李明  男  博导  中国科学院半导体研究所
电子邮件: ml@semi.ac.cn
通信地址: 北京市海淀区清华东路甲35号中国科学院半导体研究所11号楼5
邮政编码: 100083

招生信息

   
招生专业
080901-物理电子学
招生方向
光电子学

专利与奖励

   
专利成果
[1] 李明, 张国杰, 刘大鹏, 孟祥彦. 片上集成窄线宽激光器. CN: CN114256722A, 2022-03-29.
[2] 曹克奇, 刘宇, 王旭阳, 陈少康. 光发射模块. CN: CN114200580A, 2022-03-18.
[3] 王璐, 李伟, 孙文惠, 李光毅, 李明, 祝宁华. 并联式多波段多格式微波信号产生装置. CN: CN114124231A, 2022-03-01.
[4] 肖晔, 夏施君, 石暖暖, 袁海庆, 李明. 相干光谱测量系统及测量方法. CN: CN114018406A, 2022-02-08.
[5] 陈少康, 陈寅芳, 徐长达, 金亚, 穆春元, 陈伟, 刘宇, 李明, 祝宁华. 硅基集成的外腔窄线宽激光器. CN: CN114006263A, 2022-02-01.
[6] 王欣, 郭丹丹, 杨国亮, 翟鲲鹏, 祝宁华, 李明. 一种光电子集成器件及其制备方法. CN: CN113985536A, 2022-01-28.
[7] 陈少康, 袁海庆, 金亚, 徐长达, 陈伟, 刘宇, 李明, 祝宁华. 用于光模块封装的紫外胶固化时长的确定方法. CN: CN113985535A, 2022-01-28.
[8] 李明, 李国政, 郝腾飞, 石暖暖, 李伟. 扫频电信号生成系统. CN: CN113851919A, 2021-12-28.
[9] 陈少康, 陈伟, 金亚, 白金花, 吉贵军, 郑耀国, 李明, 祝宁华. 一种引线键合拉力测试机. CN: CN215218343U, 2021-12-17.
[10] 李明, 李国政, 郝腾飞, 李伟. 反馈控制扫频光电振荡系统. CN: CN113794088A, 2021-12-14.
[11] 李明, 李国政, 郝腾飞, 石暖暖, 李伟. 一种稳频光电振荡器. CN: CN113783077A, 2021-12-10.
[12] 文花顺, 翟鲲鹏, 许博蕊, 孙甲政, 陈伟, 王欣, 祝宁华, 李明. 光电子芯片的混叠集成封装装置及其封装方法. CN: CN113725347A, 2021-11-30.
[13] 文花顺, 许博蕊, 孙甲政, 翟鲲鹏, 陈伟, 祝宁华, 李明. 超低损耗硅波导及其制备方法. CN: CN113703093A, 2021-11-26.
[14] 文花顺, 许博蕊, 孙甲政, 翟鲲鹏, 陈伟, 祝宁华, 李明. 硅基电光调制器及其制备方法. CN: CN113687530A, 2021-11-23.
[15] 李明, 孟瑶, 郝腾飞, 孟祥彦, 岑启壮, 李伟. 光网络的故障定位方法、电子设备及计算机可读存储介质. CN: CN113691311A, 2021-11-23.
[16] 王璐, 袁海庆, 李光毅, 石迪飞, 李明, 祝宁华, 李伟. 一种自干扰信号消除装置及其消除方法. CN: CN113595584A, 2021-11-02.
[17] 翟鲲鹏, 穆春元. 半导体激光器及其制备方法. CN: CN113594846A, 2021-11-02.
[18] 金亚, 徐长达, 陈少康, 齐艺超, 陈伟, 李明, 祝宁华. 一种点胶质量检测装置、检测方法、电子设备和存储介质. CN: CN113567437A, 2021-10-29.
[19] 金亚, 刘宇, 陈寅芳, 齐艺超, 陈伟, 李明, 祝宁华. 信号发生装置及方法、通信装置及方法. CN: CN113572536A, 2021-10-29.
[20] 李明, 葛增亭, 石暖暖, 李伟. 扫频宽带信号生成系统及扫频宽带信号生成方法. CN: CN113540932A, 2021-10-22.
[21] 翟鲲鹏, 陈寅芳, 李明, 祝宁华. 基于模斑变换与光栅耦合的混合封装装置. CN: CN113484950A, 2021-10-08.
[22] 金亚, 陈寅芳, 陈少康, 齐艺超, 陈伟, 李明, 祝宁华. 基于光纤布拉格光栅的光跳频通信系统. CN: CN113438026A, 2021-09-24.
[23] 陈伟, 陈少康, 金亚, 班德超, 翟鲲鹏, 穆春元, 陈寅芳, 李明, 祝宁华. 紫外胶预固化时间测量装置及方法. CN: CN113418599A, 2021-09-21.
[24] 王健, 班德超, 陈寅芳, 陈伟, 祝宁华, 李明. 一种多通道光跳频系统、信号加密方法和光通信设备. CN: CN113422650A, 2021-09-21.
[25] 陈寅芳, 徐长达, 陈少康, 李明, 祝宁华. 集成硅基布拉格反射器的合分波器件及制备方法. CN: CN113376748A, 2021-09-10.
[26] 陈少康, 陈伟, 吉贵军, 周赤, 徐长达, 金亚, 班德超, 王健, 翟鲲鹏, 李明, 祝宁华. 一种夹取芯片的镊子. CN: CN113305750A, 2021-08-27.
[27] 文花顺, 祝宁华, 李明. 高稳定超窄单通带微波光子滤波器. CN: CN111816961B, 2021-08-27.
[28] 王丹丹, 刘宇, 李明, 祝宁华. 光发射模块. CN: CN113281922A, 2021-08-20.
[29] 李明, 林志星, 石暖暖, 祝宁华. 一种基于时域泰伯效应的串行光神经网络系统. CN: CN113240104A, 2021-08-10.
[30] 李明, 林志星, 刘大鹏. 一种基于多模干涉效应的片上光神经网络结构. CN: CN113222135A, 2021-08-06.
[31] 李明, 郝腾飞, 唐健, 石暖暖, 李伟, 祝宁华. 基于傅里叶域锁模光电振荡器的注入式频谱侦测系统. CN: CN110702988B, 2021-08-03.
[32] 李明, 葛增亭, 肖晔, 郝腾飞, 李伟. 基于光电振荡器产生高速随机数的装置与方法. CN: CN113132018A, 2021-07-16.
[33] 李光毅, 石迪飞, 王璐, 袁海庆, 李明, 祝宁华, 李伟. 微波信号产生装置. CN: CN113132012A, 2021-07-16.
[34] 孟瑶, 肖晔, 李明, 石暖暖, 袁海庆. 基于色散延时的收发一体波束成形网络系统. CN: CN113093153A, 2021-07-09.
[35] 王璐, 孙文惠, 李光毅, 石迪飞, 李明, 祝宁华, 李伟. 基于傅里叶域锁模的多波段信号产生装置及方法. CN: CN113098615A, 2021-07-09.
[36] 翟鲲鹏, 王欣, 孙文惠, 袁海庆, 白金花, 李明, 祝宁华. 基于光子引线的光子晶体光纤及其制备方法. CN: CN113031148A, 2021-06-25.
[37] 翟鲲鹏, 王欣, 孙文惠, 袁海庆, 白金花, 李明, 祝宁华. 阵列光电芯片混合封装结构. CN: CN112946843A, 2021-06-11.
[38] 王欣, 翟鲲鹏, 孙文惠, 李明, 祝宁华. 光电子集成器件的光互联方法. CN: CN112925073A, 2021-06-08.
[39] 贾智尧, 李伟, 袁海庆, 李明, 祝宁华. 镜频抑制混频传输方法及装置. CN: CN112929087A, 2021-06-08.
[40] 贾智尧, 李伟, 袁海庆, 李明, 祝宁华. 可重构微波光子混频装置. CN: CN112904584A, 2021-06-04.
[41] 朱厦, 李伟, 王欣, 李明. 信号产生装置及方法. CN: CN112910563A, 2021-06-04.
[42] 朱厦, 曹旭华, 李伟, 王欣, 李明, 祝宁华. 多频段任意相位编码信号产生装置及方法. CN: CN112904281A, 2021-06-04.
[43] 李明, 葛增亭, 石暖暖, 郝腾飞, 李伟. 保密通信装置及其保密通信方法. CN: CN112821960A, 2021-05-18.
[44] 王璐, 李伟, 孙文惠, 李光毅, 李明, 祝宁华. 双波段双啁啾微波信号产生及传输装置及方法. CN: CN112636837A, 2021-04-09.
[45] 徐长达, 班德超, 孙文惠, 陈伟, 祝宁华, 李明. 双增益芯片的可调谐外腔激光器. CN: CN112636170A, 2021-04-09.
[46] 王丹丹, 刘宇, 祝宁华, 王旭阳, 李明. 一种集成的偏振旋转调制器件及其制备方法. CN: CN112612079A, 2021-04-06.
[47] 徐长达, 孙文惠, 班德超, 陈伟, 祝宁华, 李明. 可调谐外腔激光器. CN: CN112615254A, 2021-04-06.
[48] 石暖暖, 李明, 祝宁华. 一种集成芯片的任意波形产生装置. CN: CN111313970B, 2021-03-26.
[49] 文俊, 石迪飞, 李明, 祝宁华, 李伟. 光器件宽带频率响应测量方法及装置. CN: CN112432764A, 2021-03-02.
[50] 李明, 郝腾飞, 岑启壮, 戴一堂, 石暖暖, 李伟. 一种基于混频器的微波信号产生装置. CN: CN112421351A, 2021-02-26.
[51] 李明, 王光强, 郝腾飞, 祝宁华. 基于受激布里渊散射可调光电振荡器的弱信号探测系统及方法. CN: CN108957147B, 2021-01-08.
[52] 朱厦, 孙文惠, 李伟, 王欣, 李明, 祝宁华. 多频段双啁啾微波信号产生及抗光纤色散传输系统及方法. CN: CN112152720A, 2020-12-29.
[53] 史展, 李伟, 李明, 祝宁华. 一种相位可调的虚部抑制下变频装置及方法. CN: CN111752064A, 2020-10-09.
[54] 李明, 刘大鹏, 石暖暖, 郝腾飞, 祝宁华. 光电振荡器. CN: CN110137782B, 2020-09-15.
[55] 石暖暖, 李明, 朱馨怡, 祝宁华. 可重构集成微波光子射频前端器件. CN: CN108964772B, 2020-09-15.
[56] 石暖暖, 李明, 祝宁华. 多通道光自相干相消系统. CN: CN111510216A, 2020-08-07.
[57] 李明, 郝腾飞, 唐健, 石暖暖, 李伟, 祝宁华. 拍频式频谱侦测系统. CN: CN110702985B, 2020-07-07.
[58] 石暖暖, 李明, 祝宁华. 形成光子辅助光学串并转换系统及采用其的光通信设备. CN: CN111245553A, 2020-06-05.
[59] 李明, 宋琦, 郝腾飞, 祝宁华. 基于光电振荡器的矢量微波信号产生系统. CN: CN109039476B, 2020-05-19.
[60] 李明, 刘大鹏, 郝腾飞, 祝宁华. 片上集成双环光电振荡器. CN: CN111146669A, 2020-05-12.
[61] 李明, 郝腾飞, 唐健, 石暖暖, 李伟, 祝宁华. 基于受激布里渊散射损耗谱的傅里叶域锁模光电振荡器. CN: CN110707511A, 2020-01-17.
[62] 李明, 郝腾飞, 唐健, 石暖暖, 李伟, 祝宁华. 基于受激布里渊散射的傅里叶域锁模光电振荡器. CN: CN110707510A, 2020-01-17.
[63] 李明, 郝腾飞, 唐健, 石暖暖, 李伟, 祝宁华. 频谱侦测系统. CN: CN110518975A, 2019-11-29.
[64] 李明, 郝腾飞, 唐健, 石暖暖, 李伟, 祝宁华. 傅里叶域锁模光电振荡器. CN: CN110504613A, 2019-11-26.
[65] 李明, 郝腾飞, 唐健, 石暖暖, 李伟, 祝宁华. 傅里叶域锁模光电振荡器. CN: CN110504613A, 2019-11-26.
[66] 石暖暖, 李明, 祝宁华. 基于波分复用技术的全光串并转换系统. CN: CN110351000A, 2019-10-18.
[67] 李明, 刘大鹏, 宋琦, 石暖暖, 祝宁华. 一种光电芯片的封装结构. CN: CN110335850A, 2019-10-15.
[68] 李明, 刘大鹏, 孙术乾, 石暖暖, 祝宁华. 光缓存芯片及电子设备. CN: CN110191379A, 2019-08-30.
[69] 李明, 郝腾飞, 刘大鹏, 石暖暖, 李伟, 祝宁华. 集成傅里叶域锁模光电振荡器及应用和通讯系统. CN: CN110176709A, 2019-08-27.
[70] 李明, 郝腾飞, 唐健, 石暖暖, 李伟, 祝宁华. 双啁啾傅里叶域锁模光电振荡器及应用和通讯系统. CN: CN110137778A, 2019-08-16.
[71] 李明, 王光强, 郝腾飞, 祝宁华. 基于光电振荡器的弱信号探测放大系统及方法. CN: CN109842444A, 2019-06-04.
[72] 李明, 王光强, 郝腾飞, 祝宁华. 基于多模光电振荡器的弱信号探测放大系统及方法. CN: CN109818235A, 2019-05-28.
[73] 李明, 王光强, 郝腾飞, 祝宁华. 自由光谱范围可调的多模光电振荡器及多模信号产生方法. CN: CN109768831A, 2019-05-17.
[74] 李明, 王光强, 郝腾飞, 祝宁华. 混沌光电振荡器及其混沌信号产生方法. CN: CN109687259A, 2019-04-26.
[75] 文花顺, 祝宁华, 李明. kHz量级单通带微波光子滤波器. CN: CN109638621A, 2019-04-16.
[76] 李明, 肖晔, 孙术乾, 祝宁华. 超快光波长测量系统. CN: CN109612590A, 2019-04-12.
[77] 李明, 刘大鹏, 林志星, 祝宁华. 基于傅里叶锁模激光器的光波长测量系统. CN: CN109506788A, 2019-03-22.
[78] 李明, 王光强, 郝腾飞, 祝宁华. 基于随机布里渊光纤激光器的可调谐光电振荡器及方法. CN: CN109244801A, 2019-01-18.
[79] 李明, 刘大鹏, 林志星, 祝宁华. 基于锁模激光器的上下变频系统. CN: CN109193318A, 2019-01-11.
[80] 文花顺, 李明, 祝宁华. 超窄单通带微波光子滤波器. CN: CN108919522A, 2018-11-30.
[81] 李明, 刘大鹏, 郝腾飞, 祝宁华. 片上集成傅里叶锁模激光器. CN: CN108923250A, 2018-11-30.
[82] 李明, 林志星, 孙术乾, 祝宁华. 基于时域泰伯效应的时域隐身系统. CN: CN108710248A, 2018-10-26.
[83] 李明, 刘龑中, 郝腾飞, 李伟, 祝宁华. 基于宇称-时间对称原理的光电振荡器. CN: CN108649413A, 2018-10-12.
[84] 李明, 林志星, 孙术乾, 祝宁华. 基于时域泰伯效应的加密、解密通信装置和保密通信系统. CN: CN108599870A, 2018-09-28.
[85] 李明, 唐健, 郝腾飞, 祝宁华. 集成光电振荡器. CN: CN108183380A, 2018-06-19.
[86] 朱馨怡, 李明, 孙浩, 祝宁华. 基于频域‑时域映射的波形产生系统及方法. CN: CN107689834A, 2018-02-13.
[87] 朱馨怡, 李明, 石暖暖, 祝宁华. 基于光开关的波束扫描光控相控阵雷达. CN: CN107272016A, 2017-10-20.
[88] 孙术乾, 李明, 孙浩, 祝宁华. 对微波信号进行非线性时域拉伸的非相干光信号处理系统. CN: CN107276681A, 2017-10-20.
[89] 文俊, 李伟, 李明, 祝宁华. 光器件宽带频率响应值的测量方法及装置. CN: CN107132027A, 2017-09-05.
[90] 石暖暖, 李明, 张丽红, 祝宁华. 形成微波光子光控波束的系统. CN: CN107086892A, 2017-08-22.
[91] 李明, 唐健, 刘宇, 袁海庆, 祝宁华. 硅基高速双载波双偏振调制器集成芯片. CN: CN106788765A, 2017-05-31.
[92] 李伟, 王岭, 李明, 祝宁华. 基于交叉偏振调制的微波光子滤波器. CN: CN106526899A, 2017-03-22.
[93] 祝宁华, 唐健, 刘宇, 李明. 表贴式无自激的偏置网络. CN: CN106054412A, 2016-10-26.
[94] 李明, 孙术乾, 唐健, 祝宁华. 单片集成高速光通信收发模块. CN: CN105703835A, 2016-06-22.
[95] 李明, 孙术乾, 邓晔, 唐健, 祝宁华. 基于非线性增益的有源光子积分器及方法. CN: CN105652556A, 2016-06-08.
[96] 李明, 孙浩, 邓晔, 石暖暖, 祝宁华. 近场卷积信号处理系统. CN: CN105656557A, 2016-06-08.
[97] 李明, 郝腾飞, 唐健, 石暖暖, 祝宁华. 快速扫频的傅里叶域锁模光电振荡器. CN: CN105576478A, 2016-05-11.
[98] 李明, 佟有万, 祝宁华. 基于保偏光纤的分布式多点入侵检测系统. CN: CN105182435A, 2015-12-23.
[99] 李明, 黄宁博, 袁海庆, 刘宇, 祝宁华. DP-16QAM硅基光调制器. CN: CN105158933A, 2015-12-16.
[100] 李明, 唐健, 邓晔, 祝宁华. 压电陶瓷光电链路微波信号真延时调控装置. CN: CN104777556A, 2015-07-15.
[101] 李明, 邓晔, 祝宁华. 激光脉冲压缩与展宽系统. CN: CN104614915A, 2015-05-13.
[102] 李明, 周俊萍, 邓晔, 祝宁华. 基于波长扫描的光真延时平面相控阵发射天线系统. CN: CN104466404A, 2015-03-25.
[103] 李明, 黄宁博, 邓晔, 祝宁华. 基于光电振荡器的光脉冲产生装置. CN: CN103647211A, 2014-03-19.
[104] 李明, 黄宁博, 祝宁华, 李伟, 王礼贤. 一种基于半导体光放大器的有源光学时间积分器. CN: CN103560398A, 2014-02-05.
[105] 祝宁华, 邓晔, 刘建国, 李明, 陈伟. 检波器频率响应测量系统. CN: CN103512607A, 2014-01-15.
[106] 李明, 邓晔, 祝宁华, 刘建国, 刘宇. 光电探测器频率响应的测量系统. CN: CN103398736A, 2013-11-20.
[107] 李明, 邓晔, 祝宁华, 李伟, 王礼贤, 刘宇. 基于光电振荡器的相移光纤布拉格光栅应变传感系统. CN: CN103344194A, 2013-10-09.
[108] 李明, 王辉, 祝宁华, 刘建国, 李伟, 王礼贤. 基于时间-频谱卷积原理的宽带射频信号相关检测方法. CN: CN103326795A, 2013-09-25.

出版信息

   
发表论文
[1] Chen, Xiaoyu, Dong Wenhao, Kong, Zexuan, Li, Guangyi, Wang, Lu, Chen, Shaowu, Li, Ming, Zhu, Ninghua, Li, Wei. Precise Multiple Frequency Identification Based on Frequency-to-Time Mapping and Cross-Correlation. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2023, 41(18): 5895-5901, [2] Cui, Jiabin, Wen, Huashun, Lu, GuoWei, Chen, Yinfang, Zhai, Kunpeng, Li, Ming, Zhu, Ninghua. Optical Format Conversion and Interconnection Between 1D and 2D Constellations for Flexible Optical Transmission Networks. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS[J]. 2023, 29(6): http://dx.doi.org/10.1109/JSTQE.2023.3253846.
[3] Cao, Xuhua, Du Jinfeng, Ji Guijun, Zhou, Dennis Chi, Cheng, Yiu-Kwok, Li, Ming, Zhu Ninghua, Li, Wei. Filter-Free Photonic Microwave I/Q Modulator for Reconfigurable Frequency Mixing. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2023, 41(9): 2707-2714, [4] Zhang, Guojie, Hao, Tengfei, Cen, Qizhuang, Li, Mingjian, Shi, Nuannuan, Li, Wei, Xiao, Xi, Qi, Nan, Dong, Jianji, Dai, Yitang, Zhu, Ninghua, Li, Ming. Hybrid-integrated wideband tunable optoelectronic oscillator. OPTICS EXPRESS[J]. 2023, 31(10): 16929-16938, http://dx.doi.org/10.1364/OE.485897.
[5] Liu, Yi, Chen, Wei, Zhang, Yuhao, Cao, Keqi, Liu, Yu, Li, Ming, Zhu, Ninghua. High-efficiency spot-size converter for thin-film lithium niobate modulators. Applied Optics and Photonics China 2022, 2022, Beijing, Chinanull. 2023, [6] Li, Fangping, Du, Jinfeng, Wang, Lu, Chen, Xiaoyu, Guan, Mengyuan, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic-Based Frequency-Doubling Dual-Band Dual-Chirp Microwave Waveforms Generation and Anti-Dispersion Transmission. Journal of Lightwave Technology[J]. 2023, [7] Kong, Zexuan, Chen, Xiaoyu, Li, Guangyi, Dong, Wenhao, Wang, Lu, Li, Ming, Zhu, Ning Hua, Li, Wei. Photonic Approach for Unambiguous Measurement of AOA and DFS With Self-Interference Cancellation. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2023, [8] Liu, Zeqiu, Yang, Sikang, Han, Yu, Hao, Tengfei, Zhang, Minming, Li, Ming, Zhu, Ninghua. Directly modulated parity- time symmetric single-mode Fabry-Perot laser. OPTICS EXPRESS[J]. 2023, 31(4): 6770-6781, http://dx.doi.org/10.1364/OE.484580.
[9] Chen, Shaokang, Ban, Dechao, Liu, Yu, Li, Ming, Zhu, Ninghua. Monolithically Integrated Tunable Three- Section All-Active DBR Laser Diodes With 30 nm Tuning Range. IEEE PHOTONICS JOURNAL[J]. 2023, 15(2): http://dx.doi.org/10.1109/JPHOT.2023.3244841.
[10] Hao, Tengfei, Li, Wei, Zhu, Ninghua, Li, Ming. Perspectives on optoelectronic oscillators. APL PHOTONICS[J]. 2023, 8(2): http://dx.doi.org/10.1063/5.0134289.
[11] Li, Guangyi, Meng, Xinagyan, Wang, Lu, Li, Ming, Zhu, Ninghua, Li, Wei. Simultaneous and unambiguous identification of DFS and AOA without dependence on echo signal power. OPTICS LETTERS[J]. 2023, 48(4): 1028-1031, http://dx.doi.org/10.1364/OL.482996.
[12] Cen, Qizhuang, Ding, Hao, Guan, Shanhong, Hao, Tengfei, Li, Wei, Zhu, Ninghua, Dai, Yitang, Li, Ming. Phase-diagram investigation of frustrated 1D and 2D Ising models in OEO-based Ising machine. Optics Letters[J]. 2023, [13] Fan, Xiaojie, Jin, Ya, Cao, Xuhua, Chen, Yinfang, Wang, Xin, Li, Ming, Zhu, Ninghua, LI, Wei. Photonic-assisted multi-format dual-band microwave signal generator without background noise. OPTICS EXPRESS[J]. 2023, 31(11): 18346-18355, http://dx.doi.org/10.1364/OE.488780.
[14] Guan, Mengyuan, Wang, Lu, Li, Fangping, Chen, Xiaoyu, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic Generation of Background-Free Phase-Coded Microwave Pulses with Elimination of Power Fading. PHOTONICS[J]. 2023, 10(1): http://dx.doi.org/10.3390/photonics10010066.
[15] Meng, Xiangyan, Shi, Nuannuan, Li, Guangyi, Zhang, Guojie, Li, Wei, Zhu, Ninghua, Li, Ming. On-Demand Reconfigurable Incoherent Optical Matrix Operator for Real-Time Video Image Display. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2023, 41(6): 1637-1648, http://dx.doi.org/10.1109/JLT.2022.3227090.
[16] Li, Guangyi, Shi, Difei, Meng, Xiangyan, Wang, Lu, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic Generation of Dual-Band Microwave Waveforms with Simultaneous and Diverse Modulation Formats. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2023, 41(1): 176-182, [17] Wei, Maoliang, Xu Kai, Tang, Bo, Li Junying, Yun Yiting, Zhang Peng, Yingchun Wu, Bao Kangjian, Lei, Kunhao, Chen Zequn, Ma Hui, Sun Chunlei, Liu Ruonan, Li, Ming, Li Lan, Lin Hongtao. "Zero change" platform for monolithic back-end-of-line integration of phase change materials in silicon photonics. arXiv[J]. 2023, [18] Jian, Jialiang, Wu, Jianhong, Zhong, Chuyu, Ma, Hui, Sun, Boshu, Ye, Yuting, Luo, Ye, Wei, Maoliang, Lei, Kunhao, Liu, Ruizhe, Chen, Zequn, Li, Guangyi, Dai, Hao, Tang, Renjie, Sun, Chunlei, Li, Junying, Li, Wei, Li, Lan, Lin, Hongtao, Li, Ming. High-Speed Compact Plasmonic-PdSe2 Waveguide-Integrated Photodetector. ACS Photonics[J]. 2023, [19] Dong, Wenhao, Chen, Xiaoyu, Cao, Xuhua, Kong, Zexuan, Wang, Lu, Li, Guangyi, Li, Ming, Zhu, Ninghua, Li, Wei. Compact Photonics-Assisted Short-Time Fourier Transform for Real-Time Spectral Analysis. Journal of Lightwave Technology[J]. 2023, [20] Su, Jianchao, Yang, Guoliang, Guo, Dandan, Li, Ming, Zhu, Ninghua, Wang, Xin. Multi-Physical Analysis and Optimization in Integrated Lithium Niobate Modulator Using Micro-Structured Electrodes. PHOTONICS[J]. 2023, 10(7): http://dx.doi.org/10.3390/photonics10070795.
[21] YAQING JIN, YE YANG, HUIBO HONG, XIAO XIANG, RUNAI QUAN, TAO LIU, NINGHUA ZHU, Li, Ming, SHOUGANG ZHANG, RUIFANG DONG. Surpassing the classical limit of the microwave photonic frequency fading effect by quantum microwave photonics. 光子学研究:英文版[J]. 2023, 11(6): 1094-1104, http://lib.cqvip.com/Qikan/Article/Detail?id=7110219995.
[22] Zhang, Guojie, Cen, Qizhuang, Hao, Tengfei, Yin, Xiaojie, Zi, Xingzhuang, Shi, Nuannuan, Li, Wei, Zhu, Ninghua, Li, Ming. Self-Injection Locked Silica External Cavity Narrow Linewidth Laser. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2023, 41(8): 2474-2483, http://dx.doi.org/10.1109/JLT.2023.3235105.
[23] Xiangyan Meng, Nuannuan Shi, Guangyi Li, Wei Li, Ninghua Zhu, Ming Li. Optical Convolutional Neural Networks: Methodology and Advances (Invited). APPLIED SCIENCES[J]. 2023, 13(13): https://doaj.org/article/5f0d8934cc9e4ae89753f2983bd46a4e.
[24] Cao, Xuhua, Dong, Wenhao, Li, Ming, Zhu, Ninghua, Li, Wei. Multiband Chirp Microwave Signals Generator With Multiple Chirp Rates Based on Photonic Approach. Journal of Lightwave Technology[J]. 2023, [25] Meng, Xiangyan, Zhang, Guojie, Shi, Nuannuan, Li, Guangyi, Azana, Jose, Capmany, Jose, Yao, Jianping, Shen, Yichen, Li, Wei, Zhu, Ninghua, Li, Ming. Compact optical convolution processing unit based on multimode interference. NATURE COMMUNICATIONS[J]. 2023, 14(1): http://dx.doi.org/10.1038/s41467-023-38786-x.
[26] Chen, Sikai, You, Mingyang, Yang, Yunqi, Jin, Ye, Lin, Ziyi, Li, Yihong, Li, Leliang, Li, Guike, Xie, Yujun, Zhang, Zhao, Wang, Binhao, Tang, Ningfeng, Liu, Faju, Fang, Zheyu, Liu, Jian, Wu, Nanjian, Chen, Yong, Liu, Liyuan, Zhu, Ninghua, Li, Ming, Qi, Nan. A 50Gb/s CMOS Optical Receiver With Si-Photonics PD for High-Speed Low-Latency Chiplet I/O. IEEE Transactions on Circuits and Systems I-Regular Papers[J]. 2023, 70(11): 4271-4282, [27] Zhu, Sha, Fan, Xiaojie, Cao, Xuhua, Wang, Yunxin, Zhu, Ning Hua, Li, Ming, Li, Wei. Photonic Generation and Antidispersion Transmission of Background-Free Multiband Arbitrarily Phase-Coded Microwave Signals. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2022, 70(4): 2290-2298, http://dx.doi.org/10.1109/TMTT.2022.3148144.
[28] Du, Jin Feng, Fan, Xiao Jie, Cao, Xu Hua, Li, Ming, Zhu, Ning Hua, Li, Wei. Transmission of dual-chirp microwave signal over fiber with suppression chromatic-dispersion-induced power-fading based on stimulated Brillouin scattering. OPTICS COMMUNICATIONS[J]. 2022, 508: http://dx.doi.org/10.1016/j.optcom.2021.127787.
[29] Ding, Hao, Cen, Qizhuang, Xu, Kun, Li, Ming, Dai, Yitang. Observation of parity-time symmetry in time-division multiplexing pulsed optoelectronic oscillators within a single resonator. PHOTONICS RESEARCH[J]. 2022, 10(8): 1915-1923, [30] Wang, Lu, Hao, Tengfei, Li, Guangyi, Li, Ming, Zhu, Ninghua, Li, Wei. Microwave Photonic Temperature Sensing Based on Fourier Domain Mode-Locked OEO and Temperature-to-Time Mapping. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2022, 40(15): 5322-5327, [31] Yanxian Wei, Junwei Cheng, Yilun Wang, Hailong Zhou, Jianji Dong, Dongmei Huang, Feng Li, Ming Li, Ping Kong Alexander Wai, Xinliang Zhang. Strategy for Low‐Loss Optical Devices When Using High‐Loss Materials. ADVANCED PHOTONICS RESEARCH[J]. 2022, 3(9): n/a-n/a, https://doaj.org/article/070e57377b9b455db54c27e99fcd709a.
[32] Xu, Changda, Xu, Borui, Jin, Ya, Chen, Wei, Wen, Huashun, Li, Ming, Zhu, Ninghua. A DFB Laser With Integrated Passive Region Suitable for PAM-4 Modulation Signal. IEEE PHOTONICS JOURNAL[J]. 2022, 14(4): http://dx.doi.org/10.1109/JPHOT.2022.3189525.
[33] Hao, Tengfei, Ding, Hao, Li, Wei, Zhu, Ninghua, Dai, Yitang, Li, Ming. Dissipative microwave photonic solitons in spontaneous frequency-hopping optoelectronic oscillators. PHOTONICS RESEARCH[J]. 2022, 10(5): 1280-1289, http://dx.doi.org/10.1364/PRJ.451109.
[34] Chen, Xiaoyu, Li, Guangyi, Shi, Difei, Wang, Lu, Du, Jinfeng, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic Generation of Rectangular and Triangular Microwave Waveforms With Tunable Duty Cycle. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2022, 34(7): 371-374, http://dx.doi.org/10.1109/LPT.2022.3159555.
[35] Yang, Ye, Jin, Yaqing, Xiang, Xiao, Hao, Tengfei, Li, Wei, Liu, Tao, Zhang, Shougang, Zhu, Ninghua, Dong, Ruifang, Li, Ming. Single-photon microwave photonics. SCIENCE BULLETIN[J]. 2022, 67(7): 700-706, https://www.sciengine.com/doi/10.1016/j.scib.2021.11.019.
[36] Wang, Lu, Hao, Tengfei, Guan, Mengyuan, Li, Guangyi, Li, Ming, Zhu, Ninghua, Li, Wei. Compact Multi-Tone Microwave Photonic Frequency Measurement Based on a Single Modulator and Frequency-to-Time Mapping. Journal of Lightwave Technology[J]. 2022, 40(19): 6517-6522, [37] Fan, Xiaojie, Cao, Xuhua, Li, Ming, Zhu, Ning Hua, Li, Wei. Photonic Generation of Multi-Band Phase-Coded Microwave Pulses by Polarization Manipulation of Optical Signals. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2022, 40(3): 672-680, http://dx.doi.org/10.1109/JLT.2021.3121328.
[38] Li, Guangyi, Shi, Difei, Wang, Lu, Xiao, Ye, Li, Ming, Zhu, Ninghua, Li, Wei. Unambiguous measurement of AOA using a DDMZM. OPTICS COMMUNICATIONS[J]. 2022, 514: http://dx.doi.org/10.1016/j.optcom.2022.128132.
[39] Jin, Yaqing, Yang, Ye, Hong, Huibo, Xiang, Xiao, Quan, Runai, Liu, Tao, Zhang, Shougang, Zhu, Ninghua, Li, Ming, Dong, Ruifang. Quantum microwave photonics in radio-over-fiber systems. PHOTONICS RESEARCH[J]. 2022, 10(7): 1669-1678, [40] Yang, Guoliang, dandan guo, Ming Li, Xin Wang. Simulation Design and Optimization of Multi-Channel High-Frequency Transmission Lines Applied to Optical Modules. Asia-Pacific International Symposium on Electromagnetic Compatibility, APEMC 2022null. 2022, [41] Zhang, Chenwei, Xu, Changda, Jin, Ya, Li, Ming, Li, Wei, Liu, Yu, Yuan, Haiqing, Bai, Jinhua, An, Junming, Zhu, Ninghua. Narrow linewidth semiconductor laser with a multi-period-delayed feedback photonic circuit. OPTICS EXPRESS[J]. 2022, 30(9): 15796-15806, http://dx.doi.org/10.1364/OE.458327.
[42] Meng, Xiangyan, Shi, Nuannuan, Shi, Difei, Li, Wei, Li, Ming. Photonics-enabled spiking timing-dependent convolutional neural network for real-time image classification. OPTICS EXPRESS[J]. 2022, 30(10): 16217-16228, http://dx.doi.org/10.1364/OE.451239.
[43] Cen, Qizhuang, Ding, Hao, Hao, Tengfei, Guan, Shanhong, Qin, Zhiqiang, Lyu, Jiaming, Li, Wei, Zhu, Ninghua, Xu, Kun, Dai, Yitang, Li, Ming. Large-scale coherent Ising machine based on optoelectronic parametric oscillator. LIGHT-SCIENCE & APPLICATIONS[J]. 2022, 11(1): 2972-2981, http://dx.doi.org/10.1038/s41377-022-01013-1.
[44] Li, Fangping, Guan, Mengyuan, Wang, Lu, Du, Jinfeng, Chen, Xiaoyu, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic Generation of Dual-Band Dual-Format Phase-Coded Microwave Signals. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2022, 34(21): 1127-1130, [45] Li, Guanyi, Meng, Xiangyan, Wang, Lu, Li, Ming, Zhu, Ninghua, Li, Wei. Coherent-detection radio-over-fiber link with high spectral efficiency based on digital phase noise cancellation. APPLIED OPTICS[J]. 2022, 61(36): 10700-10706, http://dx.doi.org/10.1364/AO.475950.
[46] Li, Guangyi, Shi, Difei, Wang, Lu, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic System for Simultaneous and Unambiguous Measurement of Angle-of-Arrival and Doppler-Frequency-Shift. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2022, 40(8): 2321-2328, http://dx.doi.org/10.1109/JLT.2022.3142386.
[47] Wang Lu, Hao Tengfei, Chen Xiaoyu, Guan Mengyuan, Li Fangping, Li Guangyi, Li Ming, Zhu Ninghua, Li Wei. Simple method for microwave photonic temperature interrogation with high resolution and sensitivity. Optics Letters[J]. 2022, 47(18): 4750-4753, [48] Fan, Xiao Jie, Du, Jin Feng, Li, Guo Zheng, Li, Ming, Zhu, Ning Hua, Li, Wei. RF Self-Interference Cancellation and Frequency Downconversion With Immunity to Power Fading Based on Optoelectronic Oscillation. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2022, 40(12): 3614-3621, http://dx.doi.org/10.1109/JLT.2022.3153551.
[49] Wang, Lu, Zhang, Yuguang, Wang, Dong, Hao, Tengfei, Chong, Yuhua, Gu, Yiying, Li, Guangyi, Li, Ming, Xiao, Xi, Zhu, Ninghua, Li, Wei. Photonic Generation of Multi-Format Radar Waveforms Based on an Integrated Silicon IQ Modulator. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS[J]. 2022, 28(5): [50] Cao, Xu Hua, Fan, Xiao Jie, Li, Guang Yi, Li, Ming, Zhu, Ning Hua, Li, Wei. A Filterless Photonic Approach for DFS and AOA Measurement Using a Push-Pull DPol-MZM. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2022, 34(1): 19-22, [51] Dandan Guo, Yang, Guoliang, Ming Li, Xin Wang. Research on coupling process and technology of lensed fiber and optical chip. Forum on Photonic Integrated Circuits 2022(FPIC)null. 2022, [52] Yang, Ye, Jin, Yaqing, Xiang, Xiao, Hao, Tengfei, Li, Wei, Liu, Tao, Zhang, Shougang, Zhu, Ninghua, Dong, Ruifang, Li, Ming. Single-photon microwave photonics. SCIENCE BULLETIN[J]. 2022, 67(7): 700-706, http://dx.doi.org/10.1016/j.scib.2021.11.019.
[53] Hao, Tengfei, Yang, Ye, Jin, Yaqing, Xiang, Xiao, Li, Wei, Zhu, Ninghua, Dong, Ruifang, Li, Ming. Quantum Microwave Photonics. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2022, 40(20): 6616-6625, [54] Guangyi Li, Difei Shi, Zhiyao Jia, Lu Wang, Ming Li, Ning Hua Zhu, Wei Li. Photonic Scheme for the Generation of Background-Free Phase-Coded Microwave Pulses and Dual-Chirp Microwave Waveforms. IEEE PHOTONICS JOURNAL[J]. 2021, 13(2): 1-8, https://doaj.org/article/79749a81d1d940acbfd382c989a9f88f.
[55] Li, Yana, Hao, Tengfei, Li, Guozheng, Wang, Lu, Li, Wei, Dai, Yitang, Li, Ming. Photonic Generation of Phase-Coded Microwave Signals Based on Fourier Domain Mode Locking. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2021, 33(9): 433-436, https://www.webofscience.com/wos/woscc/full-record/WOS:000637180900003.
[56] Yue Hao, Huaqiang Wu, Yuchao Yang, Qi Liu, Xiao Gong, Genquan Han, Ming Li. Preface to the Special Issue on Beyond Moore: Resistive Switching Devices for Emerging Memory and Neuromorphic Computing. 半导体学报:英文版[J]. 2021, 42(1): 31-32, http://lib.cqvip.com/Qikan/Article/Detail?id=7103771350.
[57] Lin, Zhixing, Sun, Shuqian, Azana, Jose, Li, Wei, Li, Ming. High-speed serial deep learning through temporal optical neurons. OPTICS EXPRESS[J]. 2021, 29(13): 19392-19402, http://dx.doi.org/10.1364/OE.423670.
[58] Li Ming. Photonic generation of multi-band phase-coded microwave pulses by polarization manipulation of optical signals. Journal of Lightwave Technology. 2021, [59] Li, Ming, Hao, Tengfei, Li, Wei, Dai, Yitang. Tutorial on optoelectronic oscillators. APL PHOTONICS[J]. 2021, 6(6): http://dx.doi.org/10.1063/5.0050311.
[60] Shi, Difei, Li, Guangyi, Jia, Zhiyao, Wen, Jun, Li, Ming, Zhu, Ninghua, Li, Wei. Accuracy enhanced microwave frequency measurement based on the machine learning technique. OPTICS EXPRESS[J]. 2021, 29(13): 19515-19524, http://dx.doi.org/10.1364/OE.429904.
[61] Shi, Difei, Wen, Jun, Jia, Zhiyao, Li, Guangyi, Wang, Xin, Li, Ming, Zhu, Ninghua, Li, Wei. Reconfigurable Photonic generation and transmission of multi-format radar signals. OPTICS COMMUNICATIONS[J]. 2021, 488: http://dx.doi.org/10.1016/j.optcom.2021.126855.
[62] Fan, Xiaojie, Zhu, Sha, Xiao, Ye, Li, Ming, Zhu, Ning Hua, Li, Wei. Generation and anti-dispersion transmission of quadrupling-bandwidth dual-chirp microwave waveform based on a polarization-division multiplexing Mach-Zehnder modulator. OPTICAL ENGINEERING[J]. 2021, 60(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000625363000028.
[63] Dapeng Liu, Jian Tang, Yao Meng, Wei Li, Ninghua Zhu, Ming Li. Ultra-low V_(pp)and high-modulation-depth InP-based electro-optic microring modulator. 半导体学报:英文版[J]. 2021, 42(8): 55-59, http://lib.cqvip.com/Qikan/Article/Detail?id=7105545813.
[64] Fan, Xiaojie, Zhu, Sha, Du, Jinfeng, Li, Ming, Zhu, Ning Hua, Li, Wei. Photonic generation of quadruple bandwidth dual-band dual-chirp microwave waveforms with immunity to power fading. OPTICS LETTERS[J]. 2021, 46(4): 868-871, https://www.webofscience.com/wos/woscc/full-record/WOS:000618473600043.
[65] 李明, 郝腾飞, 潘时龙, 邹喜华, 恽斌峰, 邹卫文, 李伟, 闫连山. 微波光子集成及前沿展望(特邀). 红外与激光工程[J]. 2021, 50(7): 25-38, http://lib.cqvip.com/Qikan/Article/Detail?id=7105302744.
[66] Ge, Zengting, Xiao, Ye, Hao, Tengfei, Li, Wei, Li, Ming. Tb/s Fast Random Bit Generation Based on a Broadband Random Optoelectronic Oscillator. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2021, 33(22): 1223-1226, http://dx.doi.org/10.1109/LPT.2021.3113775.
[67] Wang, Lu, Hao, Tengfei, Li, Guangyi, Sun, Wenhui, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic Generation and Transmission of Dual-Band Dual-Chirp Microwave Waveforms at C-Band and X-Band With Elimination of Power Fading. IEEE PHOTONICS JOURNAL[J]. 2021, 13(1): https://doaj.org/article/f941292fc9604a74adce1bd935856922.
[68] Wen, Hua Shun, Xu, Bo Rui, Zhai, Kun Peng, Sun, Jia Zheng, Wang, Jian, Du, Xin Hao, Jin, Ya, Chen, Wei, Li, Wei, Zhu, Ning Hua, Li, Ming. Ultrahigh spectral resolution single passband microwave photonic filter. OPTICS EXPRESS[J]. 2021, 29(18): 28725-28740, [69] Li, Guozheng, Hao, Tengfei, Li, Wei, Li, Ming. Bandwidth superposition of linearly chirped microwave waveforms based on a Fourier domain mode-locked optoelectronic oscillator. OPTICS EXPRESS[J]. 2021, 29(22): 36977-36987, [70] Yao Meng, Ye Xiao, Wei Li, Nuannuan Shi, Ming Li. An Up/Downstream Shared Optical Beam Forming Network for Remote Phased Array Antenna. IEEE PHOTONICS JOURNAL[J]. 2021, 13(3): 1-9, https://doaj.org/article/31d5603a21dd476195fda5971998834d.
[71] Zhiyao Jia, Guangyi Li, Difei Shi, Ming Li, Ning Hua Zhu, Wei Li. Photonic Image Rejection Mixer Based on Polarization Manipulation of a Broadband Optical Source. IEEE PHOTONICS JOURNAL[J]. 2021, 13(2): 1-10, https://doaj.org/article/a76bed0eed3b4f0989b3e4afd614cf74.
[72] Meng, Yao, Hao, TengFei, Li, Wei, Zhu, NingHua, Li, Ming. Microwave photonic injection locking frequency divider based on a tunable optoelectronic oscillator. OPTICS EXPRESS[J]. 2021, 29(2): 684-691, http://dx.doi.org/10.1364/OE.412049.
[73] Wen, Jun, Shi, Difei, Jia, Zhiyao, Li, Guangyi, Wang, Xin, Li, Ming, Zhu, Ninghua, Li, Wei. Precise Identification of Wideband Multiple Microwave Frequency Based on Self-Heterodyne Low-Coherence Interferometry. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2021, 39(10): 3169-3176, http://dx.doi.org/10.1109/JLT.2021.3064866.
[74] Shi, Nuannuan, Hao, Tengfei, Li, Wei, Li, Ming. A Compact Multifrequency Measurement System Based on an Integrated Frequency-Scanning Generator (dagger). APPLIED SCIENCES-BASEL[J]. 2020, 10(23): https://www.webofscience.com/wos/woscc/full-record/WOS:000597078900001.
[75] 韦欣, 李明, 李健, 汪超, 李川川. 几种新体制半导体激光器及相关产业的现状、挑战和思考. 中国工程科学[J]. 2020, 22(3): 21-28, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=GCKX202003005&v=MTc0OTRxVHJXTTFGckNVUjdxZVp1ZHRGeW5tVTd6S0lpN0Fkckc0SE5ITXJJOUZZWVI4ZVgxTHV4WVM3RGgxVDM=.
[76] Xiang, Xiao, Dong, Ruifang, Quan, Runai, Jin, Yaqing, Yang, Ye, Li, Ming, Liu, Tao, Zhang, Shougang. Hybrid frequency-time spectrograph for the spectral measurement of the two-photon state. OPTICS LETTERS[J]. 2020, 45(11): 2993-2996, https://www.webofscience.com/wos/woscc/full-record/WOS:000537763300012.
[77] Wang, Lu, Li, Guangyi, Hao, Tengfei, Zhu, Sha, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic generation of multiband and multi-forma microwave signals based on a single modulator. OPTICS LETTERS[J]. 2020, 45(22): 6190-6193, http://dx.doi.org/10.1364/OL.411563.
[78] Shi, Difei, Wen, Jun, Zhu, Sha, Jia, Zhiyao, Shi, Zhan, Li, Ming, Zhu, Ninghua, Li, Wei. Instantaneous microwave frequency measurement based on non-sliced broadband optical source. OPTICS COMMUNICATIONS[J]. 2020, 458: http://dx.doi.org/10.1016/j.optcom.2019.124758.
[79] Wen, Jun, Shi, Difei, Jia, Zhiyao, Li, Ming, Zhu, Ning Hua, Li, Wei. Simultaneous microwave frequency conversion and idler filtering based on polarization manipulating of an amplified spontaneous emission source. OPTICS AND LASER TECHNOLOGY[J]. 2020, 131: http://dx.doi.org/10.1016/j.optlastec.2020.106388.
[80] Shi, Nuannuan, Hao, Tengfei, Li, Wei, Zhu, Ninghua, Li, Ming. Dual-Functional Transmitter for Simultaneous RF/LFM Signal Using a Monolithic Integrated DFB Array. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2020, 32(5): 239-242, http://dx.doi.org/10.1109/LPT.2019.2955068.
[81] Zengting Ge, Tengfei Hao, Jos Capmany, Wei Li, Ninghua Zhu, Ming Li. Broadband random optoelectronic oscillator. NATURE COMMUNICATIONS[J]. 2020, 11(1): https://doaj.org/article/c49dee3e970748468a4a42a790c90aa4.
[82] Zhu, Sha, Fan, Xiao Jie, Xu, Bo Rui, Sun, Wen Hui, Li, Ming, Zhu, Ning Hua, Li, Wei. Polarization Manipulated Fourier Domain Mode-Locked Optoelectronic Oscillator. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2020, 38(19): 5270-5277, https://www.webofscience.com/wos/woscc/full-record/WOS:000575409900005.
[83] Chen, Lawrence R, Gasulla, Ivana, Li, Ming, Mckinney, Jason D. Special Issue on Microwave Photonics. JOURNAL OF LIGHTWAVE TECHNOLOGYnull. 2020, 38(19): 5238-5239, https://www.webofscience.com/wos/woscc/full-record/WOS:000575409900001.
[84] Hao, Tengfei, Cen, Qizhuang, Guan, Shanhong, Li, Wei, Dai, Yitang, Zhu, Ninghua, Li, Ming. Optoelectronic parametric oscillator. LIGHT-SCIENCE & APPLICATIONS[J]. 2020, 9(1): https://doaj.org/article/7b30b197ce874edd9c5a7273746dbd40.
[85] Zhu, Sha, Fan, Xiaojie, Li, Ming, Zhu, Ning Hua, Li, Wei. Dual-chirp microwave waveform transmitter with elimination of power fading for one-to-multibase station fiber transmission. OPTICS LETTERS[J]. 2020, 45(5): 1285-1288, https://www.webofscience.com/wos/woscc/full-record/WOS:000522833500062.
[86] Lin, Zhixing, Sun, Shuqian, Azana, Jose, Li, Wei, Zhu, Ninghua, Li, Ming. Temporal optical neurons for serial deep learning. 2020, http://arxiv.org/abs/2009.03213.
[87] Yang, Ye, Xiang, Xiao, Hou, Feiyan, Quan, Runai, Li, Baihong, Li, Wei, Zhu, Ninghua, Liu, Tao, Zhang, Shougang, Dong, Ruifang, Li, Ming. Inherent resolution limit on nonlocal wavelength-to-time mapping with entangled photon pairs. OPTICS EXPRESS[J]. 2020, 28(5): 7488-7497, https://www.webofscience.com/wos/woscc/full-record/WOS:000518435600126.
[88] 祝宁华, 李明. 智能化通信应用芯片技术专题导读. 中兴通讯技术. 2020, 1-, https://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFQ&dbname=CJFDLAST2020&filename=ZXTX202002001&v=MjU5MTVtVUxyTVB6WGZkckc0SE5ITXJZOUZaWVI4ZVgxTHV4WVM3RGgxVDNxVHJXTTFGckNVUjdxZVp1ZHRGeW4=.
[89] Zhu, Sha, Fan, Xiaojie, Li, Ming, Zhu, Ning Hua, Li, Wei. Optically controlled multi-carrier phase-shift-keying microwave signal generation by using cross-polarization modulation in highly nonlinear fiber. OPTICS COMMUNICATIONS[J]. 2020, 469: http://dx.doi.org/10.1016/j.optcom.2020.125805.
[90] Tang, Jian, Zhu, Beibei, Zhang, Weifeng, Li, Ming, Pan, Shilong, Yao, Jianping. Hybrid Fourier-domain mode-locked laser for ultra-wideband linearly chirped microwave waveform generation. NATURE COMMUNICATIONS[J]. 2020, 11(1): 1-8, http://dx.doi.org/10.1038/s41467-020-17264-8.
[91] Li, Guangyi, Wang, Lu, Zhu, Sha, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic Generation of Dual-Chirp Microwave Waveforms Based on a Tunable Optoelectronic Oscillator. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2020, 32(10): 599-602, https://www.webofscience.com/wos/woscc/full-record/WOS:000529919900003.
[92] Cen, Qizhuang, Hao, Tengfei, Ding, Hao, Guan, Shanhong, Qin, Zhiqiang, Xu, Kun, Dai, Yitang, Li, Ming. Microwave Photonic Ising Machine. 2020, http://arxiv.org/abs/2011.00064.
[93] Zhu, Sha, Fan, Xiaojie, Li, Ming, Zhu, Ning Hua, Li, Wei. Microwave photonic frequency down-conversion and channel switching for satellite communication. OPTICS LETTERS[J]. 2020, 45(18): 5000-5003, http://dx.doi.org/10.1364/OL.398495.
[94] Hao, Tengfei, Liu, Yanzhong, Tang, Jian, Cen, Qizhuang, Li, Wei, Zhu, Ninghua, Dai, Yitang, Capmany, Jose, Yao, Jianping, Li, Ming. Recent advances in optoelectronic oscillators. ADVANCED PHOTONICSnull. 2020, 2(4): 4-23, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=6906072&detailType=1.
[95] 郝腾飞, 石暖暖, 李伟, 祝宁华, 李明. 多波段线性调频傅里叶域锁模光电振荡器. 应用科学学报[J]. 2020, 38(4): 640-646, http://lib.cqvip.com/Qikan/Article/Detail?id=7102375551.
[96] Zhu, Sha, Li, Ming, Wang, Xin, Zhu, Ning Hua, Li, Wei. 1 x N hybrid radio frequency photonic splitter based on a dual-polarization dual-parallel Mach Zehnder modulator. OPTICS COMMUNICATIONS[J]. 2019, 431: 10-13, https://www.webofscience.com/wos/woscc/full-record/WOS:000448036300002.
[97] Hao, Tengfei, Tang, Jian, Shi, Nuannuan, Li, Wei, Zhu, Ninghua, Li, Ming. Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold. OPTICS LETTERS[J]. 2019, 44(12): 3062-3065, https://www.webofscience.com/wos/woscc/full-record/WOS:000471636700030.
[98] Sha Zhu, Ming Li, Ning Hua Zhu, Wei Li. Photonic Radio Frequency Self-Interference Cancellation and Harmonic Down-Conversion for In-Band Full-Duplex Radio-Over-Fiber System. IEEE PHOTONICS JOURNAL[J]. 2019, 11(5): 1-10, https://doaj.org/article/fe01075830464011bc2c104e0d35b7f1.
[99] Song, Qi, Tang, Jian, Shi, Nuannuan, Li, Wei, Zhu, Ninghua, Li, Ming. Monolithic integrated 4 x 25 Gb/s transmitter optical subassembly at 1.55 mu m. OPTICS COMMUNICATIONS[J]. 2019, 441: 160-164, https://www.webofscience.com/wos/woscc/full-record/WOS:000461940700026.
[100] Wen, Jun, Shi, Difei, Jia, Zhiyao, Li, Ming, Zhu, Ning Hua, Li, Wei. Tunable Single-Notch Microwave Photonic Filter Based on Nonsliced ASE Source. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2019, 31(10): 731-734, https://www.webofscience.com/wos/woscc/full-record/WOS:000467571000003.
[101] Shi, Nuannuan, Song, Qi, Tang, Jian, Li, Wei, Zhu, Ninghua, Li, Ming. A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array. OPTICS COMMUNICATIONS[J]. 2019, 447: 55-60, http://dx.doi.org/10.1016/j.optcom.2019.04.075.
[102] Xiao, Ye, Sun, Shuqian, Li, Wei, Zhu, Ninghua, Li, Ming. Ultra-Fast Wavemeter for CW Laser Based on Wavelength-to-Time Mapping. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2019, 37(11): 2661-2667, https://www.webofscience.com/wos/woscc/full-record/WOS:000466932100021.
[103] Su, Tao, Wen, Jun, Shi, Zhan, Li, Ming, Chen, Wei, Zhu, Ninghua, Li, Wei. Wideband optical vector network analyzer based on polarization modulation. OPTICS COMMUNICATIONS[J]. 2019, 437: 67-70, http://dx.doi.org/10.1016/j.optcom.2018.12.046.
[104] Liu, Dapeng, Sun, Shuqian, Yin, Xiaojie, Sun, Bingli, Sun, Jingwen, Liu, Yang, Li, Wei, Zhu, Ninghua, Li, Ming. Large-capacity and low-loss integrated optical buffer. OPTICS EXPRESS[J]. 2019, 27(8): 11585-11593, [105] Chuanbo Li, Ming Li. Supersymmetric laser arrays. 半导体学报:英文版[J]. 2019, 40(4): I0002-I0002, http://lib.cqvip.com/Qikan/Article/Detail?id=7001831613.
[106] Li Ming. Monolithic integrated 4 25 Gbs transmitter optical subassembly at 1.55 μm. Optics Communications. 2019, [107] Jia, Zhiyao, Shi, Zhan, Wen, Jun, Shi, Difei, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic generation of frequency-doubled triangular waveforms based on a dual parallel Mach-Zehnder modulator. OPTICAL ENGINEERING[J]. 2019, 58(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000489032700049.
[108] Zhu, Sha, Li, Ming, Wang, Xin, Zhu, Ning Hua, Cao, Zi Zheng, Li, Wei. Photonic generation of background-free binary phase-coded microwave pulses. OPTICS LETTERS[J]. 2019, 44(1): 94-97, http://dx.doi.org/10.1364/OL.44.000094.
[109] Hao, Tengfei, Tang, Jian, Shi, Nuannuan, Li, Wei, Zhu, Ninghua, Li, Ming. Dual-chirp Fourier domain mode-locked optoelectronic oscillator. OPTICS LETTERS[J]. 2019, 44(8): 1912-1915, [110] Hao, Tengfei, Tang, Jian, Li, Wei, Zhu, Ninghua, Li, Ming. Harmonically Fourier Domain Mode-Locked Optoelectronic Oscillator. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2019, 31(6): 427-430, [111] Chuanbo Li, Ming Li. 2D metamaterials coherently steer nonlinear valley photons of 2D semiconductor. 半导体学报:英文版[J]. 2019, 40(6): 2-2, http://lib.cqvip.com/Qikan/Article/Detail?id=7002201439.
[112] Lin, Zhixing, Sun, Shuqian, Li, Wei, Zhu, Ninghua, Li, Ming. Temporal Cloak Without Synchronization. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2019, 31(5): 373-376, https://www.webofscience.com/wos/woscc/full-record/WOS:000460676200004.
[113] Gao, Mengxiang, Zhu, Sha, Fan, Xiaojie, Li, Ming, Zhu, Ning Hua, Li, Wei. Photonic triangular waveforms generation based on nonlinear polarization rotation using a highly nonlinear fiber. OPTICAL ENGINEERING[J]. 2019, 58(11): [114] Wang, Guangqiang, Hao, Tengfei, Li, Wei, Zhu, Ninghua, Li, Ming. Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator. OPTICS COMMUNICATIONS[J]. 2019, 439: 133-136, http://dx.doi.org/10.1016/j.optcom.2019.01.014.
[115] Wen, Jun, Shi, Difei, Jia, Zhiyao, Li, Ming, Zhu, Ninghua, Li, Wei. Tunable notch microwave photonic filter based on interferometry of a single low-incoherence source. APPLIED OPTICS[J]. 2019, 58(29): 8039-8045, https://www.webofscience.com/wos/woscc/full-record/WOS:000489558000016.
[116] Zhu, Sha, Li, Ming, Zhu, Ning Hua, Li, Wei. Chromatic-dispersion-induced power-fading suppression technique for bandwidth-quadrupling dual-chirp microwave signals over fiber transmission. OPTICS LETTERS[J]. 2019, 44(4): 923-926, https://www.webofscience.com/wos/woscc/full-record/WOS:000458786800051.
[117] Wen, Jun, Shi, Difei, Jia, Zhiyao, Shi, Zhan, Li, Ming, Zhu, Ning Hua, Li, Wei. Accuracy-Enhanced Wideband Optical Vector Network Analyzer Based on Double-Sideband Modulation. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2019, 37(13): 2920-2926, https://www.webofscience.com/wos/woscc/full-record/WOS:000469333700005.
[118] Zhu Sha, Fan Xiaojie, Li Ming, Zhu Ning Hua, Li Wei, Zhu NH, Hofmann WH, He JJ. Photonic generation and transmission of phase-modulated microwave signals. SEMICONDUCTOR LASERS AND APPLICATIONS IXnull. 2019, 11182: [119] Shi, Zhan, Wen, Jun, Jia, Zhiyao, Shi, Difei, Li, Ming, Zhu, Ninghua, Li, Wei. Tunable single notch microwave photonic filter based on delay lines. OPTICS COMMUNICATIONS[J]. 2019, 448: 15-18, http://dx.doi.org/10.1016/j.optcom.2019.04.091.
[120] Qi Song, Jian Tang, Nuannuan Shi, Wei Li, Ninghua Zhu, Ming Li. Monolithic integrated 4formula omitted25 Gb/s transmitter optical subassembly at 1.55 formula omittedm. OPTICS COMMUNICATIONS. 2019, 441: 160-164, http://dx.doi.org/10.1016/j.optcom.2019.02.056.
[121] Shi, Nuannuan, Li, Wei, Zhu, Ninghua, Li, Ming. Optically controlled phase array antenna Invited. CHINESEOPTICSLETTERS[J]. 2019, 17(5): http://lib.cqvip.com/Qikan/Article/Detail?id=7002260971.
[122] Li Ming. Wideband and Continuously Tunable Microwave Photonic Phase Shifter Based on an Active InP/InGaAsP Microring Resonator. IEEE International Topical meeting on Microwave Photonics. 2019, [123] Shi, Nuannuan, Zhu, Xinyi, Sun, Shuqian, Li, Wei, Zhu, Ninghua, Li, Ming. Fast-Switching Microwave Photonic Filter Using an Integrated Spectrum Shaper. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2019, 31(3): 269-272, [124] Yang, Ye, Liu, Yang, Sun, Shugian, Li, Wei, Zhu, Ninghua, Li, Ming. Optical phase matching of high-order azimuthal WGM in a water droplet resonator. OPTICS EXPRESS[J]. 2019, 27(23): 33436-33444, [125] Zhu, Sha, Fan, Xiaojie, Li, Ming, Zhu, Ninghua, Li, Wei. FCC-compliant millimeter-wave ultra-wideband pulse generator based on optoelectronic oscillation. OPTICS LETTERS[J]. 2019, 44(14): 3530-3533, [126] Sha Zhu, Ming Li, Xin Wang, Ning Hua Zhu, Wei Li. 1formula omittedN hybrid radio frequency photonic splitter based on a dual-polarization dual-parallel Mach Zehnder modulator. OPTICS COMMUNICATIONS. 2019, 431: 10-13, http://dx.doi.org/10.1016/j.optcom.2018.09.008.
[127] Shao, Yuchen, Han, Xiuyou, Li, Ming, Liu, Qi, Zhao, Mingshan. Microwave Downconversion by a Tunable Optoelectronic Oscillator Based on PS-FBG and Polarization-Multiplexed Dual loop. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2019, 67(5): 2095-2102, http://dx.doi.org/10.1109/TMTT.2019.2893191.
[128] Zhu, Sha, Gao, Mengxiang, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic-based microwave hybrid combiner with arbitrarily tunable phase shift and power combining ratio. OPTICS LETTERS[J]. 2019, 44(8): 2012-2015, https://www.webofscience.com/wos/woscc/full-record/WOS:000464601900033.
[129] Shi, Nuannuan, Hao, Tengfei, Li, Wei, Zhu, Ninghua, Li, Ming. A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating. OPTICS COMMUNICATIONS[J]. 2018, 407: 27-32, http://dx.doi.org/10.1016/j.optcom.2017.08.073.
[130] Zhu, Sha, Li, Ming, Zhu, Ning Hua, Li, Wei. Transmission of dual-chirp microwave waveform over fiber with compensation of dispersion-induced power fading. OPTICSLETTERS[J]. 2018, 43(11): 2466-2469, https://www.webofscience.com/wos/woscc/full-record/WOS:000433963300011.
[131] Tang, Jian, Hao, Tengfei, Li, Wei, Domenech, David, Banos, Rocio, Munoz, Pascual, Zhu, Ninghua, Capmany, Jose, Li, Ming. Integrated optoelectronic oscillator. OPTICS EXPRESS[J]. 2018, 26(9): 12257-12265, https://www.webofscience.com/wos/woscc/full-record/WOS:000431718300105.
[132] Hao, Tengfei, Tang, Jian, Li, Wei, Zhu, Ninghua, Li, Ming. Microwave photonics frequency-to-time mapping based on a Fourier domain mode locked optoelectronic oscillator. OPTICS EXPRESS[J]. 2018, 26(26): 33582-33591, https://www.webofscience.com/wos/woscc/full-record/WOS:000454149000010.
[133] Shi, Zhan, Zhu, Sha, Li, Ming, Zhu, Ning Hua, Li, Wei. Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator. OPTICS COMMUNICATIONS[J]. 2018, 428: 131-135, http://dx.doi.org/10.1016/j.optcom.2018.07.055.
[134] Li, Man Ying, Wang, Ling, Yang, Cheng Wu, Li, Ming, Zhu, Ning Hua, Li, Wei. Reconfigurable microwave photonic filter based on polarization modulation and an optical filter. OPTICAL ENGINEERING[J]. 2018, 57(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000427030700041.
[135] Zhu, Xinyi, Sun, Hao, Li, Wei, Zhu, Ninghua, Li, Ming. Arbitrary Waveform Generation Based on Dispersion-Free Wavelength-to-Time Mapping Technique. IEEE PHOTONICS JOURNAL[J]. 2018, 10(1): https://doaj.org/article/fcfc63d68c184d34b5a429899ddc764a.
[136] Wang, Ling, Li, Ming, Zhu, Ning Hua, Li, Wei. Switchable Microwave Photonic Filter Between Dual-Notch and Dual-Passband Responses. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2018, 30(21): 1894-1897, [137] Li, Ming, Sun, Shuqian, Li, Bo, Asghari, Hossein, Deng, Ye, Li, Wei, Zhu, Ninghua. Time-bandwidth compression of microwave signals. OPTICS EXPRESS[J]. 2018, 26(2): 990-999, https://www.webofscience.com/wos/woscc/full-record/WOS:000422935900056.
[138] Sun, Shuqian, Lin, Zhixing, Li, Wei, Zhu, Ninghua, Li, Ming. Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser. OPTICS EXPRESS[J]. 2018, 26(16): 20888-20901, https://www.webofscience.com/wos/woscc/full-record/WOS:000440803600103.
[139] Sun, Hao, Zhu, Xinyi, Li, Wei, Zhu, Ninghua, Li, Ming. Real-Time Optical Spectrum Fourier Transform With Time-Bandwidth Product Compression. IEEE PHOTONICS JOURNAL[J]. 2018, 10(1): https://doaj.org/article/bf28dc21a3774e7783e90b93860b17cf.
[140] Shao, Yuchen, Han, Xiuyou, Li, Ming, Zhao, Mingshan. RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG. OPTICS LETTERS[J]. 2018, 43(6): 1199-1202, http://dx.doi.org/10.1364/OL.43.001199.
[141] Hao, Tengfei, Tang, Jian, Domenech, David, Li, Wei, Zhu, Ninghua, Capmany, Jose, Li, Ming. Toward Monolithic Integration of OEOs: From Systems to Chips. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2018, 36(19): 4565-4582, https://www.webofscience.com/wos/woscc/full-record/WOS:000443892500045.
[142] Liu, Yanzhong, Hao, Tengfei, Li, Wei, Capmany, Jose, Zhu, Ninghua, Li, Ming. Observation of parity-time symmetry in microwave photonics. LIGHT-SCIENCE & APPLICATIONS[J]. 2018, 7(1): https://doaj.org/article/fed099dda7fb40b581787db66a030b8c.
[143] Zhu, Sha, Wang, Xin, Li, Ming, Zhu, Ning Hua, Li, Wei. A simple photonic method to generate square and triangular microwave waveforms. OPTICS COMMUNICATIONS[J]. 2018, 426: 654-657, http://dx.doi.org/10.1016/j.optcom.2018.06.013.
[144] Li, Jilong, Dai, Yitang, Yin, Feifei, Li, Wei, Li, Ming, Chen, Hongwei, Xu, Kun. Megahertz-resolution programmable microwave shaper. OPTICS LETTERS[J]. 2018, 43(8): 1878-1881, https://www.webofscience.com/wos/woscc/full-record/WOS:000430084500064.
[145] Zhu, Sha, Li, Ming, Wang, Xin, Zhu, Ning Hua, Li, Wei. Photonic Generation of Ultra-Wideband Signal by Truncating a Continuous Wave Into a Pulse. IEEEPHOTONICSTECHNOLOGYLETTERS[J]. 2018, 30(21): 1862-1865, https://www.webofscience.com/wos/woscc/full-record/WOS:000450153800012.
[146] Tengfei Hao, Qizhuang Cen, Yitang Dai, Jian Tang, Wei Li, Jianping Yao, Ninghua Zhu, Ming Li. Breaking the limitation of mode building time in an optoelectronic oscillator. NATURE COMMUNICATIONS[J]. 2018, 9(1): https://doaj.org/article/dd96fee27e684835be4c897969c0ec96.
[147] Wang, Ling, Yang, Chengwu, Li, Ming, Zhu, Ninghua, Li, Wei. Switchable microwave photonic filter based on a dual-parallel Mach-Zehnder modulator. APPLIED OPTICS[J]. 2018, 57(16): 4537-4541, https://www.webofscience.com/wos/woscc/full-record/WOS:000433959100025.
[148] Li Ming. Towards monolithic integration of OEOs: From systems to chips. Journal of Lightwave Technology. 2018, [149] Zhu, Sha, Shi, Zhan, Li, Ming, Zhu, Ning Hua, Li, Wei. Simultaneous frequency upconversion and phase coding of a radio-frequency signal for photonic radars. OPTICS LETTERS[J]. 2018, 43(3): 583-586, http://dx.doi.org/10.1364/OL.43.000583.
[150] Sun, Hao, Zhu, Xinyi, Li, Wei, Zhu, Ninghua, Li, Ming. Reconfigurable microwave signal processor with a phase shift of pi. OPTICS EXPRESS[J]. 2018, 26(8): 10358-10370, https://www.webofscience.com/wos/woscc/full-record/WOS:000430337700084.
[151] Wen, Hua Shun, Li, Ming, Li, Wei, Zhu, Ning Hua. Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated Brillouin scattering and a fiber ring resonator. OPTICSLETTERS[J]. 2018, 43(19): 4659-4662, https://www.webofscience.com/wos/woscc/full-record/WOS:000446024300029.
[152] Zhu, Ning Hua, Shi, Zhan, Zhang, Zhi Ke, Zhang, Yi Ming, Zou, Can Wen, Zhao, Ze Ping, Liu, Yu, Li, Wei, Li, Ming. Directly Modulated Semiconductor Lasers. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS[J]. 2018, 24(1): [153] Hao, Tengfei, Tang, Jian, Li, Wei, Zhu, Ninghua, Li, Ming. Tunable Fourier Domain Mode-Locked Optoelectronic Oscillator Using Stimulated Brillouin Scattering. IEEEPHOTONICSTECHNOLOGYLETTERS[J]. 2018, 30(21): 1842-1845, [154] Zhang Lihong, Sun Shuqian, Li Ming, Zhu Ninghua. All-optical temporal fractional order differentiator using an in-fiber ellipsoidal air-microcavity. JOURNAL OF SEMICONDUCTORS[J]. 2017, 38(12): 126001-1, [155] Li, Ming, Sun, Shuqian, Malacarne, Antonio, LaRochelle, Sophie, Yao, Jianping, Zhu, Ninghua, Azana, Jose. Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression. SCIENCE BULLETIN[J]. 2017, 62(4): 242-248, http://dx.doi.org/10.1016/j.scib.2017.01.021.
[156] Zou, Xihua, Li, Ming, Pan, Wei, Yan, Lianshan, Shao, Liyang. Multichannel Narrow, Flat-Top Optical Filters Based on Multiple-Phase-Shifted and Phase Sampled FBG. IEEE JOURNAL OF QUANTUM ELECTRONICS[J]. 2017, 53(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000393777600001.
[157] Li Ming. Multichannel ulter-narrow, Flat-Top Optical Filters Based on Multiple-Phase-Shifted and Phase Sampled FBG. IEEE Journal of Quantum Electronics. 2017, [158] Hervas, Javier, Lavinia Ricchiuti, Amelia, Li, Wei, Zhu, Ning Hua, FernandezPousa, Carlos R, Sales, Salvador, Li, Ming, Capmany, Jose. Microwave Photonics for Optical Sensors. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS[J]. 2017, 23(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000423948800001.
[159] Zhang, Lihong, Li, Ming, Shi, Nuannuan, Zhu, Xinyi, Sun, Shuqian, Tang, Jian, Li, Wei, Zhu, Ninghua. Photonic true time delay beamforming technique with ultra-fast beam scanning. OPTICS EXPRESS[J]. 2017, 25(13): 14524-14532, https://www.webofscience.com/wos/woscc/full-record/WOS:000404189800057.
[160] Yan, Haitao, Han, Daofu, Li, Ming, Lin, Bo. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating. JOURNAL OF NANOPHOTONICS[J]. 2017, 11(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000399755000009.
[161] Jun, Wen, Wang, Ling, Yang, Chengwu, Li, Ming, Zhu, Ning Hua, Guo, Jinjin, Xiong, Liangming, Li, Wei. Optical vector network analyzer based on double-sideband modulation. OPTICS LETTERS[J]. 2017, 42(21): 4426-4429, https://www.webofscience.com/wos/woscc/full-record/WOS:000414097200048.
[162] Shi, Zhan, Wang, Ling, Yang, Cheng Wu, Li, Ming, Zhu, Ning Hua, Li, Wei. Multifunctional microwave photonic signal processor based on dual-parallel Mach-Zehnder modulator and stimulated Brillouin scattering. OPTICAL ENGINEERING[J]. 2017, 56(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000413588800038.
[163] Li Wei, Li Ming, Zhu Ninghua. Photonic generation of background-free millimeter-wave ultra-wideband signals (Invited Paper). CHINESE OPTICS LETTERS[J]. 2017, 15(1): 010007-1, http://sciencechina.cn/gw.jsp?action=detail.jsp&internal_id=5925748&detailType=1.
[164] Li, Wei, Li, Ming, Zhu, Ninghua. Photonic generation of background-free millimeter-wave ultra-wideband signals. CHINESE OPTICS LETTERS[J]. 2017, 15(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000392403300006.
[165] Weilin Liu, Ming Li, Robert S Guzzon, Erik J Norberg, John S Parker, Mingzhi Lu, Larry A Coldren, Jianping Yao. An integrated parity-time symmetric wavelength-tunable single-mode microring laser. NATURE COMMUNICATIONS[J]. 2017, 8(1): https://doaj.org/article/4b93ef4cf3c243d2bce0b603e7d22f5f.
[166] Deng, Ye, Li, Ming, Shi, Nuannuan, Tang, Jian, Sun, Shuqian, Zhang, Lihong, Li, Wei, Zhu, Ninghua. Fully characterization of an active optical filter based on an equivalent-phase-shifted DFB-SOA. OPTICS COMMUNICATIONS[J]. 2016, 376: 1-5, http://dx.doi.org/10.1016/j.optcom.2016.05.005.
[167] Sun, Shuqian, Deng, Ye, Zhu, Ninghua, Li, Ming. Tunable fractional-order photonic differentiator using a distributed feedback semiconductor optical amplifier. OPTICAL ENGINEERING[J]. 2016, 55(3): http://ir.semi.ac.cn/handle/172111/27899.
[168] Shi, Nuannuan, Li, Ming, Deng, Ye, Zhang, Lihong, Sun, Shuqian, Tang, Jian, Li, Wei, Zhu, Ninghua. Experimental demonstration of a multi-target detection technique using an X-band optically steered phased array radar. OPTICS EXPRESS[J]. 2016, 24(13): 14438-14450, http://ir.semi.ac.cn/handle/172111/27887.
[169] Tu, Xin, Li, Ming, Xing, Jiejiang, Fu, Hongyan, Geng, Dongyu. Compact PSR Based on an Asymmetric Bi-level Lateral Taper in an Adiabatic Directional Coupler. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2016, 34(3): 985-991, https://www.webofscience.com/wos/woscc/full-record/WOS:000374013600018.
[170] Maurizio Burla, Xu Wang, Ming Li, Lukas Chrostowski, Jos Azaa. Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip. NATURE COMMUNICATIONS[J]. 2016, 7(1): http://ir.semi.ac.cn/handle/172111/27900.
[171] Liu, Weilin, Romeira, Bruno, Li, Ming, Guzzon, Robert S, Norberg, Erik J, Parker, John S, Coldren, Larry A, Yao, Jianping. A Wavelength Tunable Optical Buffer Based on Self-Pulsation in an Active Microring Resonator. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2016, 34(14): 3466-3472, http://ir.semi.ac.cn/handle/172111/27880.
[172] Li Ming. High-speed tunable broadband microwave photonics phase shifter based on an active microring resonator. Wireless and Optical Communication Conference (WOCC). 2016, [173] Tang, Jian, Li, Ming, Sun, Shuqian, Li, Zhiyong, Li, Wei, Zhu, Ninghua. Broadband microwave photonic phase shifter based on a feedback-coupled microring resonator with small radio frequency power variations. OPTICSLETTERS[J]. 2016, 41(20): 4609-4612, http://ir.semi.ac.cn/handle/172111/27885.
[174] Ming LI, Ninghua ZHU. Recent advances in microwave photonics. 中国光电子学前沿:英文版[J]. 2016, 160-185, http://lib.cqvip.com/Qikan/Article/Detail?id=668523347.
[175] Li, Ming. Taming electric discharges using optical beams. SCIENCE BULLETIN[J]. 2016, 61(2): 114-115, http://dx.doi.org/10.1007/s11434-015-0934-5.
[176] Shao Yuchen, Li Ming, Han Xiuyou, Zhao Mingshan, Li M, Jalali B, Goda K, Tsia KK. Detection of Low-Power RF Signals Using a Tunable Optoelectronic Oscillator. REAL-TIME PHOTONIC MEASUREMENTS, DATA MANAGEMENT, AND PROCESSING IInull. 2016, 10026: [177] Li, Ming, Deng, Ye, Tang, Jian, Sun, Shuqian, Yao, Jianping, Azana, Jose, Zhu, Ninghua. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier. SCIENTIFIC REPORTS[J]. 2016, 6: http://ir.semi.ac.cn/handle/172111/27895.
[178] Liu, Weilin, Li, Ming, Guzzon, Robert S, Norberg, Erik J, Parker, John S, Lu, Mingzhi, Coldren, Larry A, Yao, Jianping. A fully reconfigurable photonic integrated signal processor. NATURE PHOTONICS[J]. 2016, 10(3): 190-+, http://ir.semi.ac.cn/handle/172111/27881.
[179] Li, Ming, Chen, Xiangfei, Su, Yikai, Wang, Xingjun, Chen, Minghua, Dai, Daoxin, Liu, Jianguo, Zhu, Ning Hua. Photonic Integration Circuits in China. IEEE JOURNAL OF QUANTUM ELECTRONICS[J]. 2016, 52(1): http://dx.doi.org/10.1109/JQE.2015.2504087.
[180] Wang, Wen Ting, Li, Ming, Sun, Shu Qian, Wang, Chao, Deng, Ye, Zhu, Ning Hua. Background-Free Microwave Signal Generation Based on Unbalanced Temporal Pulse Shaping. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2016, 28(8): 903-906, https://www.webofscience.com/wos/woscc/full-record/WOS:000372637700021.
[181] Tu Xin, Li Ming, Jiang Jia, Goodwill Dominic, Dumais Patrick, Bernier Eric, Fu Hongyan, Geng Dongyu, IEEE. Compact low-loss adiabatic bends in silicon shallow-etched waveguides. 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP)null. 2016, 48-49, [182] 祝宁华, 李明, 郝跃. 光电子器件与集成技术. 中国科学. 信息科学[J]. 2016, 46(8): 1156-1174, https://www.sciengine.com/doi/10.1360/N112016-00059.
[183] Sun, Shuqian, Deng, Ye, Huang, Ningbo, Tang, Jian, Zhu, Ninghua, Li, Ming. A tunable photonic temporal integrator with ultra-long integration time windows based on Raman-gain assisted phase-shifted silicon Bragg gratings. OPTICS COMMUNICATIONS[J]. 2016, 373: 91-94, http://dx.doi.org/10.1016/j.optcom.2015.08.073.
[184] Tang, Jian, Li, Ming, Sun, Shuqian, Shi, Nuannuan, Li, Wei, Zhu, Ninghua, IEEE. On Chip Broadband Microwave Photonics Phase Shifter based on the Coupling-Modulated Microring Resonator. 2016 15TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN)null. 2016, [185] Wang, Xin, Li, Wei, Li, Ming, Zhu, Ning Hua. Photonics generation of frequency-shift keying radio-frequency signal using nonlinear polarization rotation in a highly nonlinear fiber. OPTICAL ENGINEERING[J]. 2016, 55(10): http://www.irgrid.ac.cn/handle/1471x/1137376.
[186] Sun, Shuqian, Li, Ming, Tang, Jian, Zhu, Ning Hua, Ahn, TaeJung, Azana, Jose. Femtosecond pulse shaping using wavelength-selective directional couplers: proposal and simulation. OPTICS EXPRESS[J]. 2016, 24(8): 7943-7950, http://ir.semi.ac.cn/handle/172111/27888.
[187] Li Ming, Zhu Ninghua. Recent advances in microwave photonics. FRONTIERS OF OPTOELECTRONICS[J]. 2016, 160-185, http://lib.cqvip.com/Qikan/Article/Detail?id=668523347.
[188] Wen Ting Wang, Ming Li, Shu Qian Sun, Chao Wang, Ye Deng, Ning Hua Zhu. Background-free Microwave Signal Generation Based on Temporal Pulse Shaping System. PHOTONICS TECHNOLOGY LETTERS, IEEE[J]. 2016, 28(8): 903-906, http://ir.semi.ac.cn/handle/172111/27884.
[189] Li Ming. Microwave photonics in China. IEEE Photonics Society Newsletter. 2015, [190] Li, Wei, Yang, Chengwu, Wang, Ling, Yuan, Zhilin, Liu, Jianguo, Li, Ming, Zhu, Ninghua. Microwave photonic bandstop filter with wide tunability and adjustable bandwidth. OPTICS EXPRESS[J]. 2015, 23(26): 33579-33586, http://ir.semi.ac.cn/handle/172111/26963.
[191] Li Ming. Wideband dynamic microwave frequency identification system using a low-power, ultra-compact silicon photonic chip. Nature Communications. 2015, [192] Li Ming. Advances in all-optical circuits. Optics & Photonics News. 2015, [193] Deng Ye, Li Ming, Sun Shuqian, Yuan Haiqing, Shi Yuechun, Chen Xiangfei, Zhu Ninghua, IEEE. Fully Characterization of a DFB-SOA Based Active Optical Filter. 2015 OPTO-ELECTRONICS AND COMMUNICATIONS CONFERENCE (OECC)null. 2015, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000380470200079.
[194] Li Ming. Tunable fractional-order photonic differentiator using a DFB-SOA. Optical Engineering. 2015, [195] Deng Ye, Li Ming, Tang Jian, Sun Shuqian, Zhu Ninghua, IEEE. Tunable Single Passband Microwave Photonic Filter Based on DFB-SOA-assisted Optical Carrier Recovery. 2015 14TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN)null. 2015, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000380373000166.
[196] Deng, Ye, Li, Ming, Tang, Jian, Sun, Shuqian, Huang, Ningbo, Zhu, Ninghua. Widely Tunable Single-Passband Microwave Photonic Filter Based on DFB-SOA-Assisted Optical Carrier Recovery. IEEE PHOTONICS JOURNAL[J]. 2015, 7(5): http://ir.semi.ac.cn/handle/172111/26962.
[197] Li Ming, Azana Jose, Zhu Ninghua, Yao Jianping. Recent progresses on optical arbitrary waveform generation. 中国光电子学前沿:英文版[J]. 2014, 359-375, http://lib.cqvip.com/Qikan/Article/Detail?id=662830461.
[198] Liu, Weilin, Li, Ming, Guzzon, Robert S, Norberg, Erik J, Parker, John S, Coldren, Larry A, Yao, Jianping. A Photonic Temporal Integrator With an Ultra-Long Integration Time Window Based on an InP-InGaAsP Integrated Ring Resonator. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2014, 32(20): 3654-3659, http://ir.semi.ac.cn/handle/172111/26039.
[199] Deng, Ye, Li, Ming, Huang, Ningbo, Zhu, Ninghua. Ka-Band Tunable Flat-Top Microwave Photonic Filter Using a Multi-Phase-Shifted Fiber Bragg Grating. IEEE PHOTONICS JOURNAL[J]. 2014, 6(4): http://ir.semi.ac.cn/handle/172111/26248.
[200] Deng, Ye, Li, Ming, Huang, Ningbo, Azana, Jose, Zhu, Ninghua. Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser. CHINESE SCIENCE BULLETIN[J]. 2014, 59(22): 2693-2701, https://www.webofscience.com/wos/woscc/full-record/WOS:000338655100008.
[201] Zou, Xihua, Li, Ming, Pan, Wei, Luo, Bin, Yan, Lianshan, Shao, Liyang. Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator. OPTICS EXPRESS[J]. 2014, 22(9): 11129-11139, http://ir.semi.ac.cn/handle/172111/26307.
[202] Li, Ming, Azana, Jose, Yao, Jianping. SPECIAL TOPIC: All-Optical Signal Processing Preface. CHINESE SCIENCE BULLETIN. 2014, 59(22): 2647-2648, http://ir.semi.ac.cn/handle/172111/26202.
[203] Zou, Xihua, Li, Ming, Ge, Weiwei, Pan, Wei, Luo, Bin, Yan, Lianshan, Azana, Jose. Synthesis of Fiber Bragg Gratings With Arbitrary Stationary Power/Field Distribution. IEEE JOURNAL OF QUANTUM ELECTRONICS[J]. 2014, 50(3): 186-197, http://ir.semi.ac.cn/handle/172111/26380.
[204] Huang, Ningbo, Li, Ming, Deng, Ye, Zhu, Ning Hua. Optical Pulse Generation Based on an Optoelectronic Oscillator With Cascaded Nonlinear Semiconductor Optical Amplifiers. IEEE PHOTONICS JOURNAL[J]. 2014, 6(1): http://ir.semi.ac.cn/handle/172111/26057.
[205] Huang, Ningbo, Li, Ming, Ashrafi, Reza, Wang, Lixian, Wang, Xin, Azaa, Jose, Zhu, Ninghua. Active Fabry-Perot cavity for photonic temporal integrator with ultra-long operation time window. OPTICS EXPRESS[J]. 2014, 22(3): 3105-3116, http://ir.semi.ac.cn/handle/172111/25975.
[206] Burla, Maurizio, Li, Ming, Cortes, Luis Romero, Wang, Xu, FernandezRuiz, Maria Rosario, Chrostowski, Lukas, Azana, Jose. Terahertz-bandwidth photonic fractional Hilbert transformer based on a phase-shifted waveguide Bragg grating on silicon. OPTICS LETTERS[J]. 2014, 39(21): 6241-6244, http://ir.semi.ac.cn/handle/172111/26101.
[207] Ming LI, Jose AZANA, Ninghua ZHU, Jianping YAO. Recent progresses on optical arbitrary waveform generation. FRONTIERS OF OPTOELECTRONICS[J]. 2014, 359-375, http://lib.cqvip.com/Qikan/Article/Detail?id=662830461.
[208] Deng, Ye, Li, Ming, Huang, Ningbo, Wang, Hui, Zhu, Ninghua. Optical length-change measurement based on an incoherent single-bandpass microwave photonic filter with high resolution. PHOTONICS RESEARCH[J]. 2014, 2(4): B35-B39, https://www.webofscience.com/wos/woscc/full-record/WOS:000353881600007.
[209] Guo, JinJin, Li, Ming, Deng, Ye, Huang, Ningbo, Liu, Jianguo, Zhu, Ninghua. Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings. OPTICS EXPRESS[J]. 2014, 22(4): 4290-4300, http://ir.semi.ac.cn/handle/172111/25966.
[210] Ashrafi, Reza, Li, Ming, Azana, Jose, Jalali, B, Li, M, Goda, K, Asghari, MH. Ultrafast optical signal generation and processing based on fiber long period gratings. REAL-TIME PHOTONIC MEASUREMENTS, DATA MANAGEMENT, AND PROCESSINGnull. 2014, 9279: http://dx.doi.org/10.1117/12.2071961.
[211] Burla, Maurizio, Cortes, Luis Romero, Li, Ming, Wang, Xu, Chrostowski, Lukas, Azana, Jose. On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit. OPTICS LETTERS[J]. 2014, 39(21): 6181-6184, http://ir.semi.ac.cn/handle/172111/26100.
[212] Ashrafi, Reza, Li, Ming, Belhadj, Nezih, Dastmalchi, Mansour, LaRochelle, Sophie, Azana, Jose. Experimental demonstration of superluminal space-to-time mapping in long period gratings. OPTICS LETTERS[J]. 2013, 38(9): 1419-1421, https://www.webofscience.com/wos/woscc/full-record/WOS:000318425600020.
[213] Ashrafi, Reza, Li, Ming, Azana, Jose. Tsymbol/s Optical Coding Based on Long-Period Gratings. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2013, 25(10): 910-913, https://www.webofscience.com/wos/woscc/full-record/WOS:000318547500004.
[214] Ashrafi, Reza, Li, Ming, LaRochelle, Sophie, Azana, Jose. Superluminal space-to-time mapping in grating-assisted co-directional couplers. OPTICS EXPRESS[J]. 2013, 21(5): 6249-6256, https://www.webofscience.com/wos/woscc/full-record/WOS:000316103300115.
[215] Li, Wei, Wang, Li Xian, Zheng, Jian Yu, Li, Ming, Zhu, Ning Hua. Photonic generation of ultrawideband signals with large carrier frequency tunability based on an optical carrier phase-shifting method. PHOTONICS JOURNAL, IEEE[J]. 2013, 5(5): 5502007-, http://ir.semi.ac.cn/handle/172111/24721.
[216] Li, Wei, Wang, Li Xian, Zheng, Jian Yu, Li, Ming, Zhu, Ning Hua. Photonic MMW-UWB Signal Generation via DPMZM-Based Frequency Up-Conversion. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2013, 25(19): 1875-1878, http://ir.semi.ac.cn/handle/172111/24724.
[217] Wang, Hui, Zheng, Jian Yu, Li, Wei, Wang, Li Xian, Li, Ming, Xie, Liang, Zhu, Ning Hua. Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source. OPTICS LETTERS[J]. 2013, 38(22): 4857-4860, http://ir.semi.ac.cn/handle/172111/24694.
[218] Zheng, Jianyu, Zhu, Ninghua, Wang, Lixian, Li, Ming, Wang, Hui, Li, Wei, Qi, Xiaoqiong, Liu, Jianguo. Spectral Sculpting of Chaotic-UWB Signals Using a Dual-Loop Optoelectronic Oscillator. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2013, 25(24): 2397-2400, http://ir.semi.ac.cn/handle/172111/24734.
[219] Hu, Yi, Li, Ming, Bongiovanni, Domenico, Clerici, Matteo, Yao, Jianping, Chen, Zhigang, Azana, Jose, Morandotti, Roberto. Spectrum to distance mapping via nonlinear Airy pulses. OPTICS LETTERS[J]. 2013, 38(3): 380-382, http://dx.doi.org/10.1364/OL.38.000380.
[220] Li Ming. Photonic generation of widely tunable and background-free binary phase-coded RF pulses. Optics Letters. 2013, [221] Li, Bo, Li, Ming, Lou, Shuqin, Azana, Jose. Linear optical pulse compression based on temporal zone plates. OPTICS EXPRESS[J]. 2013, 21(14): 16814-16830, http://ir.semi.ac.cn/handle/172111/24713.
[222] FernandezRuiz, Maria R, Li, Ming, Dastmalchi, Mansour, Carballar, Alejandro, LaRochelle, Sophie, Azana, Jose. Picosecond optical signal processing based on transmissive fiber Bragg gratings. OPTICS LETTERS[J]. 2013, 38(8): 1247-1249, https://www.webofscience.com/wos/woscc/full-record/WOS:000317580200022.
[223] Li Ming. My Research Life in Canada: A Tale of Two Labs. Optics and Photonics News. 2013, [224] Burla Maurizio, Cortes Luis Romero, Li Ming, Wang Xu, Chrostowski Lukas, Azana Jose, IEEE. On-Chip Ultra-Wideband Microwave Photonic Phase Shifter and True Time Delay Line based on a Single Phase-Shifted Waveguide Bragg Grating. 2013 IEEE INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS (MWP)null. 2013, 92-95, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000350285600024.
[225] Burla, Maurizio, Cortes, Luis Romero, Li, Ming, Wang, Xu, Chrostowski, Lukas, Azana, Jose. Integrated waveguide Bragg gratings for microwave photonics signal processing. OPTICSEXPRESS[J]. 2013, 21(21): 25120-25147, http://ir.semi.ac.cn/handle/172111/24732.
[226] FernandezRuiz, Maria R, Li, Ming, Azana, Jose. Time-domain holograms for generation and processing of temporal complex information by intensity-only modulation processes. OPTICS EXPRESS[J]. 2013, 21(8): 10314-10323, https://www.webofscience.com/wos/woscc/full-record/WOS:000318151600112.
[227] Li, Wei, Wang, Li Xian, Li, Ming, Zhu, Ning Hua. Single Phase Modulator for Binary Phase-Coded Microwave Signals Generation. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2013, 25(19): 1867-1870, https://www.webofscience.com/wos/woscc/full-record/WOS:000324585700003.
[228] Burla, Maurizio, Cortes, Luis Romero, Li, Ming, Wang, Xu, Chrostowski, Lukas, Azana, Jose. On-chip ultra-wideband microwave photonic phase shifter and true time delay line based on a single phase-shifted waveguide Bragg grating. 2013 IEEE INTERNATIONAL TOPICAL MEETING ON MICROWAVE PHOTONICS, MWP 2013[J]. 2013, 92-95, http://ir.semi.ac.cn/handle/172111/24833.
[229] Li Ming. Spectral sculpting of chaotic-UWB signals using a dual-loops optoelectronic oscillator. Photonics Technology Letters. 2013, [230] Li, Wei, Wang, Li Xian, Li, Ming, Zhu, Ning Hua. Single phase modulator for binary phase-coded microwave signals generation. PHOTONICS TECHNOLOGY LETTERS, IEEE[J]. 2013, 25(19): 1867 - 1870, http://ir.semi.ac.cn/handle/172111/24726.
[231] Li, Wei, Wang, Li Xian, Li, Ming, Wang, Hui, Zhu, Ning Hua. Photonic Generation of Binary Phase-Coded Microwave Signals With Large Frequency Tunability Using a Dual-Parallel Mach-Zehnder Modulator. IEEE PHOTONICS JOURNAL[J]. 2013, 5(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000325407400015.
[232] Li, Wei, Wang, Li Xian, Zheng, Jian Yu, Li, Ming, Zhu, Ning Hua. Photonic Generation of Ultrawideband Signals With Large Carrier Frequency Tunability Based on an Optical Carrier Phase-Shifting Method. IEEE PHOTONICS JOURNAL[J]. 2013, 5(5): https://doaj.org/article/83f700bd8a814197b520edf3967bd1eb.
[233] Wei Li, Li Xian Wang, Ming Li, Hui Wang, Ning Hua Zhu. Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator. PHOTONICS JOURNAL, IEEE[J]. 2013, 5(4): 5501507-, http://ir.semi.ac.cn/handle/172111/24718.
[234] Zou, Xihua, Li, Ming, Pan, Wei, Yan, Lianshan, Azana, Jose, Yao, Jianping. All-fiber optical filter with an ultranarrow and rectangular spectral response. OPTICS LETTERS[J]. 2013, 38(16): 3096-3098, http://ir.semi.ac.cn/handle/172111/24727.
[235] Li Ming. Single phase modulator for binary phase-coded microwave signals generation with large carrier frequency tunability. IEEEPHOTONTECHNOLLETT. 2013, [236] Ashrafi, Reza, Li, Ming, Azana, Jose. Coupling-Strength-Independent Long-Period Grating Designs for THz-Bandwidth Optical Differentiators. IEEE PHOTONICS JOURNAL[J]. 2013, 5(2): https://doaj.org/article/ff8beacc07c048d7b9a8642a28d42941.
[237] Li Ming. A tunable optoelectronic oscillator based on a high-Q spectrum-sliced photonic microwave transversal filter. IEEE Photonics Technology Letters. 2012, [238] Li, Ming, Jeong, HoeSeok, Azana, Jose, Ahn, TaeJung. 25-terahertz-bandwidth all-optical temporal differentiator. OPTICS EXPRESS[J]. 2012, 20(27): 28273-28280, https://www.webofscience.com/wos/woscc/full-record/WOS:000314911400031.
[239] Li, Wangzhe, Li, Ming, Yao, Jianping. A Narrow-Passband and Frequency-Tunable Microwave Photonic Filter Based on Phase-Modulation to Intensity-Modulation Conversion Using a Phase-Shifted Fiber Bragg Grating. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2012, 60(5): 1287-1296, https://www.webofscience.com/wos/woscc/full-record/WOS:000303519100012.
[240] Li, Ming, Dumais, Patrick, Ashrafi, Reza, Bazargani, Hamed Pishvai, Quelene, JeanBaptiste, Callender, Claire, Azana, Jose. Ultrashort Flat-Top Pulse Generation Using On-Chip CMOS-Compatible Mach-Zehnder Interferometers. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2012, 24(16): 1387-1389, https://www.webofscience.com/wos/woscc/full-record/WOS:000306921900001.
[241] Li Ming. Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a two-dimensional array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technology Letters. 2012, [242] Li Ming. Photonic generation of a precisely pi phase shifted binary phase-coded microwave signal. IEEE Photonics Technology Letters. 2012, [243] Malacarne, Antonio, Ashrafi, Reza, Li, Ming, LaRochelle, Sophie, Yao, Jianping, Azana, Jose. Single-shot photonic time-intensity integration based on a time-spectrum convolution system. OPTICS LETTERS[J]. 2012, 37(8): 1355-1357, https://www.webofscience.com/wos/woscc/full-record/WOS:000303661500024.
[244] Li, Ming, Han, Yichen, Pan, Shilong, Yao, Jianping. Experimental Demonstration of Symmetrical Waveform Generation Based on Amplitude-Only Modulation in a Fiber-Based Temporal Pulse Shaping System. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2011, 23(11): 715-717, https://www.webofscience.com/wos/woscc/full-record/WOS:000290629800003.
[245] Li, Ming, Yao, Jianping. Photonic Generation of Continuously Tunable Chirped Microwave Waveforms Based on a Temporal Interferometer Incorporating an Optically Pumped Linearly Chirped Fiber Bragg Grating. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2011, 59(12): 3531-3537, https://www.webofscience.com/wos/woscc/full-record/WOS:000298052000029.
[246] Li, Ming, Shao, LiYang, Albert, Jacques, Yao, Jianping. Continuously Tunable Photonic Fractional Temporal Differentiator Based on a Tilted Fiber Bragg Grating. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2011, 23(4): 251-253, https://www.webofscience.com/wos/woscc/full-record/WOS:000286676200004.
[247] Han, Yichen, Li, Ze, Pan, Shilong, Li, Ming, Yao, Jianping. Photonic-Assisted Tunable Microwave Pulse Fractional Hilbert Transformer Based on a Temporal Pulse Shaping System. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2011, 23(9): 570-572, https://www.webofscience.com/wos/woscc/full-record/WOS:000289478900003.
[248] Liu, Weilin, Li, Ming, Wang, Chao, Yao, Jianping. Real-Time Interrogation of a Linearly Chirped Fiber Bragg Grating Sensor Based on Chirped Pulse Compression With Improved Resolution and Signal-to-Noise Ratio. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2011, 29(9): 1239-1247, https://www.webofscience.com/wos/woscc/full-record/WOS:000289485600001.
[249] Li, Ming, Shao, LiYang, Albert, Jacques, Yao, Jianping. Tilted Fiber Bragg Grating for Chirped Microwave Waveform Generation. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2011, 23(5): 314-316, https://www.webofscience.com/wos/woscc/full-record/WOS:000288160600014.
[250] Li Ming. Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating. IEEE/OSA J. Lightw. Technol.. 2011, [251] Li, Ze, Li, Ming, Chi, Hao, Zhang, Xianmin, Yao, Jianping. Photonic Generation of Phase-Coded Millimeter-Wave Signal With Large Frequency Tunability Using a Polarization-Maintaining Fiber Bragg Grating. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS[J]. 2011, 21(12): 694-696, https://www.webofscience.com/wos/woscc/full-record/WOS:000297816800020.
[252] Li, Ming, Yao, Jianping. Multichannel Arbitrary-Order Photonic Temporal Differentiator for Wavelength-Division-Multiplexed Signal Processing Using a Single Fiber Bragg Grating. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2011, 29(17): 2506-2511, https://www.webofscience.com/wos/woscc/full-record/WOS:000294135100001.
[253] Li, Ming, Yao, Jianping. All-Optical Short-Time Fourier Transform Based on a Temporal Pulse-Shaping System Incorporating an Array of Cascaded Linearly Chirped Fiber Bragg Gratings. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2011, 23(20): 1439-1441, https://www.webofscience.com/wos/woscc/full-record/WOS:000295101100007.
[254] Li, Ze, Wang, Chao, Li, Ming, Chi, Hao, Zhang, Xianmin, Yao, Jianping. Instantaneous Microwave Frequency Measurement Using a Special Fiber Bragg Grating. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS[J]. 2011, 21(1): 52-54, https://www.webofscience.com/wos/woscc/full-record/WOS:000286009300018.
[255] Chen, X, Kameyama, T, Li, M, Li, H. Multiple dual-wavelengths fiber ring laser utilizing a phase-only sampled fiber Bragg grating with multiple phase-shifts inserted. APPLIED PHYSICS B-LASERS AND OPTICS[J]. 2010, 101(1-2): 115-118, https://www.webofscience.com/wos/woscc/full-record/WOS:000282694300016.
[256] Li, Ming, Yao, Jianping. Experimental Demonstration of a Wideband Photonic Temporal Hilbert Transformer Based on a Single Fiber Bragg Grating. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2010, 22(21): 1559-1561, https://www.webofscience.com/wos/woscc/full-record/WOS:000283368700002.
[257] Wang, Chao, Li, Ming, Yao, Jianping. Continuously Tunable Photonic Microwave Frequency Multiplication by Use of an Unbalanced Temporal Pulse Shaping System. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2010, 22(17): 1285-1287, https://www.webofscience.com/wos/woscc/full-record/WOS:000283059900001.
[258] Li, Ming, Yao, Jianping. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. OPTICS LETTERS[J]. 2010, 35(2): 223-225, https://www.webofscience.com/wos/woscc/full-record/WOS:000273879200044.
[259] Li, Ming, Wang, Chao, Li, Wangzhe, Yao, Jianping. An Unbalanced Temporal Pulse-Shaping System for Chirped Microwave Waveform Generation. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2010, 58(11): 2968-2975, https://www.webofscience.com/wos/woscc/full-record/WOS:000284218500027.
[260] Li, Ming, Fujii, Takeo, Li, Hongpu, Painchaud, Yves. Proposal and realization for a broadband all-fiber non-uniformly spaced multi-channel optical filter. OPTICS COMMUNICATIONS[J]. 2009, 282(5): 879-882, http://dx.doi.org/10.1016/j.optcom.2008.11.073.
[261] Li, Ming, Chen, Xuxing, Fujii, Takeo, Kudo, Yoshitaka, Li, Hongpu, Painchaud, Yves. Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating. OPTICS LETTERS[J]. 2009, 34(11): 1717-1719, https://www.webofscience.com/wos/woscc/full-record/WOS:000267401200035.
[262] Li, Ming, Fujii, Takeo, Li, Hongpu. Multiplication of a Multichannel Notch Filter Based on a Phase-Shifted Phase-Only Sampled Fiber Bragg Grating. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2009, 21(13): 926-928, https://www.webofscience.com/wos/woscc/full-record/WOS:000268019300010.
[263] Li Ming. Advanced design of complex fiber Bragg grating for multi-channel triangular filter. Journal of the Optical Society of America B. 2009, [264] Li, Ming, Chen, Xuxing, Hayashi, Junya, Li, Hongpu. Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method. OPTICS EXPRESS[J]. 2009, 17(10): 8382-8394, https://www.webofscience.com/wos/woscc/full-record/WOS:000266381900069.
[265] Li Ming. Ultrahigh channel-count phase-only sampled fiber Bragg grating covering the S-, C- and L- band. Optics Letters. 2009, [266] Li, Ming, Li, Hongpu. Influences of writing-beam size on the performances of dispersion-free multi-channel fiber Bragg grating. OPTICAL FIBER TECHNOLOGY[J]. 2009, 15(1): 33-38, http://dx.doi.org/10.1016/j.yofte.2008.04.003.
[267] Li Ming. Arbitrary-order all-fiber temporal differentiators based on fiber Bragg gratings: design and experimental demonstration. Optics Express. 2009, [268] Li Ming. Multi-channel notch filter based on a phase-shift phase-only sampled fiber Bragg grating. Optics Express. 2008, [269] Li, M, Takahagi, T, Ogusu, K, Li, H, Painchaud, Y. A comprehensive study of the chromatic dispersion measurement of the multi-channel fiber Bragg grating based on an asymmetrical Sagnac loop interferometer. OPTICS COMMUNICATIONS[J]. 2008, 281(20): 5165-5172, http://dx.doi.org/10.1016/j.optcom.2008.07.019.
[270] Li Ming. Reflection equalization of the simultaneous dispersion and dispersion-slope compensation based on a phase-only sampled fiber Bragg grating. Optics Express. 2008, [271] Li, Hongpu, Li, Ming, Sheng, Yunlong, Rothenberg, Joshua E. Advances in the design and fabrication of high-channel-count fiber Bragg gratings. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2007, 25(9): 2739-2750, https://www.webofscience.com/wos/woscc/full-record/WOS:000249350000054.
[272] Li, Ming, Li, Hongpu. Chromatic dispersion measurement for multichannel FBG based on a novel asymmetrical sagnac loop interferometer. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2007, 19(17-20): 1601-1603, http://dx.doi.org/10.1109/LPT.2007.905129.
[273] Li, HP, Li, M, Ogusu, K, Sheng, YL, Rothenberg, JE. Optimization of a continuous phase-only sampling for high channel-count fiber Bragg gratings. OPTICS EXPRESS[J]. 2006, 14(8): 3152-3160, https://www.webofscience.com/wos/woscc/full-record/WOS:000237144700006.
[274] Li, M, Wang, M, Li, HP. Optical MEMS pressure sensor based on Fabry-Perot interferometry. OPTICS EXPRESS[J]. 2006, 14(4): 1497-1504, https://www.webofscience.com/wos/woscc/full-record/WOS:000235424400018.
[275] Li Ming, Wang Ming, Rong Hua, Li HongPu. A novel analytical approach for multi-layer diaphragm-based optical micro electromechanical-system pressure sensors. CHINESE PHYSICS LETTERS[J]. 2006, 23(5): 1211-1214, https://www.webofscience.com/wos/woscc/full-record/WOS:000237551700041.