基本信息
佘广为 男 硕导 中国科学院理化技术研究所
电子邮件: shegw@mail.ipc.ac.cn
通信地址: 北京市海淀区中关村东路29号中科院理化所
邮政编码: 100190
电子邮件: shegw@mail.ipc.ac.cn
通信地址: 北京市海淀区中关村东路29号中科院理化所
邮政编码: 100190
研究领域
1.太阳能分解水制氢:可控制备半导体纳米材料,用于太阳能光解水或光电化学分解水制氢。
2.锂离子电池电极材料:开发新型电极材料,提高锂离子电池比容量。
招生信息
欢迎具有物理、化学或材料背景学生报考。
招生专业
081701-化学工程085600-材料与化工
招生方向
纳米新能源材料
教育背景
2004-09--2007-06 中国科学院理化技术研究所 博士2001-09--2003-12 北京化工大学 硕士1997-09--2001-06 湖北大学 学士
工作经历
工作简历
2007-07~2013-06,中国科学院理化技术研究所, 助研,副研
专利与奖励
专利成果
[1] 师文生, 张韶阳, 王维, 佘广为. 一种磷掺杂的多孔片状NiCo2 O4 双功能电催化剂,制备及其应用. CN: CN114438537A, 2022-05-06.[2] 师文生, 张韶阳, 王维, 佘广为. 一种磷掺杂的多孔片状NiCo2 O4 双功能电催化剂,制备及其应用. CN: CN114438537A, 2022-05-06.[3] 师文生, 喻嘉成, 佘广为. 负载Ag纳米颗粒的光电极在光电化学合成芳香羧酸中的应用. CN: CN114438540A, 2022-05-06.[4] 师文生, 喻嘉成, 佘广为. 负载Ag纳米颗粒的光电极在光电化学合成芳香羧酸中的应用. CN: CN114438540A, 2022-05-06.[5] 佘广为, 蔡童, 师文生. 一种泡沫镍负载刺猬状金纳米颗粒复合材料及其制备方法和应用. CN: CN114686910A, 2022-07-01.[6] 佘广为, 王晓霞, 师文生. 一种Co-Mo-P-O电催化剂及其制备方法和应用. CN: CN110711597A, 2020-01-21.[7] 师文生, 张皓月, 佘广为, 李生阳. 提高p-Si/PtSi光阴极分解水光电转换效率的方法. CN: CN110724995B, 2021-04-02.[8] 师文生, 李生阳, 罗军, 佘广为, 许静. 一种B掺杂的NiSi/n-Si光电阳极及其制备方法和应用. CN: CN109904251A, 2019-06-18.[9] 师文生, 李生阳, 罗军, 佘广为, 许静. 一种B掺杂的NiSi/n-Si光电阳极及其制备方法和应用. CN: CN109904251B, 2021-03-30.[10] 佘广为, 璩方沐, 师文生, 王建涛. 一种碳包覆微纳层次结构硅负极材料及其制备方法和应用. CN: CN108199020A, 2018-06-22.[11] 佘广为, 李生阳, 师文生. 一种降低Ni/n‑Si光阳极光电化学分解水开启电位的方法. CN: CN107513723A, 2017-12-26.[12] 佘广为, 张韶阳, 师文生. 一种制备Si‑Cu 2 O异质结纳米线阵列的方法. 中国: CN107352505A, 2017-11-17.[13] 佘广为, 张韶阳, 师文生. 一种制备Si‑Cu 2 O异质结纳米线阵列的方法. CN: CN107352505A, 2017-11-17.[14] 佘广为, 师文生, 张韶阳. 一种提高硅/金属氧化物纳米线阵列光电化学性能的方法. CN: CN106757141A, 2017-05-31.[15] 佘广为, 金亮亮, 师文生. 一种具有纳米间隙的表面增强拉曼光谱基底及其制备方法. CN: CN105911044A, 2016-08-31.[16] 佘广为, 金亮亮, 师文生. 用于检测锌离子的表面增强拉曼散射传感器及其制备方法和应用. CN: CN104483302A, 2015-04-01.[17] 佘广为, 金亮亮, 师文生. 提高单晶氧化锌纳米棒表面增强拉曼散射信号的方法. CN: CN104164698A, 2014-11-26.[18] 佘广为, 师文生. 用于检测多巴胺的全氟磺酸树脂修饰SnO2包覆ZnO的纳米管阵列电极及应用. CN: CN104034790B, 2016-04-06.[19] 佘广为, 师文生. 用于检测多巴胺的全氟磺酸树脂修饰SnO 2 包覆ZnO的纳米管阵列电极及应用. CN: CN104034790A, 2014-09-10.[20] 佘广为, 齐小鹏, 师文生. 核壳Si/Fe 2 O 3 纳米线阵列的制备方法. 中国: CN103159501A, 2013-06-19.[21] 佘广为, 齐小鹏, 师文生. 核壳Si/Fe 2 O 3 纳米线阵列的制备方法. CN: CN103159501A, 2013-06-19.[22] 佘广为, 齐小鹏, 师文生. 一种在导电基底上制备Fe 2 O 3 纳米管阵列的方法. 中国: CN103160900A, 2013-06-19.[23] 佘广为, 齐小鹏, 师文生. 一种在导电基底上制备Fe 2 O 3 纳米管阵列的方法. CN: CN103160900A, 2013-06-19.[24] 师文生, 王晓天, 佘广为, 穆丽璇. 氧化锌基半导体的拉曼散射增强基底及其制备方法和应用. CN: CN102507531A, 2012-06-20.[25] 师文生, 王晓天, 佘广为, 穆丽璇. 锗基半导体的拉曼散射增强基底及其制备方法和应用. CN: CN102320550A, 2012-01-18.[26] 师文生, 刘运宇, 佘广为. 一种锗的微米/纳米锥阵列及其制备方法. CN: CN102251286A, 2011-11-23.[27] 师文生, 刘运宇, 苗荣, 穆丽璇, 佘广为. 基于锗的微米/纳米锥阵列的荧光pH传感器及应用. CN: CN102353664A, 2012-02-15.[28] 师文生, 王耀, 佘广为. 调制氧化锌纳米线持续光电导效应的光学方法. CN: CN102280523A, 2011-12-14.[29] 师文生, 刘运宇, 佘广为. 银纳米线掺杂的染料敏化太阳能电池工作电极及制备方法. CN: CN102324306A, 2012-01-18.[30] 佘广为, 王耀, 师文生. 基于氧化亚铜量子点修饰的氧化锌纳米线阵列光催化材料及其制备方法和应用. CN: CN102266775A, 2011-12-07.[31] 师文生, 齐小鹏, 佘广为. 制备CdS/ZnO纳米管阵列光电极的方法. CN: CN102220615A, 2011-10-19.[32] 师文生, 刘海龙, 佘广为. Si/NiSi核壳结构纳米线阵列的制备方法. CN: CN102127817A, 2011-07-20.[33] 师文生, 刘海龙, 佘广为, 凌世婷. Si/Mn 27 Si 47 核壳结构纳米线阵列的制备方法. 中国: CN102030310A, 2011.04.27.[34] 师文生, 刘海龙, 佘广为, 凌世婷. Mn 27 Si 47 -Si异质结构纳米线阵列或Mn 27 Si 47 纳米线阵列的制备方法. 中国: CN102030309A, 2011-04-27.[35] 师文生, 刘海龙, 佘广为, 凌世婷. Si/Mn 27 Si 47 核壳结构纳米线阵列的制备方法. CN: CN102030310A, 2011-04-27.[36] 师文生, 刘海龙, 佘广为, 凌世婷. Mn 27 Si 47 -Si异质结构纳米线阵列或Mn 27 Si 47 纳米线阵列的制备方法. CN: CN102030309A, 2011-04-27.[37] 师文生, 王晓天, 穆丽璇, 佘广为. 硅基半导体的拉曼散射增强基底及其制法和应用. CN: CN102020231A, 2011-04-20.[38] 佘广为, 师文生, 李述汤. 无模板电化学沉积制备Te纳米棒阵列的方法. CN: CN101928971A, 2010-12-29.[39] 师文生, 王耀, 佘广为. 一种基于氧化锌纳米线的温度传感器. CN: CN101793568A, 2010-08-04.[40] 师文生, 刘运宇, 佘广为. 一种方向可以改变的弯折硅纳米线阵列的制备方法. CN: CN102079506A, 2011-06-01.[41] 佘广为, 师文生. 具有光催化功能的Al掺杂ZnO纳米片的制备方法. CN: CN101717070A, 2010-06-02.[42] 师文生, 凌世婷, 佘广为. 一种制备锗纳米管阵列的方法. CN: CN101724904A, 2010-06-09.[43] 师文生, 刘海龙, 佘广为, 凌世婷. 一种制备SiC纳米线阵列的方法. CN: CN101613881A, 2009-12-30.[44] 师文生, 王晓天, 佘广为. 基于表面增强拉曼散射效应的硅纳米线传感器及其应用. CN: CN101614668B, 2011-01-12.[45] 师文生, 王晓天, 佘广为. 表面具有增强拉曼散射效应的活性基底及其制法和应用. CN: CN101672786A, 2010-03-17.[46] 师文生, 佘广为. 无模板电化学沉积制备Te一维纳米结构的方法. CN: CN101311338A, 2008-11-26.[47] 师文生, 佘广为. CuTe单晶纳米带及其制备方法. CN: CN101311384A, 2008-11-26.[48] 一种有效抑制沉淀的直接电解海水制氢的方法. 2024-01-10.[49] 一种多孔片状NiCo1.48Fe0.52O4电催化剂,制备及应用. 2023-01-10.
出版信息
发表论文
[1] Zhang, Pujing, Cai, Tong, Zhou, Qingli, She, Guangwei, Liang, Wanlin, Deng, Yuwang, Ning, Tingyin, Shi, WenSheng, Zhang, Liangliang, Zhang, Cunlin. Ultrahigh Modulation Enhancement in All-Optical Si-Based THz Modulators Integrated with Gold Nanobipyramids. NANO LETTERS[J]. 2022, 22(4): 1541-1548, http://dx.doi.org/10.1021/acs.nanolett.1c04229.[2] Mei, Mingliang, Mu, Lixuan, Wang, Yuan, Liang, Sen, Zhao, Qiaowen, Huang, Lushan, She, Guangwei, Shi, Wensheng. Simultaneous Monitoring of the Adenosine Triphosphate Levels in the Cytoplasm and Nucleus of a Single Cell with a Single Nanowire- Based Fluorescent Biosensor br. ANALYTICAL CHEMISTRY. 2022, [3] Zhang, Haoyue, She, Guangwei, Xu, Jing, Li, Shengyang, Liu, Yun, Luo, Jun, Shi, Wensheng. Electrochemical surface reconstructed Ptx(x=2,3)Si/PtSi/p-Si photocathodes for achieving high efficiency in photoelectrochemical H-2 generation. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2022, 10(9): 4952-4959, http://dx.doi.org/10.1039/d1ta09346k.[4] Cai, Tong, Zhang, Pujing, She, Guangwei, Zhou, Qingli, Mu, Lixuan, Liu, Yun, Shi, Wensheng. Facile synthesis of Ni foam-supported prickly Au nanoparticles by galvanic displacement for electrocatalytic oxidation of glycerol. FUNCTIONAL MATERIALS LETTERS[J]. 2022, 15(3): http://dx.doi.org/10.1142/S1793604722500138.[5] Xueke Wu, Chenyuan Yan, Lixuan Mu, Yuan Wang, Guangwei She, 师文生. A gold nanobipyramid-based photothermal reagent with functions of targeting and activatable fluorescence labeling for visual photothermal therapy. Materials Advances[J]. 2022, [6] Mei, Mingliang, Mu, Lixuan, Liang, Sen, Wang, Yuan, She, Guangwei, Shi, Wensheng. A general configurational strategy to quencher-free aptasensors. BIOSENSORSBIOELECTRONICS[J]. 2021, 178: http://dx.doi.org/10.1016/j.bios.2021.113025.[7] Li, Shengyang, Zhang, Haoyue, She, Guangwei, Xu, Jing, Zhang, Shaoyang, Deng, Yuwang, Mu, Lixuan, Zhou, Qingli, Liu, Yun, Luo, Jun, Shi, Wensheng. NiSi2/p-Si Schottky Junction Photocathode with a High-Quality Epitaxial Interface for Efficient Hydrogen Evolution. ACS APPLIED ENERGY MATERIALS[J]. 2021, 4(10): 11574-11579, http://dx.doi.org/10.1021/acsaem.1c02318.[8] Li, Shengyang, She, Guangwei, Xu, Jing, Zhang, Shaoyang, Zhang, Haoyue, Mu, Lixuan, Ge, Chen, Jin, Kuijuan, Luo, Jun, Shi, Wensheng. Metal Silicidation in Conjunction with Dopant Segregation: A Promising Strategy for Fabricating High-Performance Silicon-Based Photoanodes. ACS APPLIED MATERIALS & INTERFACES[J]. 2020, 12(35): 39092-39097, https://www.webofscience.com/wos/woscc/full-record/WOS:000569268800025.[9] Wang, Xiaoxia, She, Guangwei, Mu, Lixuan, Shi, Wensheng. Amorphous Co-Mo-P-O Bifunctional Electrocatalyst via Facile Electrodeposition for Overall Water Splitting. ACS SUSTAINABLE CHEMISTRY & ENGINEERING[J]. 2020, 8(7): 2835-2842, https://www.webofscience.com/wos/woscc/full-record/WOS:000516665500027.[10] Chen, Min, Mu, Lixuan, Wang, Shuai, Cao, Xingxing, Liang, Sen, Wang, Yuan, She, Guangwei, Yang, Jun, Wang, Yongan, Shi, Wensheng. A Single Silicon Nanowire-Based Ratiometric Biosensor for Ca2+ at Various Locations in a Neuron. ACS CHEMICAL NEUROSCIENCE[J]. 2020, 11(9): 1283-1290, https://www.webofscience.com/wos/woscc/full-record/WOS:000535173600013.[11] Liang, Sen, Wang, Yuan, Mu, Lixuan, She, Guangwei, Shi, Wensheng. Robust liquid-core nanocapsules as biocompatible and precise ratiometric fluorescent thermometers for living cells. NANOTECHNOLOGY[J]. 2020, 31(36): https://www.webofscience.com/wos/woscc/full-record/WOS:000595088900001.[12] She, Guangwei, Cai, Tong, Mu, Lixuan, Shi, Wensheng. Template-free electrochemical synthesis of Cd/CdTe core/shell nanowires and CdTe nanotubes. CRYSTENGCOMM[J]. 2020, 22(25): 4301-4305, https://www.webofscience.com/wos/woscc/full-record/WOS:000543912100011.[13] Zhang, Taiping, Mu, Lixuan, She, Guangwei, Shi, Wensheng. 2 x 2 Fluorescent sensor array based on SiNWs for analysis of Pb2+, Cd2+, Cr3+ and Hg2+. JOURNAL OF LUMINESCENCE[J]. 2019, 209: 267-273, https://www.webofscience.com/wos/woscc/full-record/WOS:000460126200037.[14] Chen, Min, Mu, Lixuan, Cao, Xingxing, She, Guangwei, Shi, Wensheng. A Novel Ratiometric Fluorescent Probe for Highly Sensitive and Selective Detection of beta-Galactosidase in Living Cells. CHINESE JOURNAL OF CHEMISTRY[J]. 2019, 37(4): 330-336, [15] Zhang, Shaoyang, She, Guangwei, Li, Shengyang, Qu, Fangmu, Mu, Lixuan, Shi, Wensheng. Enhancing the electrocatalytic activity of NiMoO4 through a post-phosphorization process for oxygen evolution reaction. CATALYSIS COMMUNICATIONS[J]. 2019, 129: http://dx.doi.org/10.1016/j.catcom.2019.105725.[16] Qu, Fangmu, She, Guangwei, Wang, Jiantao, Qi, Xiaopeng, Li, Shengyang, Zhang, Shaoyang, Mu, Lixuan, Shi, Wensheng. Coating nanoparticle-assembled Si microspheres with carbon for anode material in lithium-ion battery. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS[J]. 2019, 124: 312-317, http://dx.doi.org/10.1016/j.jpcs.2018.09.037.[17] Liang, Sen, Wang, Yuan, Wu, Xueke, Chen, Min, Mu, Lixuan, She, Guangwei, Shi, Wensheng. An ultrasensitive ratiometric fluorescent thermometer based on frustrated static excimers in the physiological temperature range. CHEMICAL COMMUNICATIONS[J]. 2019, 55(24): 3509-3512, https://www.webofscience.com/wos/woscc/full-record/WOS:000462654300014.[18] Chen Min, Mu Lixuan, Cao Xingxing, She Guangwei, Shi Wensheng. A Novel Ratiometric Fluorescent Probe for Highly Sensitive and Selective Detection of β-Galactosidase in Living Cells. CHINESE JOURNAL OF CHEMISTRY[J]. 2019, 37(4): 330-336, http://lib.cqvip.com/Qikan/Article/Detail?id=7001970788.[19] Taiping Zhang, Lixuan Mu, Guangwei She, Wensheng Shi. 2 × 2 Fluorescent sensor array based on SiNWs for analysis of Pb2+, Cd2+, Cr3+ and Hg2+. JOURNAL OF LUMINESCENCE. 2019, 209: 267-273, http://dx.doi.org/10.1016/j.jlumin.2019.01.055.[20] Wu, Xueke, Mu, Lixuan, Chen, Min, Liang, Sen, Wang, Yuan, She, Guangwei, Shi, Wensheng. Bifunctional Gold Nanobipyramids for Photothermal Therapy and Temperature Monitoring. ACS APPLIED BIO MATERIALS[J]. 2019, 2(6): 2668-2675, [21] Bu, Congcong, Mu, Lixuan, Cao, Xingxing, Chen, Min, She, Guangwei, Shi, Wensheng. DNA nanostructure-based fluorescence thermometer with silver nanoclusters. NANOTECHNOLOGY[J]. 2018, 29(29): https://www.webofscience.com/wos/woscc/full-record/WOS:000432431500001.[22] Cao, Xingxing, Mu, Lixuan, Chen, Min, She, Guangwei. A facile fluorescent sensor based on silicon nanowires for dithionite. APPLIED SURFACE SCIENCE[J]. 2018, 441: 388-393, http://dx.doi.org/10.1016/j.apsusc.2018.01.313.[23] Cao, Xingxing, Mu, Lixuan, Chen, Min, Bu, Congcong, Bang, Sen, She, Guangwei, Shi, Wensheng. Single Silicon Nanowire-Based Fluorescent Sensor for Endogenous Hypochlorite in an Individual Cell. ADVANCED BIOSYSTEMS[J]. 2018, 2(12): https://www.webofscience.com/wos/woscc/full-record/WOS:000452532700004.[24] Zhang, Shaoyang, She, Guangwei, Li, Shengyang, Mu, Lixuan, Shi, Wensheng. Si-H induced synthesis of Si/Cu2O nanowire arrays for photoelectrochemical water splitting. NANOTECHNOLOGY[J]. 2018, 29(3): https://www.webofscience.com/wos/woscc/full-record/WOS:000417989800001.[25] Li, Shengyang, She, Guangwei, Chen, Cheng, Zhang, Shaoyang, Mu, Lixuan, Guo, Xiangxin, Shi, Wensheng. Enhancing the Photovoltage of Ni/n-Si Photoanode for Water Oxidation through a Rapid Thermal Process. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(10): 8594-8598, http://ir.sic.ac.cn/handle/331005/25097.[26] She, Guangwei, Zhang, Shaoyang, Li, Shengyang, Qu, Fangmu, Mu, Lixuan, Shi, Wensheng. Si/Mo4O11 nanowire arrays with enhanced photoelectrochemical performance. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY[J]. 2018, 355: 55-59, http://dx.doi.org/10.1016/j.jphotochem.2017.11.005.[27] Bu, Congcong, Mu, Lixuan, Cao, Xingxing, Chen, Min, She, Guangwei, Shi, Wensheng. Silver Nanowire-Based Fluorescence Thermometer for a Single Cell. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(39): 33416-33422, https://www.webofscience.com/wos/woscc/full-record/WOS:000446919800053.[28] Qu, Fangmu, She, Guangwei, Wang, Jiantao, Qi, Xiaopeng, Zhang, Shaoyang, Li, Shengyang, Mu, Lixuan, Shi, Wensheng. Carbon-coated Si particles with self-supported Si nanowires as anode material for lithium-ion batteries. MATERIALS RESEARCH EXPRESS[J]. 2018, 5(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000437494700006.[29] Sun, Qingbo, Cortie, David, Zhang, Shaoyang, Frankcombe, Terry J, She, Guangwei, Gao, Jie, Sheppard, Leigh R, Hu, Wanbiao, Chen, Hua, Zhuo, Shangjun, Chen, Dehong, Withers, Ray L, McIntyre, Garry, Yu, Dehong, Shi, Wensheng, Liu, Yun. The Formation of Defect-Pairs for Highly Efficient Visible-Light Catalysts. ADVANCED MATERIALS[J]. 2017, 29(11): http://dx.doi.org/10.1002/adma.201605123.[30] Zhang, Shaoyang, She, Guangwei, Mu, Lixuan, Shi, Wensheng. A facile fabrication of high-quality Si/Cu2O nanowire arrays for photoelectrochemical water splitting. MATERIALS LETTERS[J]. 2017, 197: 131-134, http://dx.doi.org/10.1016/j.matlet.2017.03.124.[31] Jin, Liangliang, She, Guangwei, Mu, Lixuan, Shi, Wensheng. Highly uniform indicator-mediated SERS sensor platform for the detection of Zn2+. RSC ADVANCES[J]. 2016, 6(20): 16555-16560, https://www.webofscience.com/wos/woscc/full-record/WOS:000370710600056.[32] Jin, Liangliang, She, Guangwei, Li, Jing, Xia, Jing, Wang, Xiaotian, Mu, Lixuan, Shi, Wensheng. A facile fabrication of Ag-Au-Ag nanostructures with nanogaps for intensified surface-enhanced Raman scattering. APPLIED SURFACE SCIENCE[J]. 2016, 389: 67-72, http://dx.doi.org/10.1016/j.apsusc.2016.07.066.[33] Liu, Yunyu, She, Guangwei, Qi, Xiaopeng, Mu, Lixuan, Wang, Xuesong, Shi, Wensheng. Contributions of Ag Nanowires to the Photoelectric Conversion Efficiency Enhancement of TiO2 Dye-Sensitized Solar Cells. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2015, 15(9): 7068-7073, https://www.webofscience.com/wos/woscc/full-record/WOS:000365554400103.[34] Wang, Huimin, Mu, Lixuan, She, Guangwei, Shi, Wensheng. Silicon nanowires-based fluorescent sensor for in situ detection of hydrogen sulfide in extracellular environment. RSC ADVANCES[J]. 2015, 5(81): 65905-65908, https://www.webofscience.com/wos/woscc/full-record/WOS:000359243000032.[35] Guangwei She. Contributions of Ag Nanowires to the Photoelectric Conversion Efficiency Enhancement of TiO2 DSSCs. Journal of Nanoscience and Nanotechnology. 2015, [36] She, Guangwei, Huang, Xing, Jin, Liangliang, Qi, Xiaopeng, Mu, Lixuan, Shi, Wensheng. SnO2 Nanoparticle-Coated ZnO Nanotube Arrays for High-Performance Electrochemical Sensors. SMALL[J]. 2014, 10(22): 4685-4692, https://www.webofscience.com/wos/woscc/full-record/WOS:000345366800020.[37] Wang, Huimin, Mu, Lixuan, She, Guangwei, Xu, Haitao, Shi, Wensheng. Fluorescent biosensor for alkaline phosphatase based on fluorescein derivatives modified silicon nanowires. SENSORS AND ACTUATORS B-CHEMICAL[J]. 2014, 203: 774-781, http://dx.doi.org/10.1016/j.snb.2014.07.047.[38] Guangwei She. SnO2 Nanoparticles-Coated ZnO Nanotube Arrays for High Performance Electrochemical Sensors. Small. 2014, [39] Wensheng Shi. High-performance n-Si/ a -Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting. Nanoscale. 2014, [40] Wang, Huimin, Mu, Lixuan, Jin, Liangliang, She, Guangwei, Xu, Haitao, Shi, Wensheng. Highly portable fluorescent turn-on sensor for sulfide anions based on silicon nanowires. RSC ADVANCES[J]. 2014, 4(104): 60086-60091, https://www.webofscience.com/wos/woscc/full-record/WOS:000345654000056.[41] Miao, Rong, Mu, Lixuan, Zhang, Hongyan, She, Guangwei, Zhou, Bingjiang, Xu, Haitao, Wang, Pengfei, Shi, Wensheng. Silicon Nanowire-Based Fluorescent Nanosensor for Complexed Cu2+ and its Bioapplications. NANO LETTERS[J]. 2014, 14(6): 3124-3129, https://www.webofscience.com/wos/woscc/full-record/WOS:000337337100023.[42] Huimin Wang, Lixuan Mu, Guangwei She, Haitao Xu, Wensheng Shi. Fluorescent biosensor for alkaline phosphatase based on fluorescein derivatives modified silicon nanowires. SENSORSACTUATORSBCHEMICAL. 2014, 203: 774-781, http://dx.doi.org/10.1016/j.snb.2014.07.047.[43] Jin, Liangliang, She, Guangwei, Wang, Xiaotian, Mu, Lixuan, Shi, Wensheng. Enhancing the SERS performance of semiconductor nanostructures through a facile surface engineering strategy. APPLIED SURFACE SCIENCE[J]. 2014, 320: 591-595, http://dx.doi.org/10.1016/j.apsusc.2014.09.120.[44] Wang, Xiaotian, She, Guangwei, Xu, Haitao, Mu, Lixuan, Shi, Wensheng. The surface-enhanced Raman scattering from ZnO nanorod arrays and its application for chemosensors. SENSORS AND ACTUATORS B-CHEMICAL[J]. 2014, 193: 745-751, http://dx.doi.org/10.1016/j.snb.2013.11.097.[45] Xiaotian Wang, Guangwei She, Haitao Xu, Lixuan Mu, Wensheng Shi. The surface-enhanced Raman scattering from ZnO nanorod arrays and its application for chemosensors. SENSORS & ACTUATORS: B. CHEMICAL. 2014, 193: 745-751, http://dx.doi.org/10.1016/j.snb.2013.11.097.[46] Qi, Xiaopeng, She, Guangwei, Huang, Xing, Zhang, Taiping, Wang, Huimin, Mu, Lixuan, Shi, Wensheng. High-performance n-Si/alpha-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting. NANOSCALE[J]. 2014, 6(6): 3182-3189, https://www.webofscience.com/wos/woscc/full-record/WOS:000332604200024.[47] Zhang, Taiping, She, Guangwei, Qi, Xiaopeng, Mu, Lixuan. A BODIPY-based sensor for Hg2+ in living cells. TETRAHEDRON[J]. 2013, 69(34): 7102-7106, http://dx.doi.org/10.1016/j.tet.2013.06.025.[48] Qi, Xiaopeng, She, Guangwei, Wang, Meng, Mu, Lixuan, Shi, Wensheng. Electrochemical synthesis of p-type Zn-doped alpha-Fe2O3 nanotube arrays for photoelectrochemical water splitting. CHEMICAL COMMUNICATIONS[J]. 2013, 49(51): 5742-5744, https://www.webofscience.com/wos/woscc/full-record/WOS:000319777500009.[49] Miao, Rong, Mu, Lixuan, Zhang, Hongyan, Xu, Haitao, Zhou, Bingjiang, She, Guangwei, Wang, Pengfei, Shi, Wensheng. Facile Method for Modification of the Silicon Nanowires and Its Application in Fabrication of pH-Sensitive Chips. ACS APPLIED MATERIALS & INTERFACES[J]. 2013, 5(5): 1741-1746, https://www.webofscience.com/wos/woscc/full-record/WOS:000316308100029.[50] Lv, XiaoJun, She, GuangWei, Zhou, ShiXiong, Li, YueMing. Highly efficient electrocatalytic hydrogen production by nickel promoted molybdenum sulfide microspheres catalysts. RSC ADVANCES[J]. 2013, 3(44): 21231-21236, https://www.webofscience.com/wos/woscc/full-record/WOS:000326056600007.[51] Huang, Xing, Xia, Jing, Luan, Chunyan, Sun, Mingliang, Wang, Xuecong, She, GuangWei, Lee, ChunSing, Meng, XiangMin. The structural and optical properties of a single ZnO comb and an individual nail-like tooth. CRYSTENGCOMM[J]. 2013, 15(48): 10604-10610, https://www.webofscience.com/wos/woscc/full-record/WOS:000327446500027.[52] Ling Shiting, She Guangwei, Mu Lixuan, Shi Wensheng. Highly Ordered ZnO/SnO_2 Heteroepitaxial Nanodendrites:Synthesis and Photocatalytic Applications. IMAGING SCIENCE AND PHOTOCHEMISTRY[J]. 2013, 31(6): 440-447, [53] Liu, Hailong, She, Guangwei, Huang, Xing, Qi, Xiaopeng, Mu, Lixuan, Meng, Xiangmin, Shi, Wensheng. Synthesis and Magnetic Properties of Mn4Si7 and Si-Mn4Si7 Axial Heterostructure Nanowire Arrays. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2013, 117(5): 2377-2381, https://www.webofscience.com/wos/woscc/full-record/WOS:000314907700046.[54] Guangwei She. Electrochemical synthesis of p-type Zn-doped α-Fe2O3 nanotube arrays for photoelectrochemical water splitting. Chem. Commun.. 2013, [55] Liu, Hailong, She, Guangwei, Mu, Lixuan, Shi, Wensheng. Porous SiC nanowire arrays as stable photocatalyst for water splitting under UV irradiation. MATERIALS RESEARCH BULLETIN[J]. 2012, 47(3): 917-920, http://dx.doi.org/10.1016/j.materresbull.2011.12.046.[56] Wang, Yao, She, Guangwei, Xu, Haitao, Liu, Yunyu, Mu, Lixuan, Shi, Wensheng. Cu2O nanoparticles sensitized ZnO nanorod arrays: Electrochemical synthesis and photocatalytic properties. MATERIALS LETTERS[J]. 2012, 67(1): 110-112, http://dx.doi.org/10.1016/j.matlet.2011.09.046.[57] Zhang Taiping, Mu Lixuan, She Guangwei, Shi Wensheng. Light-driven molecular shuttles modified on silicon nanowires.. CHEMICAL COMMUNICATIONS (CAMBRIDGE, ENGLAND). 2012, http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=SJPD120727089109&DbName=SJPD_01&DbCode=SJPD&yx=&pr=&URLID=&bsm=.[58] Wang, Xiaotian, Shi, Wensheng, She, Guangwei, Mu, Lixuan. Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2012, 14(17): 5891-5901, https://www.webofscience.com/wos/woscc/full-record/WOS:000302363700002.[59] Ling, Shiting, Cui, Zhonghui, She, Guangwei, Guo, Xiangxin, Mu, Lixuan, Shi, Wensheng. A Novel Type of Ge Nanotube Arrays for Lithium Storage Material. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2012, 12(1): 213-217, https://www.webofscience.com/wos/woscc/full-record/WOS:000301990500025.[60] Qi Xiaopeng, She Guangwei, Liu Yunyu, Mu Lixuan, Shi Wensheng. Electrochemical synthesis of CdS/ZnO nanotube arrays with excellent photoelectrochemical properties.. CHEMICAL COMMUNICATIONS (CAMBRIDGE, ENGLAND). 2012, http://kns.cnki.net/KCMS/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=SJPD120727087768&DbName=SJPD_01&DbCode=SJPD&yx=&pr=&URLID=&bsm=.[61] Liu, Hailong, She, Guangwei, Mu, Lixuan, Shi, Wensheng. Temperature-dependent structure and phase variation of nickel silicide nanowire arrays prepared by in situ silicidation. MATERIALS RESEARCH BULLETIN[J]. 2012, 47(12): 3991-3994, http://dx.doi.org/10.1016/j.materresbull.2012.08.042.[62] Miao, Rong, Mu, Lixuan, Zhang, Hongyan, Xu, Haitao, She, Guangwei, Wang, Pengfei, Shi, Wensheng. Modified silicon nanowires: a fluorescent nitric oxide biosensor with enhanced selectivity and stability. JOURNAL OF MATERIALS CHEMISTRY[J]. 2012, 22(8): 3348-3353, https://www.webofscience.com/wos/woscc/full-record/WOS:000299695400013.[63] Zhang, Taiping, Mu, Lixuan, She, Guangwei, Shi, Wensheng. Light-driven molecular shuttles modified on silicon nanowires. CHEMICAL COMMUNICATIONS[J]. 2012, 48(3): 452-454, https://www.webofscience.com/wos/woscc/full-record/WOS:000297704500037.[64] Huang, Xing, Shao, Lidong, She, GuangWei, Wang, Meng, Chen, Shu, Meng, XiangMin. Catalyst-free synthesis of single crystalline ZnO nanonails with ultra-thin caps. CRYSTENGCOMM[J]. 2012, 14(24): 8330-8334, https://www.webofscience.com/wos/woscc/full-record/WOS:000311969400003.[65] She, Guangwei, Chen, Xue, Wang, Yao, Qi, Xiaopeng, Mu, Lixuan, Shi, Wensheng. Electrodeposition of Al-doped ZnO Nanoflowers with Enhanced Photocatalytic Performance. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2012, 12(3): 2756-2760, https://www.webofscience.com/wos/woscc/full-record/WOS:000305039700146.[66] Qi, Xiaopeng, She, Guangwei, Liu, Yunyu, Mu, Lixuan, Shi, Wensheng. Electrochemical synthesis of CdS/ZnO nanotube arrays with excellent photoelectrochemical properties. CHEMICAL COMMUNICATIONS[J]. 2012, 48(2): 242-244, https://www.webofscience.com/wos/woscc/full-record/WOS:000297559200019.[67] Wang, Yao, Liao, Zhaoliang, She, Guangwei, Mu, Lixuan, Chen, Dongmin, Shi, Wensheng. Optical modulation of persistent photoconductivity in ZnO nanowires. APPLIED PHYSICS LETTERS[J]. 2011, 98(20): http://ir.iphy.ac.cn/handle/311004/50308.[68] Wang, Xiaotian, Shi, Wensheng, She, Guangwei, Mu, Lixuan. Using Si and Ge Nanostructures as Substrates for Surface-Enhanced Raman Scattering Based on Photoinduced Charge Transfer Mechanism. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2011, 133(41): 16518-16523, https://www.webofscience.com/wos/woscc/full-record/WOS:000295997500042.[69] Liu, Yunyu, Miao, Rong, She, Guangwei, Mu, Lixuan, Wang, Yao, Shi, Wensheng. Arrays of One-Dimensional Germanium Cone-Like Nanostructures: Preparation and Application as Fluorescent pH Sensor. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2011, 115(44): 21599-21603, https://www.webofscience.com/wos/woscc/full-record/WOS:000296394300009.[70] Liu, Hailong, She, Guangwei, Ling, Shiting, Mu, Lixuan, Shi, Wensheng. Ferromagnetic Si/Mn(27)Si(47)core/shell nanowire arrays. JOURNAL OF APPLIED PHYSICS[J]. 2011, 109(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000287811100042.[71] Wong, Tailun, She, Guangwei, Cheng, Chun, Li, Wei, Shi, Wensheng, Zhang, Xiaohong, Wang, Ning. Fabrication and Structure Characterization of Te Butterfly Nanostructures. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2011, 11(12): 11037-11040, https://www.webofscience.com/wos/woscc/full-record/WOS:000299586100153.[72] Ling, Shiting, She, Guangwei, Li, Fuqiang, Shi, Wensheng, Meng, Xiangmin. The synthesis and photocatalytic properties of epitaxial SnO2-ZnS nanocomb heterostructure. MATERIALS LETTERS[J]. 2010, 64(23): 2605-2607, http://www.corc.org.cn/handle/1471x/2406839.[73] Mu, Lixuan, Shi, Wensheng, Zhang, Taiping, Zhang, Hongyan, She, Guangwei. pH-controlled silicon nanowires fluorescence switch. APPLIED SURFACE SCIENCE[J]. 2010, 256(20): 5935-5938, http://www.corc.org.cn/handle/1471x/2414881.[74] Liu, Peng, She, Guangwei, Shi, Wensheng, Chen, Dongmin. Electric-pulse-induced resistance switching observed in ZnO nanotube point contact system. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES[J]. 2010, 42(4): 791-794, http://ir.iphy.ac.cn/handle/311004/36985.[75] Mu, Lixuan, Shi, Wensheng, She, Guangwei, Chang, Jack C, Lee, ShuitTong. Fluorescent Logic Gates Chemically Attached to Silicon Nanowires. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2009, 48(19): 3469-3472, https://agris.fao.org/agris-search/search.do?recordID=US201301626287.[76] Liu, Peng, She, Guangwei, Liao, Zhaoliang, Wang, Yao, Wang, Zhenzhong, Shi, Wensheng, Zhang, Xiaohong, Lee, ShuitTong, Chen, Dongmin. Observation of persistent photoconductance in single ZnO nanotube. APPLIED PHYSICS LETTERS[J]. 2009, 94(6): http://dx.doi.org/10.1063/1.3082173.[77] Yang, Kun, She, GuangWei, Wang, Hui, Ou, XueMei, Zhang, XiaoHong, Lee, ChunSing, Lee, ShuitTong. ZnO Nanotube Arrays as Biosensors for Glucose. JOURNAL OF PHYSICAL CHEMISTRY C[J]. 2009, 113(47): 20169-20172, https://www.webofscience.com/wos/woscc/full-record/WOS:000271826100007.[78] She, Guangwei, Zhang, Xiaohong, Shi, Wensheng, Chen, Huan, Fan, Xia, Chang, Jack C. Controlled Synthesis of Oriented 1D ZnO Nanostructures on Transparent Conductive Substrates. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2009, 9(3): 1832-1838, http://www.corc.org.cn/handle/1471x/2403565.[79] She, Guangwei, Mu, Lixuan, Shi, Wensheng. Electrodeposition of One-Dimensional Nanostructures. RECENT PATENTS ON NANOTECHNOLOGY[J]. 2009, 3(3): 182-191, https://www.webofscience.com/wos/woscc/full-record/WOS:000207817000003.[80] She, Guangwei, Shi, Wensheng, Zhang, Xiaohong, Wong, Tailun, Cai, Yuan, Wang, Ning. Template-Free Electrodeposition of One-Dimensional Nanostructures of Tellurium. CRYSTAL GROWTH & DESIGN[J]. 2009, 9(2): 663-666, [81] She, GuangWei, Zhang, XiaoHong, Shi, WenSheng, Fan, Xia, Chang, Jack C, Lee, ChunSing, Lee, ShuitTong, Liu, ChangHong. Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. APPLIED PHYSICS LETTERS[J]. 2008, 92(5): https://www.webofscience.com/wos/woscc/full-record/WOS:000253016500075.[82] She, Guangwei, Zhang, Xiaohong, Shi, Wensheng, Cai, Yuan, Wang, Ning, Liu, Peng, Chen, Dongmin. Template-free electrochemical synthesis of single-crystal CuTe nanoribbons. CRYSTAL GROWTH & DESIGN[J]. 2008, 8(6): 1789-1791, http://ir.iphy.ac.cn/handle/311004/44831.[83] Su, Jun, Che, Renchao, She, Guangwei, Duan, Xiaofeng, Shi, Wensheng. Transmission Electron Microscopy of ZnO Nanotube Arrays Etched from Electrodeposited ZnO Nanorods. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY[J]. 2008, 8(12): 6306-6309, http://dx.doi.org/10.1166/jnn.2008.341.[84] She, Guangwei, Zhang, Xiaohong, Shi, Wensheng, Fan, Xia, Chang, Jack C. Electrochemical/chemical synthesis of highly-oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. ELECTROCHEMISTRY COMMUNICATIONS[J]. 2007, 9(12): 2784-2788, http://www.corc.org.cn/handle/1471x/2381767.
发表著作
(1) Zinc Oxide Doped Nanomaterials and Nanodevices, American Scientific Publishers, 2010-02, 第 2 作者(2) Silicon-based Nanomaterials, Springer, 2013-01, 第 1 作者
科研活动
科研项目
( 1 ) 基于ZnO纳米管阵列的多巴胺电化学传感器研究, 负责人, 国家任务, 2012-01--2014-12( 2 ) 一维氧化物纳米结构的可控制备及其二阶非线性光学表征研究, 负责人, 中国科学院计划, 2011-01--2013-12( 3 ) 基于硅纳米线阵列的多态分子逻辑光开关及其在传感器方面的应用研究, 参与, 国家任务, 2013-01--2016-12( 4 ) 新型纳米传感器与一维纳米结构, 参与, 国家任务, 2011-01--2014-12( 5 ) 用于光电化学分解水的Si/NixSi复合光电极研究, 负责人, 国家任务, 2019-01--2023-12( 6 ) 功能纳米界面关联理化特性定量测量研究, 参与, 国家任务, 2016-01--2020-12( 7 ) 金纳米双锥表面等离子共振效应及其光电催化性能研究, 负责人, 地方任务, 2021-04--2021-06( 8 ) 利用功能化的硅纳米线构筑神经细胞监测平台, 参与, 国家任务, 2019-01--2021-12( 9 ) 用于单细胞温度检测的硅纳米线传感器的构建及能量转移过程, 参与, 地方任务, 2018-01--2021-12( 10 ) 一维纳米结构的光物理过程及在单细胞多模态检测中的应用, 参与, 中国科学院计划, 2017-01--2021-12( 11 ) 碳纳米材料的光物理及其肿瘤光诊疗机制研究, 参与, 中国科学院计划, 2014-01--2016-12( 12 ) 光功能导向的硅纳米结构高效、可控制备及其应用的基础研究, 参与, 国家任务, 2012-01--2016-12( 13 ) 基于半导体一维纳米结构阵列的多巴胺电化学传感器研究, 负责人, 研究所自选, 2013-01--2015-12( 14 ) 电化学法制备掺杂ZnO一维纳米结构, 负责人, 研究所自选, 2008-01--2010-12( 15 ) 定向氧化锌纳米管阵列的可控制备及其持续光电导效应研究, 参与, 国家任务, 2008-01--2011-12
指导学生
已指导学生
璩方沐 硕士研究生 085216-化学工程
王晓霞 硕士研究生 085216-化学工程
蔡童 硕士研究生 085216-化学工程
现指导学生
郝雪 硕士研究生 085600-材料与化工
马静璇 硕士研究生 085600-材料与化工
孙翰鸣 硕士研究生 085600-材料与化工