基本信息
郇志广  男  硕导  中国科学院上海硅酸盐研究所
电子邮件: huanzhiguang@mail.sic.ac.cn
通信地址: 上海市长宁区定西路1295号
邮政编码:

招生信息

   
招生专业
080502-材料学
招生方向
金属-无机复合材料
无机-高分子复合材料
金属材料表面生物功能改性

教育背景

2003-09--2008-07 中国科学院上海硅酸盐研究所 工学博士
1999-09--2003-06 同济大学 工学学士

工作经历

   
工作简历
2013-10--今 中国科学院上海硅酸盐研究所 副研究员
2009-01--2013-08 荷兰代尔夫特理工大学 博士后
社会兼职
2013-11--今 中国生物材料学会,会员
2013-11--今 中国生物医学工程学会生物材料分会,会员
2013-01--今 欧洲生物材料学会,会员

专利与奖励

   
专利成果
[1] 常江, 徐晨, 郇志广. 一种具有光热效应的钙硅基复合骨水泥及其制备方法和应用. CN: CN108653805B, 2021-04-16.
[2] 郇志广, 常江. 生物可降解镁基金属陶瓷复合材料及其制备方法和应用. CN: CN106924816B, 2020-02-14.
[3] 常江, 徐晨, 郇志广. 一种抗溃散钙硅基复合骨水泥及其制备方法和应用. CN: CN106693063B, 2019-11-19.
[4] 常 江, 郇志广. 半水硫酸钙基复合的自固化生物活性材料、制备及应用. 中国: CN100496625, 2009.06.10.
[5] 常 江, 郇志广. 生物活性磷酸氢钙/硅酸三钙复合自固化材料及其制备方法和应用. 中国: CN101428153, 2009-05-13.
[6] 常 江, 郇志广. 硅酸二钙复合自固化材料及其制备方法和应用. 中国: CN101428152, 2009-05-13.
[7] 常 江, 郇志广. 生物活性磷酸钙/硅酸三钙复合自固化材料、方法及应用. 中国: CN101157045, 2008-04-09.

出版信息

   
发表论文
[1] Zhang, Guangdao, Zhao, Pengyu, Lin, Lin, Qin, Limei, Huan, Zhiguang, Leeflang, Sander, Zadpoor, Amir A, Zhou, Jie, Wu, Lin. Surface-treated 3D printed Ti-6Al-4V scaffolds with enhanced bone regeneration performance: an in vivo study. ANNALS OF TRANSLATIONAL MEDICINE[J]. 2021, 9(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000640889600020.
[2] Wu Zhongcao, Huan Zhiguang, Zhu Yufang, Wu Chengtie. 3D Printing and Characterization of Microsphere Hydroxyapatite Scaffolds. JOURNAL OF INORGANIC MATERIALS[J]. 2021, 36(6): 601-607, http://dx.doi.org/10.15541/jim20200499.
[3] Guo, Geyong, Xu, Qing, Zhu, Chongzun, Yu, Jinlong, Wang, Qiaojie, Tang, Jin, Huan, Zhiguang, Shen, Hao, Chang, Jiang, Zhang, Xianlong. Dual-temporal bidirectional immunomodulation of Cu-Zn Bi-layer nanofibrous membranes for sequentially enhancing antibacterial activity and osteogenesis. APPLIED MATERIALS TODAY[J]. 2021, 22: http://dx.doi.org/10.1016/j.apmt.2020.100888.
[4] Zhang, Zhaowenbin, Zhang, Yu, Li, Wenbo, Ma, Lingling, Wang, Endian, Xing, Min, Zhou, Yanling, Huan, Zhiguang, Guo, Feng, Chang, Jiang. Curcumin/Fe-SiO2 nano composites with multi-synergistic effects for scar inhibition and hair follicle regeneration during burn wound healing. APPLIED MATERIALS TODAY[J]. 2021, 23: http://dx.doi.org/10.1016/j.apmt.2021.101065.
[5] Zhang, Zhaowenbin, Li, Wenbo, Liu, Ying, Yang, Zhigang, Ma, Lingling, Zhuang, Hui, Wang, Endian, Wu, Chengtie, Huan, Zhiguang, Guo, Feng, Chang, Jiang. Design of a biofluid-absorbing bioactive sandwich-structured Zn-Si bioceramic composite wound dressing for hair follicle regeneration and skin burn wound healing. BIOACTIVE MATERIALS[J]. 2021, 6(7): 1910-1920, http://dx.doi.org/10.1016/j.bioactmat.2020.12.006.
[6] Zhang, Guangdao, Zhao, Pengyu, Lin, Lin, Qin, Limei, Huan, Zhiguang, Leeflang, Sander, Zadpoor, Amir A, Zhou, Jie, Wu, Lin. Surface-treated 3D printed Ti-6Al-4V scaffolds with enhanced bone regeneration performance: an in vivo study. ANNALS OF TRANSLATIONAL MEDICINE[J]. 2021, 9(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000640889600020.
[7] Wu Zhongcao, Huan Zhiguang, Zhu Yufang, Wu Chengtie. 3D Printing and Characterization of Microsphere Hydroxyapatite Scaffolds. JOURNAL OF INORGANIC MATERIALS[J]. 2021, 36(6): 601-607, http://dx.doi.org/10.15541/jim20200499.
[8] Guo, Geyong, Xu, Qing, Zhu, Chongzun, Yu, Jinlong, Wang, Qiaojie, Tang, Jin, Huan, Zhiguang, Shen, Hao, Chang, Jiang, Zhang, Xianlong. Dual-temporal bidirectional immunomodulation of Cu-Zn Bi-layer nanofibrous membranes for sequentially enhancing antibacterial activity and osteogenesis. APPLIED MATERIALS TODAY[J]. 2021, 22: http://dx.doi.org/10.1016/j.apmt.2020.100888.
[9] Zhang, Zhaowenbin, Zhang, Yu, Li, Wenbo, Ma, Lingling, Wang, Endian, Xing, Min, Zhou, Yanling, Huan, Zhiguang, Guo, Feng, Chang, Jiang. Curcumin/Fe-SiO2 nano composites with multi-synergistic effects for scar inhibition and hair follicle regeneration during burn wound healing. APPLIED MATERIALS TODAY[J]. 2021, 23: http://dx.doi.org/10.1016/j.apmt.2021.101065.
[10] Zhang, Zhaowenbin, Li, Wenbo, Liu, Ying, Yang, Zhigang, Ma, Lingling, Zhuang, Hui, Wang, Endian, Wu, Chengtie, Huan, Zhiguang, Guo, Feng, Chang, Jiang. Design of a biofluid-absorbing bioactive sandwich-structured Zn-Si bioceramic composite wound dressing for hair follicle regeneration and skin burn wound healing. BIOACTIVE MATERIALS[J]. 2021, 6(7): 1910-1920, http://dx.doi.org/10.1016/j.bioactmat.2020.12.006.
[11] Dang, Wentao, Ma, Bing, Li, Bo, Huan, Zhiguang, Ma, Nan, Zhu, Haibo, Chang, Jiang, Xiao, Yin, Wu, Chengtie. 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction. BIOFABRICATION[J]. 2020, 12(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000510651000001.
[12] Zhao, Pengyu, Liu, Yaqin, Li, Tian, Zhou, Yanling, Leeflang, Sander, Chen, Lei, Wu, Chengtie, Zhou, Jie, Huan, Zhiguang. 3D printed titanium scaffolds with ordered TiO2 nanotubular surface and mesoporous bioactive glass for bone repair. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL[J]. 2020, 30(4): 502-509, http://lib.cqvip.com/Qikan/Article/Detail?id=7103719174.
[13] Xing, Min, Huan, Zhiguang, Li, Qin, Yu, Jianding, Chang, Jiang. Containerless processing of Ca-Sr-Si system bioactive materials: Thermophysical properties and ion release behaviors (vol 43, pg 5156, 2017). CERAMICS INTERNATIONALnull. 2020, 46(9): 14315-14316, https://www.webofscience.com/wos/woscc/full-record/WOS:000551128800170.
[14] Zhang, Zhaowenbin, Dai, Qiuxia, Zhang, Yu, Zhuang, Hui, Wang, Endian, Xu, Qing, Ma, Lingling, Wu, Chengtie, Huan, Zhiguang, Guo, Feng, Chang, Jiang. Design of a Multifunctional Biomaterial Inspired by Ancient Chinese Medicine for Hair Regeneration in Burned Skin. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(11): 12489-12499, https://www.webofscience.com/wos/woscc/full-record/WOS:000526543400011.
[15] Xu, Qing, Chang, Mengling, Zhang, Yu, Wang, Endian, Xing, Min, Gao, Long, Huan, Zhiguang, Guo, Feng, Chang, Jiang. PDA/Cu Bioactive Hydrogel with "Hot Ions Effect" for Inhibition of Drug-Resistant Bacteria and Enhancement of Infectious Skin Wound Healing. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(28): 31255-31269, https://www.webofscience.com/wos/woscc/full-record/WOS:000551488400019.
[16] Bao, Feng, Pei, Ge, Wu, Zhongcao, Zhuang, Hui, Zhang, Zhaowenbin, Huan, Zhiguang, Wu, Chengtie, Chang, Jiang. Bioactive Self-Pumping Composite Wound Dressings with Micropore Array Modified Janus Membrane for Enhanced Diabetic Wound Healing. ADVANCED FUNCTIONAL MATERIALS[J]. 2020, 30(49): https://www.webofscience.com/wos/woscc/full-record/WOS:000567547100001.
[17] Dang, Wentao, Ma, Bing, Li, Bo, Huan, Zhiguang, Ma, Nan, Zhu, Haibo, Chang, Jiang, Xiao, Yin, Wu, Chengtie. 3D printing of metal-organic framework nanosheets-structured scaffolds with tumor therapy and bone construction. BIOFABRICATION[J]. 2020, 12(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000510651000001.
[18] Zhao, Pengyu, Liu, Yaqin, Li, Tian, Zhou, Yanling, Leeflang, Sander, Chen, Lei, Wu, Chengtie, Zhou, Jie, Huan, Zhiguang. 3D printed titanium scaffolds with ordered TiO2 nanotubular surface and mesoporous bioactive glass for bone repair. PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL[J]. 2020, 30(4): 502-509, http://lib.cqvip.com/Qikan/Article/Detail?id=7103719174.
[19] Xing, Min, Huan, Zhiguang, Li, Qin, Yu, Jianding, Chang, Jiang. Containerless processing of Ca-Sr-Si system bioactive materials: Thermophysical properties and ion release behaviors (vol 43, pg 5156, 2017). CERAMICS INTERNATIONALnull. 2020, 46(9): 14315-14316, https://www.webofscience.com/wos/woscc/full-record/WOS:000551128800170.
[20] Zhang, Zhaowenbin, Dai, Qiuxia, Zhang, Yu, Zhuang, Hui, Wang, Endian, Xu, Qing, Ma, Lingling, Wu, Chengtie, Huan, Zhiguang, Guo, Feng, Chang, Jiang. Design of a Multifunctional Biomaterial Inspired by Ancient Chinese Medicine for Hair Regeneration in Burned Skin. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(11): 12489-12499, https://www.webofscience.com/wos/woscc/full-record/WOS:000526543400011.
[21] Xu, Qing, Chang, Mengling, Zhang, Yu, Wang, Endian, Xing, Min, Gao, Long, Huan, Zhiguang, Guo, Feng, Chang, Jiang. PDA/Cu Bioactive Hydrogel with "Hot Ions Effect" for Inhibition of Drug-Resistant Bacteria and Enhancement of Infectious Skin Wound Healing. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(28): 31255-31269, https://www.webofscience.com/wos/woscc/full-record/WOS:000551488400019.
[22] Bao, Feng, Pei, Ge, Wu, Zhongcao, Zhuang, Hui, Zhang, Zhaowenbin, Huan, Zhiguang, Wu, Chengtie, Chang, Jiang. Bioactive Self-Pumping Composite Wound Dressings with Micropore Array Modified Janus Membrane for Enhanced Diabetic Wound Healing. ADVANCED FUNCTIONAL MATERIALS[J]. 2020, 30(49): https://www.webofscience.com/wos/woscc/full-record/WOS:000567547100001.
[23] Ma, Hongshi, Li, Tao, Huan, Zhiguang, Zhang, Meng, Yang, Zezheng, Wang, Jinwu, Chang, Jiang, Wu, Chengtie. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer (vol 10, pg 31, 2018). NPG ASIA MATERIALSnull. 2019, 11: [24] Zhang, Yu, Chang, Mengling, Bao, Feng, Xing, Min, Wang, Endian, Xu, Qing, Huan, Zhiguang, Guo, Feng, Chang, Jiang. Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. NANOSCALE[J]. 2019, 11(13): 6315-6333, https://www.webofscience.com/wos/woscc/full-record/WOS:000464518400052.
[25] Zhuang, Hui, Lin, Rongcai, Liu, Yaqin, Zhang, Meng, Zhai, Dong, Huan, Zhiguang, Wu, Chengtie. Three-Dimensional-Printed Bioceramic Scaffolds with Osteogenic Activity for Simultaneous Photo/Magnetothermal Therapy of Bone Tumors. ACS BIOMATERIALS SCIENCE & ENGINEERING[J]. 2019, 5(12): 6725-6734, [26] Dang, Wentao, Ma, Bing, Huan, Zhiguang, Lin, Rongcai, Wang, Xiaoya, Li, Tian, Wu, Jinfu, Ma, Nan, Zhu, Haibo, Chang, Jiang, Wu, Chengtie. LaB6 surface chemistry-reinforced scaffolds for treating bone tumors and bone defects. APPLIED MATERIALS TODAY[J]. 2019, 16: 42-55, http://dx.doi.org/10.1016/j.apmt.2019.04.015.
[27] 敬林果, 杨晨, 郇志广, 徐合, 柯勤飞, 常江. 墨鱼骨转化羟基磷灰石多孔陶瓷表面纳米结构调控及其对成骨细胞作用的研究. 中国修复重建外科杂志[J]. 2019, 363-369, http://lib.cqvip.com/Qikan/Article/Detail?id=90886787504849574851485048.
[28] Ma, Hongshi, Li, Tao, Huan, Zhiguang, Zhang, Meng, Yang, Zezheng, Wang, Jinwu, Chang, Jiang, Wu, Chengtie. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer (vol 10, pg 31, 2018). NPG ASIA MATERIALSnull. 2019, 11: [29] Zhang, Yu, Chang, Mengling, Bao, Feng, Xing, Min, Wang, Endian, Xu, Qing, Huan, Zhiguang, Guo, Feng, Chang, Jiang. Multifunctional Zn doped hollow mesoporous silica/polycaprolactone electrospun membranes with enhanced hair follicle regeneration and antibacterial activity for wound healing. NANOSCALE[J]. 2019, 11(13): 6315-6333, https://www.webofscience.com/wos/woscc/full-record/WOS:000464518400052.
[30] Zhuang, Hui, Lin, Rongcai, Liu, Yaqin, Zhang, Meng, Zhai, Dong, Huan, Zhiguang, Wu, Chengtie. Three-Dimensional-Printed Bioceramic Scaffolds with Osteogenic Activity for Simultaneous Photo/Magnetothermal Therapy of Bone Tumors. ACS BIOMATERIALS SCIENCE & ENGINEERING[J]. 2019, 5(12): 6725-6734, [31] Dang, Wentao, Ma, Bing, Huan, Zhiguang, Lin, Rongcai, Wang, Xiaoya, Li, Tian, Wu, Jinfu, Ma, Nan, Zhu, Haibo, Chang, Jiang, Wu, Chengtie. LaB6 surface chemistry-reinforced scaffolds for treating bone tumors and bone defects. APPLIED MATERIALS TODAY[J]. 2019, 16: 42-55, http://dx.doi.org/10.1016/j.apmt.2019.04.015.
[32] 敬林果, 杨晨, 郇志广, 徐合, 柯勤飞, 常江. 墨鱼骨转化羟基磷灰石多孔陶瓷表面纳米结构调控及其对成骨细胞作用的研究. 中国修复重建外科杂志[J]. 2019, 363-369, http://lib.cqvip.com/Qikan/Article/Detail?id=90886787504849574851485048.
[33] Ma, Hongshi, Li, Tao, Huan, Zhiguang, Zhang, Meng, Yang, Zezheng, Wang, Jinwu, Chang, Jiang, Wu, Chengtie. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG ASIA MATERIALS[J]. 2018, 10(4): 31-44, http://ir.sic.ac.cn/handle/331005/25012.
[34] Yang, Chen, Huan, Zhiguang, Wang, Xiaoya, Wu, Chengtie, Chang, Jiang. 3D Printed Fe Scaffolds with HA Nanocoating for Bone Regeneration. ACS BIOMATERIALS SCIENCE & ENGINEERING[J]. 2018, 4(2): 608-616, http://ir.sic.ac.cn/handle/331005/24509.
[35] Xu, Chen, Wen, Yang, Zhou, Yanling, Zhu, Yaqin, Dou, Yuandong, Huan, Zhiguang, Chang, Jiang. In vitro self-setting properties, bioactivity, and antibacterial ability of a silicate-based premixed bone cement. INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY[J]. 2018, 15(2): 460-471, http://ir.sic.ac.cn/handle/331005/24448.
[36] Xu, Chen, Wang, Xiaoya, Zhou, Jie, Huan, Zhiguang, Chang, Jiang. Bioactive tricalcium silicate/alginate composite bone cements with enhanced physicochemical properties. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS[J]. 2018, 106(1): 237-244, http://ir.sic.ac.cn/handle/331005/24607.
[37] Ma, Hongshi, Li, Tao, Huan, Zhiguang, Zhang, Meng, Yang, Zezheng, Wang, Jinwu, Chang, Jiang, Wu, Chengtie. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG ASIA MATERIALS[J]. 2018, 10(4): 31-44, http://ir.sic.ac.cn/handle/331005/25012.
[38] Yang, Chen, Huan, Zhiguang, Wang, Xiaoya, Wu, Chengtie, Chang, Jiang. 3D Printed Fe Scaffolds with HA Nanocoating for Bone Regeneration. ACS BIOMATERIALS SCIENCE & ENGINEERING[J]. 2018, 4(2): 608-616, http://ir.sic.ac.cn/handle/331005/24509.
[39] Xu, Chen, Wen, Yang, Zhou, Yanling, Zhu, Yaqin, Dou, Yuandong, Huan, Zhiguang, Chang, Jiang. In vitro self-setting properties, bioactivity, and antibacterial ability of a silicate-based premixed bone cement. INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY[J]. 2018, 15(2): 460-471, http://ir.sic.ac.cn/handle/331005/24448.
[40] Xu, Chen, Wang, Xiaoya, Zhou, Jie, Huan, Zhiguang, Chang, Jiang. Bioactive tricalcium silicate/alginate composite bone cements with enhanced physicochemical properties. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS[J]. 2018, 106(1): 237-244, http://ir.sic.ac.cn/handle/331005/24607.
[41] Xing, Min, Huan, Zhiguang, Li, Qin, Yu, Jianding, Chang, Jiang. Containerless processing of Ca-Sr-Si system bioactive materials: Thermophysical properties and ion release behaviors. CERAMICS INTERNATIONAL[J]. 2017, 43(6): 5156-5163, http://dx.doi.org/10.1016/j.ceramint.2017.01.038.
[42] Ye, Xiaotong, Leeflang, Sander, Wu, Chengtie, Chang, Jiang, Zhou, Jie, Huan, Zhiguang. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity. MATERIALS[J]. 2017, 10(11): http://ir.sic.ac.cn/handle/331005/25706.
[43] Xing, Min, Huan, Zhiguang, Li, Qin, Yu, Jianding, Chang, Jiang. Containerless processing of Ca-Sr-Si system bioactive materials: Thermophysical properties and ion release behaviors. CERAMICS INTERNATIONAL[J]. 2017, 43(6): 5156-5163, http://dx.doi.org/10.1016/j.ceramint.2017.01.038.
[44] Ye, Xiaotong, Leeflang, Sander, Wu, Chengtie, Chang, Jiang, Zhou, Jie, Huan, Zhiguang. Mesoporous Bioactive Glass Functionalized 3D Ti-6Al-4V Scaffolds with Improved Surface Bioactivity. MATERIALS[J]. 2017, 10(11): http://ir.sic.ac.cn/handle/331005/25706.
[45] 郇志广. Silicate-Based Bioactive Composites for Tissue Regeneration. Handbook of Bioceramics and Biocomposites. 2016, [46] Huan Z, Yu H, Li H, Ruiter MS, Chang J, Apachitei I, Duszczyk J, de Vries CJM, FratilaApachitei LE. The effects of plasma electrolytically oxidized NiTi on in vitro endothelialization. Colloids and Surfaces B: Biointerfaces[J]. 2016, [47] Huan, Zhiguang, Xu, Chen, Ma, Bing, Zhou, Jie, Chang, Jiang. Substantial enhancement of corrosion resistance and bioactivity of magnesium by incorporating calcium silicate particles. RSC ADVANCES[J]. 2016, 6(53): 47897-47906, http://www.irgrid.ac.cn/handle/1471x/1177189.
[48] 郇志广. Silicate-Based Bioactive Composites for Tissue Regeneration. Handbook of Bioceramics and Biocomposites. 2016, [49] Huan Z, Yu H, Li H, Ruiter MS, Chang J, Apachitei I, Duszczyk J, de Vries CJM, FratilaApachitei LE. The effects of plasma electrolytically oxidized NiTi on in vitro endothelialization. Colloids and Surfaces B: Biointerfaces[J]. 2016, [50] Huan, Zhiguang, Xu, Chen, Ma, Bing, Zhou, Jie, Chang, Jiang. Substantial enhancement of corrosion resistance and bioactivity of magnesium by incorporating calcium silicate particles. RSC ADVANCES[J]. 2016, 6(53): 47897-47906, http://www.irgrid.ac.cn/handle/1471x/1177189.
[51] Liu, Wenjuan, Zhai, Dong, Huan, Zhiguang, Wu, Chengtie, Chang, Jiang. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. ACTA BIOMATERIALIA[J]. 2015, 21: 217-227, http://dx.doi.org/10.1016/j.actbio.2015.04.012.
[52] Luo, Yongxiang, Zhai, Dong, Huan, Zhiguang, Zhu, Haibo, Xia, Lunguo, Chang, Jiang, Wu, Chengtie. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES[J]. 2015, 7(43): 24377-24383, https://www.webofscience.com/wos/woscc/full-record/WOS:000364355500065.
[53] Chen, Lei, Zhai, Dong, Huan, Zhiguang, Ma, Nan, Zhu, Haibo, Wu, Chengtie, Chang, Jiang. Silicate bioceramic/PMMA composite bone cement with distinctive physicochemical and bioactive properties. RSC ADVANCES[J]. 2015, 5(47): 37314-37322, https://www.webofscience.com/wos/woscc/full-record/WOS:000353653200020.
[54] Liu, Wenjuan, Zhai, Dong, Huan, Zhiguang, Wu, Chengtie, Chang, Jiang. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility. ACTA BIOMATERIALIA[J]. 2015, 21: 217-227, http://dx.doi.org/10.1016/j.actbio.2015.04.012.
[55] Luo, Yongxiang, Zhai, Dong, Huan, Zhiguang, Zhu, Haibo, Xia, Lunguo, Chang, Jiang, Wu, Chengtie. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES[J]. 2015, 7(43): 24377-24383, https://www.webofscience.com/wos/woscc/full-record/WOS:000364355500065.
[56] Chen, Lei, Zhai, Dong, Huan, Zhiguang, Ma, Nan, Zhu, Haibo, Wu, Chengtie, Chang, Jiang. Silicate bioceramic/PMMA composite bone cement with distinctive physicochemical and bioactive properties. RSC ADVANCES[J]. 2015, 5(47): 37314-37322, https://www.webofscience.com/wos/woscc/full-record/WOS:000353653200020.
[57] Huan, Z, FratilaApachitei, L E, Apachitei, I, Duszczyk, J. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing. NANOTECHNOLOGY[J]. 2014, 25(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000330191400014.
[58] Huan, Z, FratilaApachitei, L E, Apachitei, I, Duszczyk, J. Synthesis and characterization of hybrid micro/nano-structured NiTi surfaces by a combination of etching and anodizing. NANOTECHNOLOGY[J]. 2014, 25(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000330191400014.
[59] Huan, Z, FratilaApachitei, L E, Apachitei, I, Duszczyk, J. Effect of aging treatment on the in vitro nickel release from porous oxide layers on NiTi. APPLIED SURFACE SCIENCE[J]. 2013, 274: 266-272, http://dx.doi.org/10.1016/j.apsusc.2013.03.034.
[60] Huan, Zhiguang, FratilaApachitei, Lidy E, Apachitei, Iulian, Duszczyk, Jurek. Porous TiO2 surface formed on nickel-titanium alloy by plasma electrolytic oxidation: A prospective polymer-free reservoir for drug eluting stent applications. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS[J]. 2013, 101B(5): 700-708, https://www.webofscience.com/wos/woscc/full-record/WOS:000320131500003.
[61] Huan, Z, FratilaApachitei, L E, Apachitei, I, Duszczyk, J. Effect of aging treatment on the in vitro nickel release from porous oxide layers on NiTi. APPLIED SURFACE SCIENCE[J]. 2013, 274: 266-272, http://dx.doi.org/10.1016/j.apsusc.2013.03.034.
[62] Huan, Zhiguang, FratilaApachitei, Lidy E, Apachitei, Iulian, Duszczyk, Jurek. Porous TiO2 surface formed on nickel-titanium alloy by plasma electrolytic oxidation: A prospective polymer-free reservoir for drug eluting stent applications. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS[J]. 2013, 101B(5): 700-708, https://www.webofscience.com/wos/woscc/full-record/WOS:000320131500003.
[63] Huan, Z, FratilaApachitei, L E, Apachitei, I, Duszczyk, J. Porous NiTi surfaces for biomedical applications. APPLIED SURFACE SCIENCE[J]. 2012, 258(13): 5244-5249, http://dx.doi.org/10.1016/j.apsusc.2012.02.002.
[64] Huan, Zhiguang, Leeflang, Sander, Zhou, Jie, Zhai, Wanyin, Chang, Jiang, Duszczyk, Jurek. In vitro degradation behavior and bioactivity of magnesium-Bioglass (R) composites for orthopedic applications. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS[J]. 2012, 100B(2): 437-446, https://www.webofscience.com/wos/woscc/full-record/WOS:000298792500016.
[65] Huan, Z, FratilaApachitei, L E, Apachitei, I, Duszczyk, J. Porous NiTi surfaces for biomedical applications. APPLIED SURFACE SCIENCE[J]. 2012, 258(13): 5244-5249, http://dx.doi.org/10.1016/j.apsusc.2012.02.002.
[66] Huan, Zhiguang, Leeflang, Sander, Zhou, Jie, Zhai, Wanyin, Chang, Jiang, Duszczyk, Jurek. In vitro degradation behavior and bioactivity of magnesium-Bioglass (R) composites for orthopedic applications. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS[J]. 2012, 100B(2): 437-446, https://www.webofscience.com/wos/woscc/full-record/WOS:000298792500016.
[67] Z.G. Huan, M.A. Leeflang, J. Zhou, J. Duszczyk. ZK30-bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics. Materials Science & Engineering B. 2011, 176(20): 1644-1652, http://dx.doi.org/10.1016/j.mseb.2011.07.022.
[68] Z.G. Huan, M.A. Leeflang, J. Zhou, J. Duszczyk. ZK30-bioactive glass composites for orthopedic applications: A comparative study on fabrication method and characteristics. Materials Science & Engineering B. 2011, 176(20): 1644-1652, http://dx.doi.org/10.1016/j.mseb.2011.07.022.
[69] Huan, Zhiguang, Chang, Jiang, Zhou, Jie. Low-temperature fabrication of macroporous scaffolds through foaming and hydration of tricalcium silicate paste and their bioactivity. JOURNAL OF MATERIALS SCIENCE[J]. 2010, 45(4): 961-968, https://www.webofscience.com/wos/woscc/full-record/WOS:000273033800013.
[70] Huan, Zhiguang, Zhou, Jie, Duszczyk, Jurek. Magnesium-based composites with improved in vitro surface biocompatibility. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE[J]. 2010, 21(12): 3163-3169, https://www.webofscience.com/wos/woscc/full-record/WOS:000284600400012.
[71] Huan, Z G, Leeflang, M A, Zhou, J, FratilaApachitei, L E, Duszczyk, J. In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE[J]. 2010, 21(9): 2623-2635, https://www.webofscience.com/wos/woscc/full-record/WOS:000281673400013.
[72] 郇志广, 常江, 周杰. 通过发泡和水化方法低温制备大孔硅酸三钙支架及其生物活性的研究. Journal of Materials Science[J]. 2010, 45(4): 961-968, http://www.irgrid.ac.cn/handle/1471x/634908.
[73] Huan, Zhiguang, Chang, Jiang, Zhou, Jie. Low-temperature fabrication of macroporous scaffolds through foaming and hydration of tricalcium silicate paste and their bioactivity. JOURNAL OF MATERIALS SCIENCE[J]. 2010, 45(4): 961-968, https://www.webofscience.com/wos/woscc/full-record/WOS:000273033800013.
[74] Huan, Zhiguang, Zhou, Jie, Duszczyk, Jurek. Magnesium-based composites with improved in vitro surface biocompatibility. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE[J]. 2010, 21(12): 3163-3169, https://www.webofscience.com/wos/woscc/full-record/WOS:000284600400012.
[75] Huan, Z G, Leeflang, M A, Zhou, J, FratilaApachitei, L E, Duszczyk, J. In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE[J]. 2010, 21(9): 2623-2635, https://www.webofscience.com/wos/woscc/full-record/WOS:000281673400013.
[76] 郇志广, 常江, 周杰. 通过发泡和水化方法低温制备大孔硅酸三钙支架及其生物活性的研究. Journal of Materials Science[J]. 2010, 45(4): 961-968, http://www.irgrid.ac.cn/handle/1471x/634908.
[77] Xun Zhiguang. Self-setting properties and in vitro bioactivity of Ca2SiO4/CaSO4¡¤1/2H2O composite bone cement. Journal of Biomedical Materials Research: Part B - Applied Biomaterials, 2008[J]. 2009, 387-, http://www.irgrid.ac.cn/handle/1471x/635056.
[78] Huan, Zhiguang, Chang, Jiang. Calcium-phosphate-silicate composite bone cement: self-setting properties and in vitro bioactivity. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE[J]. 2009, 20(4): 833-841, https://www.webofscience.com/wos/woscc/full-record/WOS:000263683900001.
[79] Zhiguang Huan, Jiang Chang. Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system. Acta Biomaterialia. 2009, 5(4): 1253-1264, http://dx.doi.org/10.1016/j.actbio.2008.10.006.
[80] Huan, Zhiguang, Chang, Jiang. Novel. bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. ACTA BIOMATERIALIA[J]. 2009, 5(4): 1253-1264, [81] Xun Zhiguang. Self-setting properties and in vitro bioactivity of Ca2SiO4/CaSO4¡¤1/2H2O composite bone cement. Journal of Biomedical Materials Research: Part B - Applied Biomaterials, 2008[J]. 2009, 387-, http://www.irgrid.ac.cn/handle/1471x/635056.
[82] Huan, Zhiguang, Chang, Jiang. Calcium-phosphate-silicate composite bone cement: self-setting properties and in vitro bioactivity. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE[J]. 2009, 20(4): 833-841, https://www.webofscience.com/wos/woscc/full-record/WOS:000263683900001.
[83] Zhiguang Huan, Jiang Chang. Novel bioactive composite bone cements based on the β-tricalcium phosphate–monocalcium phosphate monohydrate composite cement system. Acta Biomaterialia. 2009, 5(4): 1253-1264, http://dx.doi.org/10.1016/j.actbio.2008.10.006.
[84] Huan, Zhiguang, Chang, Jiang. Novel. bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. ACTA BIOMATERIALIA[J]. 2009, 5(4): 1253-1264, [85] Huan, Zhiguang, Chang, Jiang. Study on physicochemical properties and in vitro bioactivity of tricalcium silicate-calcium carbonate composite bone cement. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE[J]. 2008, 19(8): 2913-2918, https://www.webofscience.com/wos/woscc/full-record/WOS:000256476600017.
[86] Huan, Zhiguang, Chang, Jiang. Effect of Sodium Carbonate Solution on Self-setting Properties of Tricalcium Silicate Bone Cement. JOURNAL OF BIOMATERIALS APPLICATIONS[J]. 2008, 23(3): 247-262, http://www.corc.org.cn/handle/1471x/2388687.
[87] 郇志广. 新型生物活性复合无机自固化材料的制备与性能研究. 2008, [88] Huan, Zhiguang, Chang, Jiang. Study on physicochemical properties and in vitro bioactivity of tricalcium silicate-calcium carbonate composite bone cement. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE[J]. 2008, 19(8): 2913-2918, https://www.webofscience.com/wos/woscc/full-record/WOS:000256476600017.
[89] Huan, Zhiguang, Chang, Jiang. Effect of Sodium Carbonate Solution on Self-setting Properties of Tricalcium Silicate Bone Cement. JOURNAL OF BIOMATERIALS APPLICATIONS[J]. 2008, 23(3): 247-262, http://www.corc.org.cn/handle/1471x/2388687.
[90] 郇志广. 新型生物活性复合无机自固化材料的制备与性能研究. 2008, [91] Huan, Zhiguang, Chang, Jiang. Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements. ACTA BIOMATERIALIA[J]. 2007, 3(6): 952-960, http://dx.doi.org/10.1016/j.actbio.2007.05.003.
[92] Huan, Zhiguang, Chang, Jiang. Self-setting properties and in vitro bioactivity of calcium sulfate hemihydrate-tricalcium silicate composite bone cements. ACTA BIOMATERIALIA[J]. 2007, 3(6): 952-960, http://dx.doi.org/10.1016/j.actbio.2007.05.003.

科研活动

   
科研项目
(1) 硅酸盐所临床研究中心科研计划项目,参与,研究所(学校)级,2013-12--2015-12
(2) 中科院上海硅酸盐研究所“所****”,主持,研究所(学校)级,2013-10--2016-12
(3) 中科院国际合作重点项目,参与,院级级,2012-04--2016-04
参与会议
(1) Response of a bioactive and biodegradable composite to a simulated physiological solution,2013-01,Z. Huan, M.A. Leeflang, J. Zhou, J. Duszczyk
(2) A Biodegradable and Bioactive Composite Potentially for Orthopedic Applications,2012-09,Z. Huan,M.A. Leeflang, J. Zhou, J. Duszczyk
(3) Optimization of Porous Structures and Effect of Aging Treatment on the in vitroNickel Release,2012-06,Z. Huan, L.E. Fratila-Apachitei, M.A. Leeflang, I. Apachitei, J.Duszczyk
(4) Porous polymer-free coatings on nitinol for drug eluting stents,2011-05,Z. Huan, L.E. Fratila-Apachitei, M.A. Leeflang, I. Apachitei, J. Duszczyk
(5) In vitro degradation behaviour and surface bioactivity of magnesium-matrix composites for orthopaedic applications,2011-01,Z. Huan, M.A. Leeflang, J. Zhou, J. Duszczyk
(6) Composites for Orthopaedic Applications: a Comparative Study on Fabrication Method and Characteristics,2010-08,Z. Huan, J. Zhou, J. Duszczyk