基本信息
张硕  男  博导  中国科学院数学与系统科学研究院
电子邮件: szhang@lsec.cc.ac.cn
通信地址: 北京市海淀区中关村东路55号
邮政编码:

招生信息

   
招生专业
070102-计算数学
招生方向
有限元方法:理论、应用及比较研究
先进制造与智能科学中的计算问题

教育背景

2003-09--2008-06   北京大学   博士学位
1999-09--2003-06   山东大学   学士学位

工作经历

   
工作简历
2018-04~现在, 中国科学院数学与系统科学研究院, 副研究员
2009-08~2018-03,中国科学院数学与系统科学研究院, 助理研究员
2008-08~2009-08,美国宾州州立大学数学系, 博士后

出版信息

   
发表论文
[1] Qi Jiang, Shuo Zhang, Lin Wan. Dynamic inference of cell developmental complex energy landscape from time series single-cell transcriptomic data. PLoS Computational Biology[J]. 2022, 18(1): https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812873/.
[2] Quan, Qimeng, Ji, Xia, Zhang, Shuo. Lowest-degree piecewise polynomial de Rham complex on general quadrilateral grids. Calcolo[J]. 2022, 59: https://link.springer.com/article/10.1007/s10092-021-00447-0.
[3] Zeng, Huilan, Zhang, ChenSong, Zhang, Shuo. Optimal quadratic element on rectangular grids for H-1 problems. BIT NUMERICAL MATHEMATICS[J]. 2021, 61(2): 665-689, http://dx.doi.org/10.1007/s10543-020-00821-4.
[4] Xi, Yingxia, Ji, Xia, Zhang, Shuo. A Simple Low-Degree Optimal Finite Element Scheme for the Elastic Transmission Eigenvalue Problem. COMMUNICATIONS IN COMPUTATIONAL PHYSICS[J]. 2021, 30(4): 1061-1082, http://dx.doi.org/10.4208/cicp.OA-2020-0260.
[5] Zhang, Shuo. An optimal piecewise cubic nonconforming finite element scheme for the planar biharmonic equation on general triangulations. SCIENCE CHINA-MATHEMATICS[J]. 2021, 64(11): 2579-2602, http://dx.doi.org/10.1007/s11425-020-1882-6.
[6] Zhang, Shuo. Stable Mixed Element Schemes for Plate Models on Multiply-Connected Domains. ADVANCES IN APPLIED MATHEMATICS AND MECHANICS[J]. 2020, 12(4): 1008-1034, https://www.webofscience.com/wos/woscc/full-record/WOS:000538166100008.
[7] Zhang, Weifeng, Zhang, Shuo. ORDER REDUCED METHODS FOR QUAD-CURL EQUATIONS WITH NAVIER TYPE BOUNDARY CONDITIONS. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2020, 38(4): 565-579, http://lib.cqvip.com/Qikan/Article/Detail?id=7102194622.
[8] Zhang, Shuo. Minimal consistent finite element space for the biharmonic equation on quadrilateral grids. IMA JOURNAL OF NUMERICAL ANALYSIS[J]. 2020, 40(2): 1390-1406, https://www.webofscience.com/wos/woscc/full-record/WOS:000537398500020.
[9] Gillette, Andrew, Hu, Kaibo, Zhang, Shuo. Nonstandard finite element de Rham complexes on cubical meshes. BIT NUMERICAL MATHEMATICS[J]. 2020, 60(2): 373-409, https://www.webofscience.com/wos/woscc/full-record/WOS:000537469000005.
[10] Xi, Yingxia, Ji, Xia, Zhang, Shuo. A multi-level mixed element scheme of the two-dimensional Helmholtz transmission eigenvalue problem. IMA JOURNAL OF NUMERICAL ANALYSIS[J]. 2020, 40(1): 686-707, https://www.webofscience.com/wos/woscc/full-record/WOS:000544720400022.
[11] Xi, Yingxia, Ji, Xia, Zhang, Shuo. A High Accuracy Nonconforming Finite Element Scheme for Helmholtz Transmission Eigenvalue Problem. JOURNAL OF SCIENTIFIC COMPUTING[J]. 2020, 83(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000544999500002.
[12] Fan, Ronghong, Liu, Yanru, Zhang, Shuo. Mixed Schemes for Fourth-Order DIV Equations. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS[J]. 2019, 19(2): 341-357, http://ir.amss.ac.cn/handle/2S8OKBNM/34283, http://www.irgrid.ac.cn/handle/1471x/6870876, http://ir.amss.ac.cn/handle/2S8OKBNM/34284, http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000462755500012&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=3a85505900f77cc629623c3f2907beab.
[13] Zhang, Shuo, Xi, Yingxia, Ji, Xia. A Multi-Level Mixed Element Method for the Eigenvalue Problem of Biharmonic Equation. JOURNAL OF SCIENTIFIC COMPUTING[J]. 2018, 75(3): 1415-1444, https://www.webofscience.com/wos/woscc/full-record/WOS:000431399600009.
[14] Zhang, Shuo. Regular decomposition and a framework of order reduced methods for fourth order problems. NUMERISCHE MATHEMATIK[J]. 2018, 138(1): 241-271, https://www.webofscience.com/wos/woscc/full-record/WOS:000419882800008.
[15] Gong, Wei, Tan, Zhiyu, Zhang, Shuo. A robust optimal preconditioner for the mixed finite element discretization of elliptic optimal control problems. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS[J]. 2018, 25(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000417585300008.
[16] Zhang, Shuo. MIXED SCHEMES FOR QUAD-CURL EQUATIONS. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE[J]. 2018, 52(1): 147-161, https://www.webofscience.com/wos/woscc/full-record/WOS:000431902000002.
[17] Wang, Fei, Zhang, Shuo. OPTIMAL QUADRATIC NITSCHE EXTENDED FINITE ELEMENT METHOD FOR INTERFACE PROBLEM OF DIFFUSION EQUATION. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2018, 36(5): 693-717, http://lib.cqvip.com/Qikan/Article/Detail?id=676569787.
[18] Li, Zheng, Zhang, Shuo. A Stable Mixed Element Method for the Biharmonic Equation with First-Order Function Spaces. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS[J]. 2017, 17(4): 601-616, [19] Chen, Yuyan, Zhang, Shuo. A conservative stable finite element method for Stokes flow and nearly incompressible linear elasticity on rectangular grid. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS[J]. 2017, 323: 53-70, https://www.webofscience.com/wos/woscc/full-record/WOS:000402213000004.
[20] Zhang, Shangyou, Zhang, Shuo. CP-P Stokes finite element pair on sub-hexahedron tetrahedral grids. CALCOLO[J]. 2017, 54(4): 1403-1417, https://www.webofscience.com/wos/woscc/full-record/WOS:000416357700013.
[21] Feng, Chunsheng, Zhang, Shuo. OPTIMAL SOLVER FOR MORLEY ELEMENT DISCRETIZATION OF BIHARMONIC EQUATION ON SHAPE-REGULAR GRIDS. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2016, 34(2): 159-173, http://lib.cqvip.com/Qikan/Article/Detail?id=668266436.
[22] Hu, Jun, Yang, Xueqin, Zhang, Shuo. Capacity of the Adini Element for Biharmonic Equations. JOURNAL OF SCIENTIFIC COMPUTING[J]. 2016, 69(3): 1366-1383, https://www.webofscience.com/wos/woscc/full-record/WOS:000387443600017.
[23] Zhang, Shuo. Stable finite element pair for Stokes problem and discrete Stokes complex on quadrilateral grids. NUMERISCHE MATHEMATIK[J]. 2016, 133(2): 371-408, https://www.webofscience.com/wos/woscc/full-record/WOS:000374563200007.
[24] Meng XiangYun, Yang XueQin, Zhang Shuo. Convergence analysis of the rectangular Morley element scheme for second order problem in arbitrary dimensions. SCIENCE CHINA-MATHEMATICS[J]. 2016, 59(11): 2245-2264, http://ir.amss.ac.cn/handle/2S8OKBNM/42385, http://www.irgrid.ac.cn/handle/1471x/6871058, http://ir.amss.ac.cn/handle/2S8OKBNM/42386.
[25] Zhang, Shuo, Xu, Jinchao. OPTIMAL SOLVERS FOR FOURTH-ORDER PDES DISCRETIZED ON UNSTRUCTURED GRIDS. SIAM JOURNAL ON NUMERICAL ANALYSIS[J]. 2014, 52(1): 282-307, https://www.webofscience.com/wos/woscc/full-record/WOS:000333419300016.
[26] Wang Ming, Zu PengHe, Zhang Shuo. High accuracy nonconforming finite elements for fourth order problems. SCIENCE CHINA-MATHEMATICS[J]. 2012, 55(10): 2183-2192, http://lib.cqvip.com/Qikan/Article/Detail?id=43451106.
[27] Gao, Boran, Zhang, Shuo, Wang, Ming. A NOTE ON THE NONCONFORMING FINITE ELEMENTS FOR ELLIPTIC PROBLEMS. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2011, 29(2): 215-226, http://lib.cqvip.com/Qikan/Article/Detail?id=37190611.
[28] Zhang, Shuo, Wang, Ming. A nonconforming finite element method for the Cahn-Hilliard equation. JOURNAL OF COMPUTATIONAL PHYSICS[J]. 2010, 229(19): 7361-7372, http://dx.doi.org/10.1016/j.jcp.2010.06.020.
[29] Zhang, Shuo, Wang, Ming. A posteriori estimator of nonconforming finite element method for fourth order elliptic perturbation problems. JOURNAL OF COMPUTATIONAL MATHEMATICS[J]. 2008, 26(4): 554-577, http://lib.cqvip.com/Qikan/Article/Detail?id=27611135.

科研活动

   
科研项目
( 1 ) 弹性应变梯度问题的有限元方法, 主持, 国家级, 2015-01--2018-12
( 2 ) 四阶椭圆型偏微分方程及相关问题渐近保结构的降阶计算方法研究, 主持, 国家级, 2019-01--2022-12
( 3 ) 地月系统协同演化的潮汐效应, 参与, 部委级, 2020-01--2024-12
( 4 ) 四阶微分方程有限元方程组最优求解方法研究, 主持, 国家级, 2012-01--2014-12