基本信息
张以恒  男  博导  中国科学院天津工业生物技术研究所
电子邮件: zhang_xw@tib.cas.cn
通信地址: 天津空港经济区西七道32号
邮政编码: 300308

招生信息

   
招生专业
081703-生物化工
071005-微生物学
071010-生物化学与分子生物学
招生方向
新能源
体外合成生物学
酶工程

教育背景

1997-06--2002-06 Dartmouth College 博士
1993-09--1996-07 华东理工大学 硕士
1989-09--1993-07 华东理工大学 学士

工作经历

2021-12-now TIB, (全职)研究员

2014-10-2021-12, (客座)研究员

2010-08--2017-10 Virginia Tech 副教授、正教授

2005-08--2010-08 Virginia Tech 助理教授
2002-06--2005-08 Dartmouth College 博士后、研究员


工作简历
2010-08--今 Virginia Tech 副教授、正教授
2005-08--2010-08 Virginia Tech 助理教授
2002-06--2005-08 Dartmouth College 博士后、研究员

专利与奖励

   
专利成果
[1] 张以恒, 马延和, 张伟, 李元. 一种对木质纤维素综合利用的方法. 202210820055.1, 2022-07-12.
[2] 张以恒, 周伟. D-木酮糖4-差向异构酶、其突变体及其用途. CN: CN113122528A, 2021-07-16.
[3] 朱之光, 张以恒, 宋海燕, 马春玲. 一种酶电极、生物传感器及其制备方法和用途. CN: CN110938667A, 2020-03-31.
[4] 张以恒, 周伟. 聚磷酸依赖型葡萄糖激酶变体及其应用. CN: CN109897840A, 2019-06-18.
[5] 张以恒, 李元, 刘珊. 一种D-手性肌醇的制备方法. CN: CN109706189A, 2019-05-03.
[6] 张以恒, 宋云洪, 刘美霞. 一种重组高温镍铁氢化酶的异源表达纯化方法及其应用. CN: CN109666689A, 2019-04-23.
[7] 张以恒, 李运杰. 肌醇-1-磷酸的制备方法. CN: CN109652473A, 2019-04-19.
[8] 张以恒, 钟超. 多酶催化制备纤维二糖的方法. CN: CN108611386A, 2018-10-02.
[9] 张以恒, 钟超, 游淳. 一种以蔗糖为原料的肌醇制备方法. CN: CN108085344A, 2018-05-29.
[10] 游淳, 徐淑霞, 谢雷朋, 张以恒. 一种L‑乳酸催化反应体系及L‑乳酸的制备方法. CN: CN107663517A, 2018-02-06.
[11] 张以恒, 周伟. 葡萄糖1-磷酸的制备方法. CN: CN106811493A, 2017-06-09.
[12] 张以恒. 耐高温异淀粉酶基因的克隆、表达及应用. CN104988166B, 2015-05-28.
[13] 张以恒, 游淳. 肌醇的制备方法. CN106148425B, 2015-04-17.
[14] 张以恒, 朱之光. Complete oxidation of sugars to electricity by using cell-free synthetic enzymatic pathways. US10897057B2, US10128522B2, 2014-06-05.

出版信息

   
发表论文
[1] 王钦宏, 张以恒, 田朝光, 孙周通, 马延和. 低碳生物合成:机遇与挑战. 科学通报[J]. 2023, [2] Meng, Dongdong, Liu, Meixia, Su, Hao, Song, Haiyan, Chen, Lijie, Li, Qiangzi, Liu, Yanan, Zhu, Zhiguang, Liu, Weidong, Sheng, Xiang, You, Chun, Zhang, Job. Coenzyme Engineering of Glucose-6-phosphate Dehydrogenase on a Nicotinamide-Based Biomimic and Its Application as a Glucose Biosensor. ACS CATALYSIS[J]. 2023, 13(3): 1983-1998, http://dx.doi.org/10.1021/acscatal.2c04707.
[3] Liu, Miaomiao, Song, Yunhong, Zhang, YiHeng P Job, You, Chun. Carrier-Free Immobilization of Multi-Enzyme Complex Facilitates In Vitro Synthetic Enzymatic Biosystem for Biomanufacturing. CHEMSUSCHEM. 2023, 16(6): [4] Li, Zehua, Wu, Ranran, Chen, Ke, Gu, Wei, Zhang, YiHeng PJ, Zhu, Zhiguang. Enzymatic biofuel cell-powered iontophoretic facial mask for enhanced transdermal drug delivery. BIOSENSORS & BIOELECTRONICS[J]. 2023, 223: http://dx.doi.org/10.1016/j.bios.2022.115019.
[5] Xu, Xinxin, Zhang, Wei, You, Chun, Fan, Chao, Ji, Wangli, Park, JongTae, Kwak, Jiyun, Chen, Hongge, Zhang, YiHeng P Job, Ma, Yanhe. Biosynthesis of artificial starch and microbial protein from agricultural residue. SCIENCE BULLETIN[J]. 2023, 68(2): 214-223, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=7412898&detailType=1.
[6] Wu, Ranran, Li, Fei, Cui, Xinyu, Li, Zehua, Ma, Chunling, Jiang, Huifeng, Zhang, Lingling, Zhang, YiHeng P Job, Zhao, Tongxin, Zhang, Yanping, Li, Yin, Chen, Hui, Zhu, Zhiguang. Enzymatic Electrosynthesis of Glycine from CO2 and NH3. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2023, http://dx.doi.org/10.1002/anie.202218387.
[7] Pingping Han, Chun You, Yunjie Li, Ting Shi, Hong Wu, YiHeng P Job Zhang. High-titer production of myo-inositol by a co-immobilized four-enzyme cocktail in biomimetic mineralized microcapsules. CHEMICAL ENGINEERING JOURNAL. 2023, 461: http://dx.doi.org/10.1016/j.cej.2023.141946.
[8] 李金根, 刘倩, 刘德飞, 张永利, 郑小梅, 朱欣娜, 刘萍萍, 高乐, 王婧婷, 蔺玉萍, 张以恒, 张学礼, 田朝光. 秸秆真菌降解转化与可再生化工. 生物工程学报[J]. 2022, 38(11): 4283-4310, http://lib.cqvip.com/Qikan/Article/Detail?id=7108545596.
[9] 宋云洪, 吴冉冉, 魏欣蕾, 石婷, 李运杰, 游淳, 张玲玲, 朱之光, 张以恒. 电-氢-糖循环的新能源体系研究进展. 生物工程学报[J]. 2022, 38(11): 4081-4100, http://lib.cqvip.com/Qikan/Article/Detail?id=7108545585.
[10] Ye, Jing, Li, Yunjie, Bai, Yuqing, Zhang, Ting, Jiang, Wei, Shi, Ting, Wu, Zijian, Zhang, YiHeng P Job. A facile and robust T7-promoter-based high-expression of heterologous proteins in Bacillus subtilis. BIORESOURCES AND BIOPROCESSING[J]. 2022, 9(1): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000797541800001.
[11] Zhu, Zhiguang, Song, Haiyan, Wang, Yuanming, Zhang, YiHeng P J. Protein engineering for electrochemical biosensors. CURRENT OPINION IN BIOTECHNOLOGYnull. 2022, 76: http://dx.doi.org/10.1016/j.copbio.2022.102751.
[12] 郑宏臣, 徐健勇, 杨建花, 郑迎迎, 涂然, 石婷, 付刚, 刘倩, 王兴彪, 韩旭, 张以恒, 柏文琴, 宋诙. 工业酶与绿色生物工艺的核心技术进展. 生物工程学报[J]. 2022, 38(11): 4219-4239, http://lib.cqvip.com/Qikan/Article/Detail?id=7108545593.
[13] Wang, Juan, Qu, Ge, Xie, Leipeng, Gao, Chao, Jiang, Yingying, Zhang, YiHeng P Job, Sun, Zhoutong, You, Chun. Engineering of a thermophilic dihydroxy-acid dehydratase toward glycerate dehydration for in vitro biosystems. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY[J]. 2022, 106(9-10): 3625-3637, http://dx.doi.org/10.1007/s00253-022-11936-9.
[14] 张以恒. 忆王义翘教授对生物炼制的贡献和我对此领域未来发展的观点. 合成生物学[J]. 2021, 2(4): 497-508, http://lib.cqvip.com/Qikan/Article/Detail?id=7105533979.
[15] Song, Yunhong, Zhu, Zhiguang, Zhou, Wei, Zhang, YiHeng P Job. High-efficiency transformation of archaea by direct PCR products with its application to directed evolution of a thermostable enzyme. MICROBIAL BIOTECHNOLOGY[J]. 2021, 14(2): 453-464, https://doaj.org/article/5923e2c9b3664ddaaf089dc38500e74a.
[16] Chen, Hongge, Zhang, YiHeng P Job. Enzymatic regeneration and conservation of ATP: challenges and opportunities. CRITICAL REVIEWS IN BIOTECHNOLOGYnull. 2021, 41(1): 16-33, http://dx.doi.org/10.1080/07388551.2020.1826403.
[17] Zhang, YiHeng Percival. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges. BIOTECHNOLOGY ADVANCES[J]. 2015, 33(7): 1467-1483, http://dx.doi.org/10.1016/j.biotechadv.2014.10.009.
[18] Hong-Ge Chen, Y.-H. Percival Zhang. New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS. 2015, 47: 117-132, http://dx.doi.org/10.1016/j.rser.2015.02.048.
[19] 张以恒. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modelling. Proceedings of the National Academy of Sciences of the United States of America.. 2015, [20] 张以恒. Simple cloning and DNA assembly in E. coli by prolonged overlap extension PCR. Methods of Molecular Biology. 2014, [21] Ahmad, Sajjad, Ma, Hui, Akhtar, Muhammad Waheed, Zhang, YiHeng Percival, Zhang, XiaoZhou. Directed Evolution of Clostridium phytofermentans Glycoside Hydrolase Family 9 Endoglucanase for Enhanced Specific Activity on Solid Cellulosic Substrate. BIOENERGY RESEARCH[J]. 2014, 7(1): 381-388, https://www.webofscience.com/wos/woscc/full-record/WOS:000332484000033.
[22] 张以恒. Annexation of a high-activity rate-limiting enzyme in a synthetic three-enzyme complex greatly decreases the degree of substrate channeling. ACS Synthetic Biology. 2014, [23] Myung, Suwan, Rollin, Joseph, You, Chun, Sun, Fangfang, Chandrayan, Sanjeev, Adams, Michael W W, Zhang, Y H Percival. In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose. METABOLIC ENGINEERING[J]. 2014, 24: 70-77, http://dx.doi.org/10.1016/j.ymben.2014.05.006.
[24] Qi, Peng, You, Chun, Zhang, Y H Percival. One-Pot Enzymatic Conversion of Sucrose to Synthetic Amy lose by using Enzyme Cascades. ACS CATALYSIS[J]. 2014, 4(5): 1311-1317, https://www.webofscience.com/wos/woscc/full-record/WOS:000335491200008.
[25] Zhu, Zhiguang, Tam, Tsz Kin, Sun, Fangfang, You, Chun, Zhang, Y H Percival. A high-energy-density sugar biobattery based on a synthetic enzymatic pathway. NATURE COMMUNICATIONS[J]. 2014, 5: https://www.webofscience.com/wos/woscc/full-record/WOS:000331083800009.
[26] Gao, Shuhong, You, Chun, Renneckar, Scott, Bao, Jie, Zhang, YiHeng Percival. New insights into enzymatic hydrolysis of heterogeneous cellulose by using carbohydrate-binding module 3 containing GFP and carbohydrate- binding module 17 containing CFP. BIOTECHNOLOGY FOR BIOFUELS[J]. 2014, 7(1): 24-24, http://dx.doi.org/10.1186/1754-6834-7-24.
[27] 张以恒. A biotechnology paradigm: cell-free biosystems for biomanufacturing. Green Chemistry. 2013, [28] Sathitsuksanoh, Noppadon, Xu, Bin, Zhao, Bingyu, Zhang, YH Percival. Overcoming Biomass Recalcitrance by Combining Genetically Modified Switchgrass and Cellulose Solvent-Based Lignocellulose Pretreatment. PLOS ONE[J]. 2013, 8(9): http://dx.doi.org/10.1371/journal.pone.0073523.
[29] del Campo, Julia S Martin, Chun, You, Kim, JaeEung, Patino, Rodrigo, Zhang, Y H Percival. Discovery and characterization of a novel ATP/polyphosphate xylulokinase from a hyperthermophilic bacterium Thermotoga maritima. JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY[J]. 2013, 40(7): 661-669, http://dx.doi.org/10.1007/s10295-013-1265-7.
[30] Zhang, Y H Percival. Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy-food-water nexus. ENERGY SCIENCE & ENGINEERING[J]. 2013, 1(1): 27-41, http://dx.doi.org/10.1002/ese3.2.
[31] 张以恒. Dihydrogen production from xylose and water mediated by synthetic cascade enzymes. Angewandte Chemie International Edition. 2013, [32] 张以恒. Self-assembly of synthetic metabolons through synthetic scaffoldins: single-step purification, co-immobilization, and substrate channeling. ACS Synthetic Biology. 2013, [33] You, Chun, Chen, Hongge, Myung, Suwan, Sathitsuksanoh, Noppadon, Ma, Hui, Zhang, XiaoZhou, Li, Jianyong, Zhang, Y H Percival. Enzymatic transformation of nonfood biomass to starch. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA[J]. 2013, 110(18): 7182-7187, https://www.webofscience.com/wos/woscc/full-record/WOS:000318682300027.
[34] Myung, Suwan, You, Chun, Zhang, Y H Percival. Recyclable cellulose-containing magnetic nanoparticles: immobilization of cellulose-binding module-tagged proteins and a synthetic metabolon featuring substrate channeling. JOURNAL OF MATERIALS CHEMISTRY B[J]. 2013, 1(35): 4419-4427, https://www.webofscience.com/wos/woscc/full-record/WOS:000323270400008.
[35] You, Chun, Zhang, XiaoZhou, Zhang, Y H Percival. Simple Cloning via Direct Transformation of PCR Product (DNA Multimer) to Escherichia coli and Bacillus subtilis. APPLIED AND ENVIRONMENTAL MICROBIOLOGY[J]. 2012, 78(5): 1593-1595, [36] Zhang, Y H Percival, Huang, WeiDong. Constructing the electricity-carbohydrate-hydrogen cycle for a sustainability revolution. TRENDS IN BIOTECHNOLOGYnull. 2012, 30(6): 301-306, http://dx.doi.org/10.1016/j.tibtech.2012.02.006.
[37] You, Chun, Zhang, XiaoZhou, Sathitsuksanoh, Noppadon, Lynd, Lee R, Zhang, Y H Percival. Enhanced Microbial Utilization of Recalcitrant Cellulose by an Ex Vivo Cellulosome-Microbe Complex. APPLIED AND ENVIRONMENTAL MICROBIOLOGY[J]. 2012, 78(5): 1437-1444, https://www.webofscience.com/wos/woscc/full-record/WOS:000300537400014.
[38] You, Chun, Myung, Suwan, Zhang, Y H Percival. Facilitated Substrate Channeling in a Self-Assembled Trifunctional Enzyme Complex. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2012, 51(35): 8787-8790, https://www.webofscience.com/wos/woscc/full-record/WOS:000307785700021.
[39] Zhang, Y H Percival. Simpler Is Better: High-Yield and Potential Low-Cost Biofuels Production through Cell-Free Synthetic Pathway Biotransformation (SyPaB). ACS CATALYSIS[J]. 2011, 1(9): 998-1009, https://www.webofscience.com/wos/woscc/full-record/WOS:000294704500003.
[40] 张以恒. Increasing substrate accessibility is more important than removing lignin: A comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnology and Bioengineering. 2011, [41] Zhang, XiaoZhou, Sathitsuksanoh, Noppadon, Zhu, Zhiguang, Zhang, Y H Percival. One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. METABOLIC ENGINEERING[J]. 2011, 13(4): 364-372, http://dx.doi.org/10.1016/j.ymben.2011.04.003.
[42] 张以恒. Biohydrogenation from biomass sugar mediated by cell-free synthetic pathway biotransformation. Chemistry and Biology. 2011, [43] Zhang, Y H Percival. Substrate channeling and enzyme complexes for biotechnological applications. BIOTECHNOLOGY ADVANCESnull. 2011, 29(6): 715-725, http://dx.doi.org/10.1016/j.biotechadv.2011.05.020.
[44] Zhang, YH Percival, Sun, Jibin, Zhong, JianJiang. Biofuel production by in vitro synthetic enzymatic pathway biotransformation. CURRENT OPINION IN BIOTECHNOLOGYnull. 2010, 21(5): 663-669, http://dx.doi.org/10.1016/j.copbio.2010.05.005.
[45] Zhang, YiHeng Percival, Ding, ShiYou, Mielenz, Jonathan R, Cui, JingBiao, Elander, Richard T, Laser, Mark, Himmel, Michael E, McMillan, James R, Lynd, Lee R. Fractionating recalcitrant lignocellulose at modest reaction conditions. BIOTECHNOLOGYANDBIOENGINEERING[J]. 2007, 97(2): 214-223, https://www.webofscience.com/wos/woscc/full-record/WOS:000246434700002.
[46] Zhang, Y H Percival, Himmel, Michael E, Mielenz, Jonathan R. Outlook for cellulase improvement: Screening and selection strategies. BIOTECHNOLOGY ADVANCESnull. 2006, 24(5): 452-481, http://dx.doi.org/10.1016/j.biotechadv.2006.03.003.
[47] 张以恒. . A transition from cellulose swelling to cellulose dissolution by o-phosphoric acid: Evidences from supramolecular structures and enzymatic hydrolysis. Biomacromolecules. 2006, [48] 张以恒. A functionally based model for hydrolysis of solid cellulose by fungal cellulase. Biotechnology and Bioengineering. 2006, [49] Zhang, YHP, Lynd, LR. Cellulose utilization by Clostridium thermocellum: Bioenergetics and hydrolysis product assimilation. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA[J]. 2005, 102(20): 7321-7325, [50] Zhang, YHP, Lynd, LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. BIOTECHNOLOGY AND BIOENGINEERINGnull. 2004, 88(7): 797-824, http://dx.doi.org/10.1002/bit.20282.
[51] 张以恒. Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an ELISA-based method with application to Clostridium thermocellum batch Cultures. Analytic Chemistry. 2003,