/C多孔电极及其应用. CN: CN108123104A, 2018-06-05.
[3] 张华民, 杨晓飞, 张洪章, 李先锋, 王美日, 晏娜, 周伟. 一维取向有序交联纤维状分级孔碳材料的制备及应用. CN: CN106882784A, 2017-06-23.
[4] 张华民, 杨晓飞, 张洪章, 李先锋, 王美日, 晏娜, 周伟. 一种锂硫电池用多孔碳材料及其制备和应用. CN: CN106549159A, 2017-03-29.
[5] 张洪章, 张华民, 杨晓飞, 李先锋. 一种锂硫电池用凝胶电解质多孔电极及其制备和应用. CN: CN106532104A, 2017-03-22.
[6] 张华民, 杨晓飞, 张洪章, 晏娜, 周伟, 王美日. 一种锂硫电池用多孔碳膜及其应用. CN: CN105731416A, 2016-07-06.

出版信息

   
发表论文
[1] Gao, Xuejie, Yang, Xiaofei, Jiang, Ming, Zheng, Matthew, Zhao, Yang, Li, Ruying, Ren, Wenfeng, Huang, Huan, Sun, Runcang, Wang, Jiantao, Singh, Chandra Veer, Sun, Xueliang. Fast Ion Transport in Li-Rich Alloy Anode for High-Energy-Density All Solid-State Lithium Metal Batteries. ADVANCED FUNCTIONAL MATERIALS[J]. 2023, 33(7): http://dx.doi.org/10.1002/adfm.202209715.
[2] Wang, Yuxiao, Gou, Jian, Zhang, Hongzhang, Yang, Xiaofei, Zhang, Huamin, Li, Xianfeng. Ni-P-SBR composite-electroless-plating enables Si anode with high conductivity and elasticity for high performance Li-ion batteries application. JOURNAL OF ENERGY CHEMISTRY[J]. 2023, 76: 59-66, http://dx.doi.org/10.1016/j.jechem.2022.09.004.
[3] Yang, Xiaofei, Gao, Xuejie, Jiang, Ming, Luo, Jing, Yan, Jitong, Fu, Jiamin, Duan, Hui, Zhao, Shangqian, Tang, Yongfu, Yang, Rong, Li, Ruying, Wang, Jiantao, Huang, Huan, Singh, Chandra Veer, Sun, Xueliang. Grain Boundary Electronic Insulation for High-Performance All-Solid-State Lithium Batteries. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 2022, [4] Yang, Xiaofei, DoyleDavis, Kieran, Gao, Xuejie, Sun, Xueliang. Recent progress and perspectives on designing high-performance thick electrodes for all-solid-state lithium batteries. ETRANSPORTATION[J]. 2022, 11: http://dx.doi.org/10.1016/j.etran.2021.100152.
[5] Yang, Xiaofei, Adair, Keegan R, Gao, Xuejie, Sun, Xueliang. Recent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. ENERGY & ENVIRONMENTAL SCIENCEnull. 2021, 14(2): 643-671, https://www.webofscience.com/wos/woscc/full-record/WOS:000621101100003.
[6] Zhou, Xu, Liu, Tingting, Zhao, Genfu, Yang, Xiaofei, Guo, Hong. Cooperative catalytic interface accelerates redox kinetics of sulfur species for high-performance Li-S batteries. ENERGY STORAGE MATERIALS[J]. 2021, 40: 139-149, http://dx.doi.org/10.1016/j.ensm.2021.05.009.
[7] Chen, LiJuan, Liu, TingTing, Liu, ShuMing, Cai, Sheng, Zou, XiaoXiao, Jiang, JingWen, Mei, ZhiYuan, Zhao, GenFu, Yang, XiaoFei, Guo, Hong. S vacant CuIn5S8 confined in a few-layer MoSe2 with interlayer-expanded hollow heterostructures boost photocatalytic CO2 reduction. RARE METALS. 2021, http://dx.doi.org/10.1007/s12598-021-01809-x.
[8] Liu, Tingting, Cai, Sheng, Zhao, Genfu, Gao, Zhihui, Liu, Shuming, Li, Huani, Chen, Lijuan, Li, Mian, Yang, Xiaofei, Guo, Hong. Recycling valuable cobalt from spent lithium ion batteries for controllably designing a novel sea-urchin-like cobalt nitride-graphene hybrid catalyst: Towards efficient overall water splitting. JOURNAL OF ENERGY CHEMISTRY[J]. 2021, 62(11): 440-450, https://www.sciengine.com/doi/10.1016/j.jechem.2021.03.052.
[9] Yang, Xiaofei, Gao, Xuejie, Zhao, Changtai, Sun, Qian, Zhao, Yang, Adair, Keegan, Luo, Jing, Lin, Xiaoting, Liang, Jianneng, Huang, Huan, Zhang, Li, Lu, Shigang, Li, Ruying, Sun, Xueliang. Suppressed dendrite formation realized by selective Li deposition in all-solid-state lithium batteries. ENERGY STORAGE MATERIALS[J]. 2020, 27: 198-204, http://dx.doi.org/10.1016/j.ensm.2020.01.031.
[10] Gao, Xuejie, Yang, Xiaofei, Wang, Sizhe, Sun, Qian, Zhao, Changtai, Li, Xiaona, Liang, Jianwen, Zheng, Matthew, Zhao, Yang, Wang, Jiwei, Li, Minsi, Li, Ruing, Sham, TsunKong, Sun, Xueliang. A 3D-printed ultra-high Se loading cathode for high energy density quasi-solid-state Li-Se batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2020, 8(1): 278-286, https://www.webofscience.com/wos/woscc/full-record/WOS:000503772400024.
[11] Yang, Xiaofei, Luo, Jing, Sun, Xueliang. Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design. CHEMICAL SOCIETY REVIEWSnull. 2020, 49(7): 2140-2195, https://www.webofscience.com/wos/woscc/full-record/WOS:000524531600002.
[12] Gao, Xuejie, Yang, Xiaofei, Adair, Keegan, Li, Xiaona, Liang, Jianwen, Sun, Qian, Zhao, Yang, Li, Ruing, Sham, TsunKong, Sun, Xueliang. 3D Vertically Aligned Li Metal Anodes with Ultrahigh Cycling Currents and Capacities of 10 mA cm(-2)/20 mAh cm(-2) Realized by Selective Nucleation within Microchannel Walls. ADVANCED ENERGY MATERIALS[J]. 2020, 10(7): http://dx.doi.org/10.1002/aenm.201903753.
[13] Gao, Xuejie, Yang, Xiaofei, Sun, Qian, Luo, Jing, Liang, Jianneng, Li, Weihan, Wang, Jiwei, Wang, Sizhe, Li, Minsi, Li, Ruying, Sham, TsunKong, Sun, Xueliang. Converting a thick electrode into vertically aligned "Thin electrodes" by 3D-Printing for designing thickness independent Li-S cathode. ENERGY STORAGE MATERIALS[J]. 2020, 24: 682-688, http://dx.doi.org/10.1016/j.ensm.2019.08.001.
[14] Yang, Xiaofei, Jiang, Ming, Gao, Xuejie, Bao, Danni, Sun, Qian, Holmes, Nathaniel, Duan, Hui, Mukherjee, Sankha, Adair, Keegan, Zhao, Changtai, Liang, Jianwen, Li, Weihan, Li, Junjie, Liu, Yang, Huang, Huan, Zhang, Li, Lu, Shigang, Lu, Qingwen, Li, Ruying, Singh, Chandra Veer, Sun, Xueliang. Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer electrolytes: main chain or terminal -OH group?. ENERGY & ENVIRONMENTAL SCIENCE[J]. 2020, 13(5): 1318-1325, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000536818900003.
[15] Yang, Xiaofei, Gao, Xuejie, Mukherjee, Sankha, DoyleDavis, Kieran, Fu, Jiamin, Li, Weihan, Sun, Qian, Zhao, Feipeng, Jiang, Ming, Hu, Yongfeng, Huang, Huan, Zhang, Li, Lu, Shigang, Li, Ruying, Sham, TsunKong, Singh, Chandra Veer, Sun, Xueliang. Phase Evolution of a Prenucleator for Fast Li Nucleation in All-Solid-State Lithium Batteries. ADVANCED ENERGY MATERIALS[J]. 2020, 10(37): https://www.webofscience.com/wos/woscc/full-record/WOS:000564098200001.
[16] Gao, Xuejie, Yang, Xiaofei, Adair, Keegan, Liang, Jianneng, Sun, Qian, Zhao, Yang, Li, Ruying, Sham, TsunKong, Sun, Xueliang. Fast Charging All Solid-State Lithium Batteries Enabled by Rational Design of Dual Vertically-Aligned Electrodes. ADVANCED FUNCTIONAL MATERIALS[J]. 2020, 30(50): http://dx.doi.org/10.1002/adfm.202005357.
[17] Yang, Xiaofei, Sun, Qian, Zhao, Changtai, Gao, Xuejie, Adair, Keegan, Zhao, Yang, Luo, Jing, Lin, Xiaoting, Liang, Jianneng, Huang, Huan, Zhang, Li, Lu, Shigang, Li, Ruying, Sun, Xueliang. Self-healing electrostatic shield enabling uniform lithium deposition in all-solid-state lithium batteries. ENERGY STORAGE MATERIALS[J]. 2019, 22: 194-199, http://dx.doi.org/10.1016/j.ensm.2019.07.015.
[18] Gao, Xuejie, Yang, Xiaofei, Li, Minsi, Sun, Qian, Liang, Jianneng, Luo, Jing, Wang, Jiwei, Li, Weihan, Liang, Jianwen, Liu, Yulong, Wang, Sizhe, Hu, Yongfeng, Xiao, Qunfeng, Li, Ruying, Sham, TsunKong, Sun, Xueliang. Cobalt-Doped SnS2 with Dual Active Centers of Synergistic Absorption-Catalysis Effect for High-S Loading Li-S Batteries. ADVANCED FUNCTIONAL MATERIALS[J]. 2019, 29(8): [19] Yang, Xiaofei, Gao, Xuejie, Sun, Qian, Jand, Sara Panahian, Yu, Ying, Zhao, Yang, Li, Xia, Adair, Keegan, Kuo, LiangYin, Rohrer, Jochen, Liang, Jianneng, Lin, Xiaoting, Banis, Mohammad Norouzi, Hu, Yongfeng, Zhang, Hongzhang, Li, Xianfeng, Li, Ruying, Zhang, Huamin, Kaghazchi, Payam, Sham, TsunKong, Sun, Xueliang. Promoting the Transformation of Li2S2 to Li2S: Significantly Increasing Utilization of Active Materials for High-Sulfur-Loading Li-S Batteries. ADVANCED MATERIALS[J]. 2019, 31(25): [20] Yang, Xiaofei, Sun, Qian, Zhao, Changtai, Gao, Xuejie, Adair, Keegan R, Liu, Yulong, Luo, Jing, Lin, Xiaoting, Liang, Jianneng, Huang, Huan, Zhang, Li, Yang, Rong, Lu, Shigang, Li, Ruying, Sun, Xueliang. High-areal-capacity all-solid-state lithium batteries enabled by rational design of fast ion transport channels in vertically-aligned composite polymer electrodes. NANO ENERGY[J]. 2019, 61: 567-575, http://dx.doi.org/10.1016/j.nanoen.2019.05.002.
[21] Borjigin, Timur, Zhao, Genfu, Zhang, Yuhao, Liang, Mengfang, Liu, Beihong, Liu, Hui, Yang, Xiaofei, Guo, Hong. Control loading Au nanoparticles on the surface of hydroxyl pillar5arene functionalized single-walled carbon nanotubes and its application in catalysis and sensing. SUSTAINABLE ENERGY & FUELS[J]. 2019, 3(9): 2312-2320, https://www.webofscience.com/wos/woscc/full-record/WOS:000482057500009.
[22] Yang, Xiaofei, Li, Xia, Adair, Keegan, Zhang, Huamin, Sun, Xueliang. Structural Design of Lithium-Sulfur Batteries: From Fundamental Research to Practical Application. ELECTROCHEMICAL ENERGY REVIEWSnull. 2018, 1(3): 239-293, http://dx.doi.org/10.1007/s41918-018-0010-3.
[23] Yang, Xiaofei, Yu, Ying, Lin, Xiaoting, Liang, Jianneng, Adair, Keegan, Zhao, Yang, Wang, Changhong, Li, Xia, Sun, Qian, Zhang, Hongzhang, Li, Xianfeng, Li, Ruying, Zhang, Huamin, Sun, Xueliang. Multi- functional nanowall arrays with unrestricted Li plus transport channels and an integrated conductive network for high- areal- capacity Li- S batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2018, 6(45): 22958-22965, http://www.corc.org.cn/handle/1471x/2373017.
[24] Yang, Xiaofei, Liu, Tao, Xu, Chi, Zhang, Hongzhang, Li, Xianfeng, Zhang, Huamin. The catalytic effect of bismuth for VO2+/VO2+ and V3+/V2+ redox couples in vanadium flow batteries. JOURNAL OF ENERGY CHEMISTRY[J]. 2017, 26(1): 1-7, http://lib.cqvip.com/Qikan/Article/Detail?id=84828190504849554849484849.
[25] Xiaofei Yang, Tao Liu, Chi Xu, Hongzhang Zhang, Xianfeng Li, Huamin Zhang. The catalytic effect of bismuth for VO2+/VO2+ and V3+/V2+ redox couples in vanadium flow batteries. 能源化学:英文版[J]. 2017, 1-7, http://lib.cqvip.com/Qikan/Article/Detail?id=84828190504849554849484849.
[26] Yang, Xiaofei, Zhang, Hongzhang, Chen, Yuqing, Yu, Ying, Li, Xianfeng, Zhang, Huamin. Shapeable electrodes with extensive materials options and ultra-high loadings for energy storage devices. NANO ENERGY[J]. 2017, 39: 418-428, http://dx.doi.org/10.1016/j.nanoen.2017.07.028.
[27] Yang, Xiaofei, Yu, Ying, Yan, Na, Zhang, Hongzhang, Li, Xianfeng, Zhang, Huamin. 1-D oriented cross-linking hierarchical porous carbon fibers as a sulfur immobilizer for high performance lithium-sulfur batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2016, 4(16): 5965-5972, http://cas-ir.dicp.ac.cn/handle/321008/170818.
[28] Yang, Xiaofei, Chen, Yuqing, Wang, Meiri, Zhang, Hongzhang, Li, Xianfeng, Zhang, Huamin. Phase Inversion: A Universal Method to Create High-Performance Porous Electrodes for Nanoparticle-Based Energy Storage Devices. ADVANCED FUNCTIONAL MATERIALS[J]. 2016, 26(46): 8427-8434, http://cas-ir.dicp.ac.cn/handle/321008/151825.
[29] Yang, Xiaofei, Dong, Bin, Zhang, Hongzhang, Ge, Rile, Gao, Yanan, Zhang, Huamin. Sulfur impregnated in a mesoporous covalent organic framework for high performance lithium-sulfur batteries. RSC ADVANCES[J]. 2015, 5(105): 86137-86143, http://cas-ir.dicp.ac.cn/handle/321008/148078.
[30] Yang, Xiaofei, Yan, Na, Zhou, Wei, Zhang, Hongzhang, Li, Xianfeng, Zhang, Huamin. Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal-organic framework for high performance lithium-sulfur batteries. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(29): 15314-15323, http://cas-ir.dicp.ac.cn/handle/321008/146399.