李明  男  博导  中国科学院半导体研究所
电子邮件: ml@semi.ac.cn
通信地址: 北京市海淀区清华东路甲35号中国科学院半导体研究所11号楼5
邮政编码: 100083

招生信息

   
招生专业
080901-物理电子学
招生方向
光电子学

出版信息

   
发表论文
[1] Guangyi Li, Difei Shi, Zhiyao Jia, Lu Wang, Ming Li, Ning Hua Zhu, Wei Li. Photonic Scheme for the Generation of Background-Free Phase-Coded Microwave Pulses and Dual-Chirp Microwave Waveforms. IEEE Photonics Journal[J]. 2021, 13(2): 1-8, https://doaj.org/article/79749a81d1d940acbfd382c989a9f88f.
[2] Li, Yana, Hao, Tengfei, Li, Guozheng, Wang, Lu, Li, Wei, Dai, Yitang, Li, Ming. Photonic Generation of Phase-Coded Microwave Signals Based on Fourier Domain Mode Locking. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2021, 33(9): 433-436, https://www.webofscience.com/wos/woscc/full-record/WOS:000637180900003.
[3] Lin, Zhixing, Sun, Shuqian, Azana, Jose, Li, Wei, Li, Ming. High-speed serial deep learning through temporal optical neurons. OPTICS EXPRESS[J]. 2021, 29(13): 19392-19402, http://dx.doi.org/10.1364/OE.423670.
[4] Li, Ming, Hao, Tengfei, Li, Wei, Dai, Yitang. Tutorial on optoelectronic oscillators. APL PHOTONICS[J]. 2021, 6(6): http://dx.doi.org/10.1063/5.0050311.
[5] Li Ming. Photonic generation of multi-band phase-coded microwave pulses by polarization manipulation of optical signals. Journal of Lightwave Technology. 2021, [6] Shi, Difei, Li, Guangyi, Jia, Zhiyao, Wen, Jun, Li, Ming, Zhu, Ninghua, Li, Wei. Accuracy enhanced microwave frequency measurement based on the machine learning technique. OPTICS EXPRESS[J]. 2021, 29(13): 19515-19524, http://dx.doi.org/10.1364/OE.429904.
[7] Fan, Xiaojie, Zhu, Sha, Xiao, Ye, Li, Ming, Zhu, Ning Hua, Li, Wei. Generation and anti-dispersion transmission of quadrupling-bandwidth dual-chirp microwave waveform based on a polarization-division multiplexing Mach-Zehnder modulator. OPTICAL ENGINEERING[J]. 2021, 60(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000625363000028.
[8] Shi, Difei, Wen, Jun, Jia, Zhiyao, Li, Guangyi, Wang, Xin, Li, Ming, Zhu, Ninghua, Li, Wei. Reconfigurable Photonic generation and transmission of multi-format radar signals. OPTICS COMMUNICATIONS[J]. 2021, 488: http://dx.doi.org/10.1016/j.optcom.2021.126855.
[9] Dapeng Liu, Jian Tang, Yao Meng, Wei Li, Ninghua Zhu, Ming Li. Ultra-low V_(pp)and high-modulation-depth InP-based electro-optic microring modulator. 半导体学报:英文版. 2021, 42(8): 55-59, [10] Ge, Zengting, Xiao, Ye, Hao, Tengfei, Li, Wei, Li, Ming. Tb/s Fast Random Bit Generation Based on a Broadband Random Optoelectronic Oscillator. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2021, 33(22): 1223-1226, http://dx.doi.org/10.1109/LPT.2021.3113775.
[11] Fan, Xiaojie, Zhu, Sha, Du, Jinfeng, Li, Ming, Zhu, Ning Hua, Li, Wei. Photonic generation of quadruple bandwidth dual-band dual-chirp microwave waveforms with immunity to power fading. OPTICS LETTERS[J]. 2021, 46(4): 868-871, https://www.webofscience.com/wos/woscc/full-record/WOS:000618473600043.
[12] Wang, Lu, Hao, Tengfei, Li, Guangyi, Sun, Wenhui, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic Generation and Transmission of Dual-Band Dual-Chirp Microwave Waveforms at C-Band and X-Band With Elimination of Power Fading. IEEE PHOTONICS JOURNAL[J]. 2021, 13(1): https://doaj.org/article/f941292fc9604a74adce1bd935856922.
[13] Li, Guozheng, Hao, Tengfei, Li, Wei, Li, Ming. Bandwidth superposition of linearly chirped microwave waveforms based on a Fourier domain mode-locked optoelectronic oscillator. OPTICS EXPRESS[J]. 2021, 29(22): 36977-36987, [14] Meng, Yao, Hao, TengFei, Li, Wei, Zhu, NingHua, Li, Ming. Microwave photonic injection locking frequency divider based on a tunable optoelectronic oscillator. OPTICS EXPRESS[J]. 2021, 29(2): 684-691, https://www.webofscience.com/wos/woscc/full-record/WOS:000609227300070.
[15] Zhiyao Jia, Guangyi Li, Difei Shi, Ming Li, Ning Hua Zhu, Wei Li. Photonic Image Rejection Mixer Based on Polarization Manipulation of a Broadband Optical Source. IEEE Photonics Journal[J]. 2021, 13(2): 1-10, https://doaj.org/article/a76bed0eed3b4f0989b3e4afd614cf74.
[16] Yao Meng, Ye Xiao, Wei Li, Nuannuan Shi, Ming Li. An Up/Downstream Shared Optical Beam Forming Network for Remote Phased Array Antenna. IEEE Photonics Journal[J]. 2021, 13(3): 1-9, https://doaj.org/article/31d5603a21dd476195fda5971998834d.
[17] Wen, Jun, Shi, Difei, Jia, Zhiyao, Li, Guangyi, Wang, Xin, Li, Ming, Zhu, Ninghua, Li, Wei. Precise Identification of Wideband Multiple Microwave Frequency Based on Self-Heterodyne Low-Coherence Interferometry. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2021, 39(10): 3169-3176, http://dx.doi.org/10.1109/JLT.2021.3064866.
[18] Xiang, Xiao, Dong, Ruifang, Quan, Runai, Jin, Yaqing, Yang, Ye, Li, Ming, Liu, Tao, Zhang, Shougang. Hybrid frequency-time spectrograph for the spectral measurement of the two-photon state. OPTICS LETTERS[J]. 2020, 45(11): 2993-2996, https://www.webofscience.com/wos/woscc/full-record/WOS:000537763300012.
[19] Shi, Difei, Wen, Jun, Zhu, Sha, Jia, Zhiyao, Shi, Zhan, Li, Ming, Zhu, Ninghua, Li, Wei. Instantaneous microwave frequency measurement based on non-sliced broadband optical source. OPTICS COMMUNICATIONS[J]. 2020, 458: http://dx.doi.org/10.1016/j.optcom.2019.124758.
[20] Wen, Jun, Shi, Difei, Jia, Zhiyao, Li, Ming, Zhu, Ning Hua, Li, Wei. Simultaneous microwave frequency conversion and idler filtering based on polarization manipulating of an amplified spontaneous emission source. OPTICS AND LASER TECHNOLOGY[J]. 2020, 131: http://dx.doi.org/10.1016/j.optlastec.2020.106388.
[21] Shi, Nuannuan, Hao, Tengfei, Li, Wei, Zhu, Ninghua, Li, Ming. Dual-Functional Transmitter for Simultaneous RF/LFM Signal Using a Monolithic Integrated DFB Array. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2020, 32(5): 239-242, https://www.webofscience.com/wos/woscc/full-record/WOS:000516616900003.
[22] Zhu, Sha, Fan, Xiao Jie, Xu, Bo Rui, Sun, Wen Hui, Li, Ming, Zhu, Ning Hua, Li, Wei. Polarization Manipulated Fourier Domain Mode-Locked Optoelectronic Oscillator. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2020, 38(19): 5270-5277, https://www.webofscience.com/wos/woscc/full-record/WOS:000575409900005.
[23] Zengting Ge, Tengfei Hao, Jos Capmany, Wei Li, Ninghua Zhu, Ming Li. Broadband random optoelectronic oscillator. NATURE COMMUNICATIONS[J]. 2020, 11(1): http://dx.doi.org/10.1038/s41467-020-19596-x.
[24] Hao, Tengfei, Cen, Qizhuang, Guan, Shanhong, Li, Wei, Dai, Yitang, Zhu, Ninghua, Li, Ming. Optoelectronic parametric oscillator. LIGHT-SCIENCE & APPLICATIONS[J]. 2020, 9(1): https://doaj.org/article/7b30b197ce874edd9c5a7273746dbd40.
[25] Zhu, Sha, Fan, Xiaojie, Li, Ming, Zhu, Ning Hua, Li, Wei. Dual-chirp microwave waveform transmitter with elimination of power fading for one-to-multibase station fiber transmission. OPTICS LETTERS[J]. 2020, 45(5): 1285-1288, https://www.webofscience.com/wos/woscc/full-record/WOS:000522833500062.
[26] Lin, Zhixing, Sun, Shuqian, Azana, Jose, Li, Wei, Zhu, Ninghua, Li, Ming. Temporal optical neurons for serial deep learning. 2020, http://arxiv.org/abs/2009.03213.
[27] Yang, Ye, Xiang, Xiao, Hou, Feiyan, Quan, Runai, Li, Baihong, Li, Wei, Zhu, Ninghua, Liu, Tao, Zhang, Shougang, Dong, Ruifang, Li, Ming. Inherent resolution limit on nonlocal wavelength-to-time mapping with entangled photon pairs. OPTICS EXPRESS[J]. 2020, 28(5): 7488-7497, https://www.webofscience.com/wos/woscc/full-record/WOS:000518435600126.
[28] Zhu, Sha, Fan, Xiaojie, Li, Ming, Zhu, Ning Hua, Li, Wei. Optically controlled multi-carrier phase-shift-keying microwave signal generation by using cross-polarization modulation in highly nonlinear fiber. OPTICS COMMUNICATIONS[J]. 2020, 469: http://dx.doi.org/10.1016/j.optcom.2020.125805.
[29] Jian Tang, Beibei Zhu, Weifeng Zhang, Ming Li, Shilong Pan, Jianping Yao. Hybrid Fourier-domain mode-locked laser for ultra-wideband linearly chirped microwave waveform generation. Nature Communications[J]. 2020, 11(1): 1-8, http://dx.doi.org/10.1038/s41467-020-17264-8.
[30] Li, Guangyi, Wang, Lu, Zhu, Sha, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic Generation of Dual-Chirp Microwave Waveforms Based on a Tunable Optoelectronic Oscillator. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2020, 32(10): 599-602, https://www.webofscience.com/wos/woscc/full-record/WOS:000529919900003.
[31] Hao, Tengfei, Liu, Yanzhong, Tang, Jian, Cen, Qizhuang, Li, Wei, Zhu, Ninghua, Dai, Yitang, Capmany, Jose, Yao, Jianping, Li, Ming. Recent advances in optoelectronic oscillators. ADVANCED PHOTONICSnull. 2020, 2(4): 4-23, http://lib.cqvip.com/Qikan/Article/Detail?id=00002HKNKP507JP0MPDO5JP1MNR.
[32] Cen, Qizhuang, Hao, Tengfei, Ding, Hao, Guan, Shanhong, Qin, Zhiqiang, Xu, Kun, Dai, Yitang, Li, Ming. Microwave Photonic Ising Machine. 2020, http://arxiv.org/abs/2011.00064.
[33] Zhu, Sha, Fan, Xiaojie, Li, Ming, Zhu, Ning Hua, Li, Wei. Microwave photonic frequency down-conversion and channel switching for satellite communication. OPTICS LETTERS[J]. 2020, 45(18): 5000-5003, https://www.webofscience.com/wos/woscc/full-record/WOS:000577110800010.
[34] Xiao, Ye, Sun, Shuqian, Li, Wei, Zhu, Ninghua, Li, Ming. Ultra-Fast Wavemeter for CW Laser Based on Wavelength-to-Time Mapping. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2019, 37(11): 2661-2667, https://www.webofscience.com/wos/woscc/full-record/WOS:000466932100021.
[35] Su, Tao, Wen, Jun, Shi, Zhan, Li, Ming, Chen, Wei, Zhu, Ninghua, Li, Wei. Wideband optical vector network analyzer based on polarization modulation. OPTICS COMMUNICATIONS[J]. 2019, 437: 67-70, http://dx.doi.org/10.1016/j.optcom.2018.12.046.
[36] Liu, Dapeng, Sun, Shuqian, Yin, Xiaojie, Sun, Bingli, Sun, Jingwen, Liu, Yang, Li, Wei, Zhu, Ninghua, Li, Ming. Large-capacity and low-loss integrated optical buffer. OPTICS EXPRESS[J]. 2019, 27(8): 11585-11593, [37] Zhu, Sha, Li, Ming, Wang, Xin, Zhu, Ning Hua, Cao, Zi Zheng, Li, Wei. Photonic generation of background-free binary phase-coded microwave pulses. OPTICS LETTERS[J]. 2019, 44(1): 94-97, [38] Li Ming. Monolithic integrated 4 25 Gbs transmitter optical subassembly at 1.55 μm. Optics Communications. 2019, [39] Hao, Tengfei, Tang, Jian, Shi, Nuannuan, Li, Wei, Zhu, Ninghua, Li, Ming. Dual-chirp Fourier domain mode-locked optoelectronic oscillator. OPTICS LETTERS[J]. 2019, 44(8): 1912-1915, [40] Hao, Tengfei, Tang, Jian, Li, Wei, Zhu, Ninghua, Li, Ming. Harmonically Fourier Domain Mode-Locked Optoelectronic Oscillator. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2019, 31(6): 427-430, [41] Lin, Zhixing, Sun, Shuqian, Li, Wei, Zhu, Ninghua, Li, Ming. Temporal Cloak Without Synchronization. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2019, 31(5): 373-376, https://www.webofscience.com/wos/woscc/full-record/WOS:000460676200004.
[42] Wang, Guangqiang, Hao, Tengfei, Li, Wei, Zhu, Ninghua, Li, Ming. Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator. OPTICS COMMUNICATIONS[J]. 2019, 439: 133-136, http://dx.doi.org/10.1016/j.optcom.2019.01.014.
[43] Zhu, Sha, Li, Ming, Zhu, Ning Hua, Li, Wei. Chromatic-dispersion-induced power-fading suppression technique for bandwidth-quadrupling dual-chirp microwave signals over fiber transmission. OPTICS LETTERS[J]. 2019, 44(4): 923-926, https://www.webofscience.com/wos/woscc/full-record/WOS:000458786800051.
[44] Shi, Zhan, Wen, Jun, Jia, Zhiyao, Shi, Difei, Li, Ming, Zhu, Ninghua, Li, Wei. Tunable single notch microwave photonic filter based on delay lines. OPTICS COMMUNICATIONS[J]. 2019, 448: 15-18, http://dx.doi.org/10.1016/j.optcom.2019.04.091.
[45] Wen, Jun, Shi, Difei, Jia, Zhiyao, Shi, Zhan, Li, Ming, Zhu, Ning Hua, Li, Wei. Accuracy-Enhanced Wideband Optical Vector Network Analyzer Based on Double-Sideband Modulation. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2019, 37(13): 2920-2926, https://www.webofscience.com/wos/woscc/full-record/WOS:000469333700005.
[46] Shi, Nuannuan, Li, Wei, Zhu, Ninghua, Li, Ming. Optically controlled phase array antenna Invited. CHINESE OPTICS LETTERS[J]. 2019, 17(5): http://lib.cqvip.com/Qikan/Article/Detail?id=7002260971.
[47] Li Ming. Wideband and Continuously Tunable Microwave Photonic Phase Shifter Based on an Active InP/InGaAsP Microring Resonator. IEEE International Topical meeting on Microwave Photonics. 2019, [48] Shi, Nuannuan, Zhu, Xinyi, Sun, Shuqian, Li, Wei, Zhu, Ninghua, Li, Ming. Fast-Switching Microwave Photonic Filter Using an Integrated Spectrum Shaper. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2019, 31(3): 269-272, [49] Yang, Ye, Liu, Yang, Sun, Shugian, Li, Wei, Zhu, Ninghua, Li, Ming. Optical phase matching of high-order azimuthal WGM in a water droplet resonator. OPTICS EXPRESS[J]. 2019, 27(23): 33436-33444, [50] Shao, Yuchen, Han, Xiuyou, Li, Ming, Liu, Qi, Zhao, Mingshan. Microwave Downconversion by a Tunable Optoelectronic Oscillator Based on PS-FBG and Polarization-Multiplexed Dual loop. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2019, 67(5): 2095-2102, [51] Zhu, Sha, Gao, Mengxiang, Li, Ming, Zhu, Ninghua, Li, Wei. Photonic-based microwave hybrid combiner with arbitrarily tunable phase shift and power combining ratio. OPTICS LETTERS[J]. 2019, 44(8): 2012-2015, https://www.webofscience.com/wos/woscc/full-record/WOS:000464601900033.
[52] Zhu, Sha, Li, Ming, Wang, Xin, Zhu, Ning Hua, Li, Wei. 1 x N hybrid radio frequency photonic splitter based on a dual-polarization dual-parallel Mach Zehnder modulator. OPTICS COMMUNICATIONS[J]. 2019, 431: 10-13, https://www.webofscience.com/wos/woscc/full-record/WOS:000448036300002.
[53] Wen, Jun, Shi, Difei, Jia, Zhiyao, Li, Ming, Zhu, Ning Hua, Li, Wei. Tunable Single-Notch Microwave Photonic Filter Based on Nonsliced ASE Source. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2019, 31(10): 731-734, https://www.webofscience.com/wos/woscc/full-record/WOS:000467571000003.
[54] Shi, Nuannuan, Song, Qi, Tang, Jian, Li, Wei, Zhu, Ninghua, Li, Ming. A switchable self-interference cancellation system for dual-band IBFD system using a monolithic integrated DML array. OPTICS COMMUNICATIONS[J]. 2019, 447: 55-60, http://dx.doi.org/10.1016/j.optcom.2019.04.075.
[55] Hao, Tengfei, Tang, Jian, Shi, Nuannuan, Li, Wei, Zhu, Ninghua, Li, Ming. Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold. OPTICS LETTERS[J]. 2019, 44(12): 3062-3065, https://www.webofscience.com/wos/woscc/full-record/WOS:000471636700030.
[56] Shi, Nuannuan, Hao, Tengfei, Li, Wei, Zhu, Ninghua, Li, Ming. A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating. OPTICS COMMUNICATIONS[J]. 2018, 407: 27-32, http://dx.doi.org/10.1016/j.optcom.2017.08.073.
[57] Tang, Jian, Hao, Tengfei, Li, Wei, Domenech, David, Banos, Rocio, Munoz, Pascual, Zhu, Ninghua, Capmany, Jose, Li, Ming. Integrated optoelectronic oscillator. OPTICS EXPRESS[J]. 2018, 26(9): 12257-12265, https://www.webofscience.com/wos/woscc/full-record/WOS:000431718300105.
[58] Hao, Tengfei, Tang, Jian, Li, Wei, Zhu, Ninghua, Li, Ming. Microwave photonics frequency-to-time mapping based on a Fourier domain mode locked optoelectronic oscillator. OPTICS EXPRESS[J]. 2018, 26(26): 33582-33591, https://www.webofscience.com/wos/woscc/full-record/WOS:000454149000010.
[59] Shi, Zhan, Zhu, Sha, Li, Ming, Zhu, Ning Hua, Li, Wei. Reconfigurable microwave photonic mixer based on dual-polarization dual-parallel Mach-Zehnder modulator. OPTICS COMMUNICATIONS[J]. 2018, 428: 131-135, http://dx.doi.org/10.1016/j.optcom.2018.07.055.
[60] Zhu, Xinyi, Sun, Hao, Li, Wei, Zhu, Ninghua, Li, Ming. Arbitrary Waveform Generation Based on Dispersion-Free Wavelength-to-Time Mapping Technique. IEEE PHOTONICS JOURNAL[J]. 2018, 10(1): https://doaj.org/article/fcfc63d68c184d34b5a429899ddc764a.
[61] Li, Ming, Sun, Shuqian, Li, Bo, Asghari, Hossein, Deng, Ye, Li, Wei, Zhu, Ninghua. Time-bandwidth compression of microwave signals. OPTICS EXPRESS[J]. 2018, 26(2): 990-999, https://www.webofscience.com/wos/woscc/full-record/WOS:000422935900056.
[62] Sun, Hao, Zhu, Xinyi, Li, Wei, Zhu, Ninghua, Li, Ming. Real-Time Optical Spectrum Fourier Transform With Time-Bandwidth Product Compression. IEEE PHOTONICS JOURNAL[J]. 2018, 10(1): https://doaj.org/article/bf28dc21a3774e7783e90b93860b17cf.
[63] Liu, Yanzhong, Hao, Tengfei, Li, Wei, Capmany, Jose, Zhu, Ninghua, Li, Ming. Observation of parity-time symmetry in microwave photonics. LIGHT-SCIENCE & APPLICATIONS[J]. 2018, 7(1): https://doaj.org/article/fed099dda7fb40b581787db66a030b8c.
[64] Zhu, Sha, Li, Ming, Wang, Xin, Zhu, Ning Hua, Li, Wei. Photonic Generation of Ultra-Wideband Signal by Truncating a Continuous Wave Into a Pulse. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2018, 30(21): 1862-1865, https://www.webofscience.com/wos/woscc/full-record/WOS:000450153800012.
[65] Tengfei Hao, Qizhuang Cen, Yitang Dai, Jian Tang, Wei Li, Jianping Yao, Ninghua Zhu, Ming Li. Breaking the limitation of mode building time in an optoelectronic oscillator. NATURE COMMUNICATIONS[J]. 2018, 9(1): https://doaj.org/article/dd96fee27e684835be4c897969c0ec96.
[66] Wang, Ling, Yang, Chengwu, Li, Ming, Zhu, Ninghua, Li, Wei. Switchable microwave photonic filter based on a dual-parallel Mach-Zehnder modulator. APPLIED OPTICS[J]. 2018, 57(16): 4537-4541, https://www.webofscience.com/wos/woscc/full-record/WOS:000433959100025.
[67] Zhu, Sha, Shi, Zhan, Li, Ming, Zhu, Ning Hua, Li, Wei. Simultaneous frequency upconversion and phase coding of a radio-frequency signal for photonic radars. OPTICS LETTERS[J]. 2018, 43(3): 583-586, https://www.webofscience.com/wos/woscc/full-record/WOS:000423776600060.
[68] Li Ming. Towards monolithic integration of OEOs: From systems to chips. Journal of Lightwave Technology. 2018, [69] Sun, Hao, Zhu, Xinyi, Li, Wei, Zhu, Ninghua, Li, Ming. Reconfigurable microwave signal processor with a phase shift of pi. OPTICS EXPRESS[J]. 2018, 26(8): 10358-10370, https://www.webofscience.com/wos/woscc/full-record/WOS:000430337700084.
[70] Wen, Hua Shun, Li, Ming, Li, Wei, Zhu, Ning Hua. Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated Brillouin scattering and a fiber ring resonator. OPTICS LETTERS[J]. 2018, 43(19): 4659-4662, https://www.webofscience.com/wos/woscc/full-record/WOS:000446024300029.
[71] Zhu, Ning Hua, Shi, Zhan, Zhang, Zhi Ke, Zhang, Yi Ming, Zou, Can Wen, Zhao, Ze Ping, Liu, Yu, Li, Wei, Li, Ming. Directly Modulated Semiconductor Lasers. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS[J]. 2018, 24(1): [72] Hao, Tengfei, Tang, Jian, Li, Wei, Zhu, Ninghua, Li, Ming. Tunable Fourier Domain Mode-Locked Optoelectronic Oscillator Using Stimulated Brillouin Scattering. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2018, 30(21): 1842-1845, [73] Li, Ming, Sun, Shuqian, Malacarne, Antonio, LaRochelle, Sophie, Yao, Jianping, Zhu, Ninghua, Azana, Jose. Reconfigurable single-shot incoherent optical signal processing system for chirped microwave signal compression. SCIENCE BULLETIN[J]. 2017, 62(4): 242-248, http://dx.doi.org/10.1016/j.scib.2017.01.021.
[74] Li Ming. Multichannel ulter-narrow, Flat-Top Optical Filters Based on Multiple-Phase-Shifted and Phase Sampled FBG. IEEE Journal of Quantum Electronics. 2017, [75] Hervas, Javier, Lavinia Ricchiuti, Amelia, Li, Wei, Zhu, Ning Hua, FernandezPousa, Carlos R, Sales, Salvador, Li, Ming, Capmany, Jose. Microwave Photonics for Optical Sensors. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS[J]. 2017, 23(2): https://www.webofscience.com/wos/woscc/full-record/WOS:000423948800001.
[76] Zhang, Lihong, Li, Ming, Shi, Nuannuan, Zhu, Xinyi, Sun, Shuqian, Tang, Jian, Li, Wei, Zhu, Ninghua. Photonic true time delay beamforming technique with ultra-fast beam scanning. OPTICS EXPRESS[J]. 2017, 25(13): 14524-14532, https://www.webofscience.com/wos/woscc/full-record/WOS:000404189800057.
[77] Yan, Haitao, Han, Daofu, Li, Ming, Lin, Bo. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating. JOURNAL OF NANOPHOTONICS[J]. 2017, 11(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000399755000009.
[78] Jun, Wen, Wang, Ling, Yang, Chengwu, Li, Ming, Zhu, Ning Hua, Guo, Jinjin, Xiong, Liangming, Li, Wei. Optical vector network analyzer based on double-sideband modulation. OPTICS LETTERS[J]. 2017, 42(21): 4426-4429, https://www.webofscience.com/wos/woscc/full-record/WOS:000414097200048.
[79] Shi, Zhan, Wang, Ling, Yang, Cheng Wu, Li, Ming, Zhu, Ning Hua, Li, Wei. Multifunctional microwave photonic signal processor based on dual-parallel Mach-Zehnder modulator and stimulated Brillouin scattering. OPTICAL ENGINEERING[J]. 2017, 56(9): https://www.webofscience.com/wos/woscc/full-record/WOS:000413588800038.
[80] Weilin Liu, Ming Li, Robert S Guzzon, Erik J Norberg, John S Parker, Mingzhi Lu, Larry A Coldren, Jianping Yao. An integrated parity-time symmetric wavelength-tunable single-mode microring laser. NATURE COMMUNICATIONS[J]. 2017, 8(1): https://doaj.org/article/4b93ef4cf3c243d2bce0b603e7d22f5f.
[81] Deng, Ye, Li, Ming, Shi, Nuannuan, Tang, Jian, Sun, Shuqian, Zhang, Lihong, Li, Wei, Zhu, Ninghua. Fully characterization of an active optical filter based on an equivalent-phase-shifted DFB-SOA. OPTICS COMMUNICATIONS[J]. 2016, 376: 1-5, http://dx.doi.org/10.1016/j.optcom.2016.05.005.
[82] Sun, Shuqian, Deng, Ye, Zhu, Ninghua, Li, Ming. Tunable fractional-order photonic differentiator using a distributed feedback semiconductor optical amplifier. OPTICAL ENGINEERING[J]. 2016, 55(3): http://ir.semi.ac.cn/handle/172111/27899.
[83] Shi, Nuannuan, Li, Ming, Deng, Ye, Zhang, Lihong, Sun, Shuqian, Tang, Jian, Li, Wei, Zhu, Ninghua. Experimental demonstration of a multi-target detection technique using an X-band optically steered phased array radar. OPTICS EXPRESS[J]. 2016, 24(13): 14438-14450, http://ir.semi.ac.cn/handle/172111/27887.
[84] Liu, Weilin, Romeira, Bruno, Li, Ming, Guzzon, Robert S, Norberg, Erik J, Parker, John S, Coldren, Larry A, Yao, Jianping. A Wavelength Tunable Optical Buffer Based on Self-Pulsation in an Active Microring Resonator. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2016, 34(14): 3466-3472, http://ir.semi.ac.cn/handle/172111/27880.
[85] Tu, Xin, Li, Ming, Xing, Jiejiang, Fu, Hongyan, Geng, Dongyu. Compact PSR Based on an Asymmetric Bi-level Lateral Taper in an Adiabatic Directional Coupler. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2016, 34(3): 985-991, https://www.webofscience.com/wos/woscc/full-record/WOS:000374013600018.
[86] Maurizio Burla, Xu Wang, Ming Li, Lukas Chrostowski, Jos Azaa. Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip. NATURE COMMUNICATIONS[J]. 2016, 7(1): http://ir.semi.ac.cn/handle/172111/27900.
[87] Li Ming. High-speed tunable broadband microwave photonics phase shifter based on an active microring resonator. Wireless and Optical Communication Conference (WOCC). 2016, [88] Tang, Jian, Li, Ming, Sun, Shuqian, Li, Zhiyong, Li, Wei, Zhu, Ninghua. Broadband microwave photonic phase shifter based on a feedback-coupled microring resonator with small radio frequency power variations. OPTICS LETTERS[J]. 2016, 41(20): 4609-4612, http://ir.semi.ac.cn/handle/172111/27885.
[89] Li, Ming. Taming electric discharges using optical beams. SCIENCE BULLETINnull. 2016, 61(2): 114-115, http://dx.doi.org/10.1007/s11434-015-0934-5.
[90] Li, Ming, Chen, Xiangfei, Su, Yikai, Wang, Xingjun, Chen, Minghua, Dai, Daoxin, Liu, Jianguo, Zhu, Ning Hua. Photonic Integration Circuits in China. IEEE JOURNAL OF QUANTUM ELECTRONICS[J]. 2016, 52(1): http://dx.doi.org/10.1109/JQE.2015.2504087.
[91] Li, Ming, Deng, Ye, Tang, Jian, Sun, Shuqian, Yao, Jianping, Azana, Jose, Zhu, Ninghua. Reconfigurable Optical Signal Processing Based on a Distributed Feedback Semiconductor Optical Amplifier. SCIENTIFIC REPORTS[J]. 2016, 6: http://ir.semi.ac.cn/handle/172111/27895.
[92] Liu, Weilin, Li, Ming, Guzzon, Robert S, Norberg, Erik J, Parker, John S, Lu, Mingzhi, Coldren, Larry A, Yao, Jianping. A fully reconfigurable photonic integrated signal processor. NATURE PHOTONICS[J]. 2016, 10(3): 190-+, http://ir.semi.ac.cn/handle/172111/27881.
[93] Wang, Wen Ting, Li, Ming, Sun, Shu Qian, Wang, Chao, Deng, Ye, Zhu, Ning Hua. Background-Free Microwave Signal Generation Based on Unbalanced Temporal Pulse Shaping. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2016, 28(8): 903-906, https://www.webofscience.com/wos/woscc/full-record/WOS:000372637700021.
[94] Tu Xin, Li Ming, Jiang Jia, Goodwill Dominic, Dumais Patrick, Bernier Eric, Fu Hongyan, Geng Dongyu, IEEE. Compact low-loss adiabatic bends in silicon shallow-etched waveguides. 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP)null. 2016, 48-49, [95] Sun, Shuqian, Deng, Ye, Huang, Ningbo, Tang, Jian, Zhu, Ninghua, Li, Ming. A tunable photonic temporal integrator with ultra-long integration time windows based on Raman-gain assisted phase-shifted silicon Bragg gratings. OPTICS COMMUNICATIONS[J]. 2016, 373: 91-94, http://dx.doi.org/10.1016/j.optcom.2015.08.073.
[96] Tang, Jian, Li, Ming, Sun, Shuqian, Shi, Nuannuan, Li, Wei, Zhu, Ninghua, IEEE. On Chip Broadband Microwave Photonics Phase Shifter based on the Coupling-Modulated Microring Resonator. 2016 15TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN)null. 2016, [97] Sun, Shuqian, Li, Ming, Tang, Jian, Zhu, Ning Hua, Ahn, TaeJung, Azana, Jose. Femtosecond pulse shaping using wavelength-selective directional couplers: proposal and simulation. OPTICS EXPRESS[J]. 2016, 24(8): 7943-7950, http://ir.semi.ac.cn/handle/172111/27888.
[98] Li Ming, Zhu Ninghua. Recent advances in microwave photonics. FRONTIERS OF OPTOELECTRONICSnull. 2016, 160-185, http://lib.cqvip.com/Qikan/Article/Detail?id=668523347.
[99] Wen Ting Wang, Ming Li, Shu Qian Sun, Chao Wang, Ye Deng, Ning Hua Zhu. Background-free Microwave Signal Generation Based on Temporal Pulse Shaping System. Photonics technology letters, ieee[J]. 2016, 28(8): 903-906, http://ir.semi.ac.cn/handle/172111/27884.
[100] Li Ming. Microwave photonics in China. IEEE Photonics Society Newsletter. 2015, [101] Li Ming. Wideband dynamic microwave frequency identification system using a low-power, ultra-compact silicon photonic chip. Nature Communications. 2015, [102] Li Ming. Advances in all-optical circuits. Optics & Photonics News. 2015, [103] Li Ming. Tunable fractional-order photonic differentiator using a DFB-SOA. Optical Engineering. 2015, [104] Deng, Ye, Li, Ming, Tang, Jian, Sun, Shuqian, Huang, Ningbo, Zhu, Ninghua. Widely Tunable Single-Passband Microwave Photonic Filter Based on DFB-SOA-Assisted Optical Carrier Recovery. IEEE PHOTONICS JOURNAL[J]. 2015, 7(5): http://ir.semi.ac.cn/handle/172111/26962.
[105] Liu, Weilin, Li, Ming, Guzzon, Robert S, Norberg, Erik J, Parker, John S, Coldren, Larry A, Yao, Jianping. A Photonic Temporal Integrator With an Ultra-Long Integration Time Window Based on an InP-InGaAsP Integrated Ring Resonator. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2014, 32(20): 3654-3659, http://ir.semi.ac.cn/handle/172111/26039.
[106] Deng, Ye, Li, Ming, Huang, Ningbo, Zhu, Ninghua. Ka-Band Tunable Flat-Top Microwave Photonic Filter Using a Multi-Phase-Shifted Fiber Bragg Grating. IEEE PHOTONICS JOURNAL[J]. 2014, 6(4): http://ir.semi.ac.cn/handle/172111/26248.
[107] Deng, Ye, Li, Ming, Huang, Ningbo, Azana, Jose, Zhu, Ninghua. Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser. CHINESE SCIENCE BULLETIN[J]. 2014, 59(22): 2693-2701, https://www.webofscience.com/wos/woscc/full-record/WOS:000338655100008.
[108] Li, Ming, Azana, Jose, Yao, Jianping. SPECIAL TOPIC: All-Optical Signal Processing Preface. CHINESE SCIENCE BULLETINnull. 2014, 59(22): 2647-2648, http://ir.semi.ac.cn/handle/172111/26202.
[109] Zou, Xihua, Li, Ming, Pan, Wei, Luo, Bin, Yan, Lianshan, Shao, Liyang. Optical length change measurement via RF frequency shift analysis of incoherent light source based optoelectronic oscillator. OPTICS EXPRESS[J]. 2014, 22(9): 11129-11139, http://ir.semi.ac.cn/handle/172111/26307.
[110] Zou, Xihua, Li, Ming, Ge, Weiwei, Pan, Wei, Luo, Bin, Yan, Lianshan, Azana, Jose. Synthesis of Fiber Bragg Gratings With Arbitrary Stationary Power/Field Distribution. IEEE JOURNAL OF QUANTUM ELECTRONICS[J]. 2014, 50(3): 186-197, http://ir.semi.ac.cn/handle/172111/26380.
[111] Huang, Ningbo, Li, Ming, Deng, Ye, Zhu, Ning Hua. Optical Pulse Generation Based on an Optoelectronic Oscillator With Cascaded Nonlinear Semiconductor Optical Amplifiers. IEEE PHOTONICS JOURNAL[J]. 2014, 6(1): http://ir.semi.ac.cn/handle/172111/26057.
[112] Huang, Ningbo, Li, Ming, Ashrafi, Reza, Wang, Lixian, Wang, Xin, Azaa, Jose, Zhu, Ninghua. Active Fabry-Perot cavity for photonic temporal integrator with ultra-long operation time window. OPTICS EXPRESS[J]. 2014, 22(3): 3105-3116, http://ir.semi.ac.cn/handle/172111/25975.
[113] Ming LI, Jose AZANA, Ninghua ZHU, Jianping YAO. Recent progresses on optical arbitrary waveform generation. FRONTIERS OF OPTOELECTRONICSnull. 2014, 359-375, http://lib.cqvip.com/Qikan/Article/Detail?id=662830461.
[114] Deng, Ye, Li, Ming, Huang, Ningbo, Wang, Hui, Zhu, Ninghua. Optical length-change measurement based on an incoherent single-bandpass microwave photonic filter with high resolution. PHOTONICS RESEARCH[J]. 2014, 2(4): B35-B39, https://www.webofscience.com/wos/woscc/full-record/WOS:000353881600007.
[115] Guo, JinJin, Li, Ming, Deng, Ye, Huang, Ningbo, Liu, Jianguo, Zhu, Ninghua. Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings. OPTICS EXPRESS[J]. 2014, 22(4): 4290-4300, http://ir.semi.ac.cn/handle/172111/25966.
[116] Ashrafi, Reza, Li, Ming, Azana, Jose. Tsymbol/s Optical Coding Based on Long-Period Gratings. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2013, 25(10): 910-913, https://www.webofscience.com/wos/woscc/full-record/WOS:000318547500004.
[117] Ashrafi, Reza, Li, Ming, Belhadj, Nezih, Dastmalchi, Mansour, LaRochelle, Sophie, Azana, Jose. Experimental demonstration of superluminal space-to-time mapping in long period gratings. OPTICS LETTERS[J]. 2013, 38(9): 1419-1421, https://www.webofscience.com/wos/woscc/full-record/WOS:000318425600020.
[118] Li, Wei, Wang, Li Xian, Zheng, Jian Yu, Li, Ming, Zhu, Ning Hua. Photonic MMW-UWB Signal Generation via DPMZM-Based Frequency Up-Conversion. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2013, 25(19): 1875-1878, http://ir.semi.ac.cn/handle/172111/24724.
[119] Ashrafi, Reza, Li, Ming, LaRochelle, Sophie, Azana, Jose. Superluminal space-to-time mapping in grating-assisted co-directional couplers. OPTICS EXPRESS[J]. 2013, 21(5): 6249-6256, https://www.webofscience.com/wos/woscc/full-record/WOS:000316103300115.
[120] Hu, Yi, Li, Ming, Bongiovanni, Domenico, Clerici, Matteo, Yao, Jianping, Chen, Zhigang, Azana, Jose, Morandotti, Roberto. Spectrum to distance mapping via nonlinear Airy pulses. OPTICS LETTERS[J]. 2013, 38(3): 380-382, https://www.webofscience.com/wos/woscc/full-record/WOS:000314629600048.
[121] Wang, Hui, Zheng, Jian Yu, Li, Wei, Wang, Li Xian, Li, Ming, Xie, Liang, Zhu, Ning Hua. Widely tunable single-bandpass microwave photonic filter based on polarization processing of a nonsliced broadband optical source. OPTICS LETTERS[J]. 2013, 38(22): 4857-4860, http://ir.semi.ac.cn/handle/172111/24694.
[122] Li Ming. Photonic generation of widely tunable and background-free binary phase-coded RF pulses. Optics Letters. 2013, [123] Li, Bo, Li, Ming, Lou, Shuqin, Azana, Jose. Linear optical pulse compression based on temporal zone plates. OPTICS EXPRESS[J]. 2013, 21(14): 16814-16830, http://ir.semi.ac.cn/handle/172111/24713.
[124] FernandezRuiz, Maria R, Li, Ming, Dastmalchi, Mansour, Carballar, Alejandro, LaRochelle, Sophie, Azana, Jose. Picosecond optical signal processing based on transmissive fiber Bragg gratings. OPTICS LETTERS[J]. 2013, 38(8): 1247-1249, https://www.webofscience.com/wos/woscc/full-record/WOS:000317580200022.
[125] Li Ming. My Research Life in Canada: A Tale of Two Labs. Optics and Photonics News. 2013, [126] Burla, Maurizio, Cortes, Luis Romero, Li, Ming, Wang, Xu, Chrostowski, Lukas, Azana, Jose. Integrated waveguide Bragg gratings for microwave photonics signal processing. OPTICS EXPRESS[J]. 2013, 21(21): 25120-25147, http://ir.semi.ac.cn/handle/172111/24732.
[127] FernandezRuiz, Maria R, Li, Ming, Azana, Jose. Time-domain holograms for generation and processing of temporal complex information by intensity-only modulation processes. OPTICS EXPRESS[J]. 2013, 21(8): 10314-10323, https://www.webofscience.com/wos/woscc/full-record/WOS:000318151600112.
[128] Li Ming. Spectral sculpting of chaotic-UWB signals using a dual-loops optoelectronic oscillator. Photonics Technology Letters. 2013, [129] Li, Wei, Wang, Li Xian, Zheng, Jian Yu, Li, Ming, Zhu, Ning Hua. Photonic Generation of Ultrawideband Signals With Large Carrier Frequency Tunability Based on an Optical Carrier Phase-Shifting Method. IEEE PHOTONICS JOURNAL[J]. 2013, 5(5): https://doaj.org/article/83f700bd8a814197b520edf3967bd1eb.
[130] Wei Li, Li Xian Wang, Ming Li, Hui Wang, Ning Hua Zhu. Photonic generation of binary phase-coded microwave signals with large frequency tunability using a dual-parallel Mach–Zehnder modulator. Photonics Journal, IEEE[J]. 2013, 5(4): 5501507-, http://ir.semi.ac.cn/handle/172111/24718.
[131] Zou, Xihua, Li, Ming, Pan, Wei, Yan, Lianshan, Azana, Jose, Yao, Jianping. All-fiber optical filter with an ultranarrow and rectangular spectral response. OPTICS LETTERS[J]. 2013, 38(16): 3096-3098, http://ir.semi.ac.cn/handle/172111/24727.
[132] Li Ming. Single phase modulator for binary phase-coded microwave signals generation with large carrier frequency tunability. IEEE Photon. Technol. Lett.. 2013, [133] Ashrafi, Reza, Li, Ming, Azana, Jose. Coupling-Strength-Independent Long-Period Grating Designs for THz-Bandwidth Optical Differentiators. IEEE PHOTONICS JOURNAL[J]. 2013, 5(2): https://doaj.org/article/ff8beacc07c048d7b9a8642a28d42941.
[134] Li, Ming, Jeong, HoeSeok, Azana, Jose, Ahn, TaeJung. 25-terahertz-bandwidth all-optical temporal differentiator. OPTICS EXPRESS[J]. 2012, 20(27): 28273-28280, https://www.webofscience.com/wos/woscc/full-record/WOS:000314911400031.
[135] Li, Wangzhe, Li, Ming, Yao, Jianping. A Narrow-Passband and Frequency-Tunable Microwave Photonic Filter Based on Phase-Modulation to Intensity-Modulation Conversion Using a Phase-Shifted Fiber Bragg Grating. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2012, 60(5): 1287-1296, https://www.webofscience.com/wos/woscc/full-record/WOS:000303519100012.
[136] Li, Ming, Dumais, Patrick, Ashrafi, Reza, Bazargani, Hamed Pishvai, Quelene, JeanBaptiste, Callender, Claire, Azana, Jose. Ultrashort Flat-Top Pulse Generation Using On-Chip CMOS-Compatible Mach-Zehnder Interferometers. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2012, 24(16): 1387-1389, https://www.webofscience.com/wos/woscc/full-record/WOS:000306921900001.
[137] Li Ming. Ultrafast all-optical wavelet transform based on temporal pulse shaping incorporating a two-dimensional array of cascaded linearly chirped fiber Bragg gratings. IEEE Photonics Technology Letters. 2012, [138] Li Ming. Photonic generation of a precisely pi phase shifted binary phase-coded microwave signal. IEEE Photonics Technology Letters. 2012, [139] Malacarne, Antonio, Ashrafi, Reza, Li, Ming, LaRochelle, Sophie, Yao, Jianping, Azana, Jose. Single-shot photonic time-intensity integration based on a time-spectrum convolution system. OPTICS LETTERS[J]. 2012, 37(8): 1355-1357, https://www.webofscience.com/wos/woscc/full-record/WOS:000303661500024.
[140] Li Ming. A tunable optoelectronic oscillator based on a high-Q spectrum-sliced photonic microwave transversal filter. IEEE Photonics Technology Letters. 2012, [141] Li, Ming, Han, Yichen, Pan, Shilong, Yao, Jianping. Experimental Demonstration of Symmetrical Waveform Generation Based on Amplitude-Only Modulation in a Fiber-Based Temporal Pulse Shaping System. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2011, 23(11): 715-717, https://www.webofscience.com/wos/woscc/full-record/WOS:000290629800003.
[142] Li, Ming, Yao, Jianping. Photonic Generation of Continuously Tunable Chirped Microwave Waveforms Based on a Temporal Interferometer Incorporating an Optically Pumped Linearly Chirped Fiber Bragg Grating. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2011, 59(12): 3531-3537, https://www.webofscience.com/wos/woscc/full-record/WOS:000298052000029.
[143] Li, Ming, Shao, LiYang, Albert, Jacques, Yao, Jianping. Continuously Tunable Photonic Fractional Temporal Differentiator Based on a Tilted Fiber Bragg Grating. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2011, 23(4): 251-253, https://www.webofscience.com/wos/woscc/full-record/WOS:000286676200004.
[144] Han, Yichen, Li, Ze, Pan, Shilong, Li, Ming, Yao, Jianping. Photonic-Assisted Tunable Microwave Pulse Fractional Hilbert Transformer Based on a Temporal Pulse Shaping System. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2011, 23(9): 570-572, https://www.webofscience.com/wos/woscc/full-record/WOS:000289478900003.
[145] Liu, Weilin, Li, Ming, Wang, Chao, Yao, Jianping. Real-Time Interrogation of a Linearly Chirped Fiber Bragg Grating Sensor Based on Chirped Pulse Compression With Improved Resolution and Signal-to-Noise Ratio. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2011, 29(9): 1239-1247, https://www.webofscience.com/wos/woscc/full-record/WOS:000289485600001.
[146] Li, Ming, Shao, LiYang, Albert, Jacques, Yao, Jianping. Tilted Fiber Bragg Grating for Chirped Microwave Waveform Generation. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2011, 23(5): 314-316, https://www.webofscience.com/wos/woscc/full-record/WOS:000288160600014.
[147] Li Ming. Continuously tunable time delay using an optically pumped linearly chirped fiber Bragg grating. IEEE/OSA J. Lightw. Technol.. 2011, [148] Li, Ze, Li, Ming, Chi, Hao, Zhang, Xianmin, Yao, Jianping. Photonic Generation of Phase-Coded Millimeter-Wave Signal With Large Frequency Tunability Using a Polarization-Maintaining Fiber Bragg Grating. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS[J]. 2011, 21(12): 694-696, https://www.webofscience.com/wos/woscc/full-record/WOS:000297816800020.
[149] Li, Ming, Yao, Jianping. Multichannel Arbitrary-Order Photonic Temporal Differentiator for Wavelength-Division-Multiplexed Signal Processing Using a Single Fiber Bragg Grating. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2011, 29(17): 2506-2511, https://www.webofscience.com/wos/woscc/full-record/WOS:000294135100001.
[150] Li, Ming, Yao, Jianping. All-Optical Short-Time Fourier Transform Based on a Temporal Pulse-Shaping System Incorporating an Array of Cascaded Linearly Chirped Fiber Bragg Gratings. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2011, 23(20): 1439-1441, https://www.webofscience.com/wos/woscc/full-record/WOS:000295101100007.
[151] Li, Ze, Wang, Chao, Li, Ming, Chi, Hao, Zhang, Xianmin, Yao, Jianping. Instantaneous Microwave Frequency Measurement Using a Special Fiber Bragg Grating. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS[J]. 2011, 21(1): 52-54, https://www.webofscience.com/wos/woscc/full-record/WOS:000286009300018.
[152] Chen, X, Kameyama, T, Li, M, Li, H. Multiple dual-wavelengths fiber ring laser utilizing a phase-only sampled fiber Bragg grating with multiple phase-shifts inserted. APPLIED PHYSICS B-LASERS AND OPTICS[J]. 2010, 101(1-2): 115-118, https://www.webofscience.com/wos/woscc/full-record/WOS:000282694300016.
[153] Li, Ming, Yao, Jianping. Experimental Demonstration of a Wideband Photonic Temporal Hilbert Transformer Based on a Single Fiber Bragg Grating. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2010, 22(21): 1559-1561, https://www.webofscience.com/wos/woscc/full-record/WOS:000283368700002.
[154] Wang, Chao, Li, Ming, Yao, Jianping. Continuously Tunable Photonic Microwave Frequency Multiplication by Use of an Unbalanced Temporal Pulse Shaping System. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2010, 22(17): 1285-1287, https://www.webofscience.com/wos/woscc/full-record/WOS:000283059900001.
[155] Li, Ming, Yao, Jianping. All-fiber temporal photonic fractional Hilbert transformer based on a directly designed fiber Bragg grating. OPTICS LETTERS[J]. 2010, 35(2): 223-225, https://www.webofscience.com/wos/woscc/full-record/WOS:000273879200044.
[156] Li, Ming, Wang, Chao, Li, Wangzhe, Yao, Jianping. An Unbalanced Temporal Pulse-Shaping System for Chirped Microwave Waveform Generation. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES[J]. 2010, 58(11): 2968-2975, https://www.webofscience.com/wos/woscc/full-record/WOS:000284218500027.
[157] Li, Ming, Fujii, Takeo, Li, Hongpu, Painchaud, Yves. Proposal and realization for a broadband all-fiber non-uniformly spaced multi-channel optical filter. OPTICS COMMUNICATIONS[J]. 2009, 282(5): 879-882, http://dx.doi.org/10.1016/j.optcom.2008.11.073.
[158] Li, Ming, Chen, Xuxing, Fujii, Takeo, Kudo, Yoshitaka, Li, Hongpu, Painchaud, Yves. Multiwavelength fiber laser based on the utilization of a phase-shifted phase-only sampled fiber Bragg grating. OPTICS LETTERS[J]. 2009, 34(11): 1717-1719, https://www.webofscience.com/wos/woscc/full-record/WOS:000267401200035.
[159] Li, Ming, Fujii, Takeo, Li, Hongpu. Multiplication of a Multichannel Notch Filter Based on a Phase-Shifted Phase-Only Sampled Fiber Bragg Grating. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2009, 21(13): 926-928, https://www.webofscience.com/wos/woscc/full-record/WOS:000268019300010.
[160] Li Ming. Advanced design of complex fiber Bragg grating for multi-channel triangular filter. Journal of the Optical Society of America B. 2009, [161] Li, Ming, Chen, Xuxing, Hayashi, Junya, Li, Hongpu. Advanced design of the ultrahigh-channel-count fiber Bragg grating based on the double sampling method. OPTICS EXPRESS[J]. 2009, 17(10): 8382-8394, https://www.webofscience.com/wos/woscc/full-record/WOS:000266381900069.
[162] Li, Ming, Li, Hongpu. Influences of writing-beam size on the performances of dispersion-free multi-channel fiber Bragg grating. OPTICAL FIBER TECHNOLOGY[J]. 2009, 15(1): 33-38, http://dx.doi.org/10.1016/j.yofte.2008.04.003.
[163] Li Ming. Ultrahigh channel-count phase-only sampled fiber Bragg grating covering the S-, C- and L- band. Optics Letters. 2009, [164] Li Ming. Arbitrary-order all-fiber temporal differentiators based on fiber Bragg gratings: design and experimental demonstration. Optics Express. 2009, [165] Li Ming. Multi-channel notch filter based on a phase-shift phase-only sampled fiber Bragg grating. Optics Express. 2008, [166] Li, M, Takahagi, T, Ogusu, K, Li, H, Painchaud, Y. A comprehensive study of the chromatic dispersion measurement of the multi-channel fiber Bragg grating based on an asymmetrical Sagnac loop interferometer. OPTICS COMMUNICATIONS[J]. 2008, 281(20): 5165-5172, http://dx.doi.org/10.1016/j.optcom.2008.07.019.
[167] Li Ming. Reflection equalization of the simultaneous dispersion and dispersion-slope compensation based on a phase-only sampled fiber Bragg grating. Optics Express. 2008, [168] Li, Hongpu, Li, Ming, Sheng, Yunlong, Rothenberg, Joshua E. Advances in the design and fabrication of high-channel-count fiber Bragg gratings. JOURNAL OF LIGHTWAVE TECHNOLOGY[J]. 2007, 25(9): 2739-2750, https://www.webofscience.com/wos/woscc/full-record/WOS:000249350000054.
[169] Li, Ming, Li, Hongpu. Chromatic dispersion measurement for multichannel FBG based on a novel asymmetrical sagnac loop interferometer. IEEE PHOTONICS TECHNOLOGY LETTERS[J]. 2007, 19(17-20): 1601-1603, https://www.webofscience.com/wos/woscc/full-record/WOS:000250212600104.
[170] Li, HP, Li, M, Ogusu, K, Sheng, YL, Rothenberg, JE. Optimization of a continuous phase-only sampling for high channel-count fiber Bragg gratings. OPTICS EXPRESS[J]. 2006, 14(8): 3152-3160, https://www.webofscience.com/wos/woscc/full-record/WOS:000237144700006.
[171] Li, M, Wang, M, Li, HP. Optical MEMS pressure sensor based on Fabry-Perot interferometry. OPTICS EXPRESS[J]. 2006, 14(4): 1497-1504, https://www.webofscience.com/wos/woscc/full-record/WOS:000235424400018.
[172] Li Ming, Wang Ming, Rong Hua, Li HongPu. A novel analytical approach for multi-layer diaphragm-based optical micro electromechanical-system pressure sensors. CHINESE PHYSICS LETTERS[J]. 2006, 23(5): 1211-1214, https://www.webofscience.com/wos/woscc/full-record/WOS:000237551700041.