电子邮件: menggang@ucas.ac.cn
通信地址: 中科院研究生院数学科学学院
邮政编码:
研究领域
微分方程 动力系统
教育背景
1999-09--2003-07 北京化工大学数学系 学士
工作经历
2009-06--2011-06 中科院数学与系统科学研究院 博士后
科研项目
2. 国家自然科学基金青年基金项目, 项目号:11201471,2013.01-2015.12,主持人。
发表论文
[12] H. Feng and G. Meng, Continuity of the eigenvalues of nonhomogeneous hinged vibrating rods, Appl. Math. Lett., 58 (2016), 87--94.
[11] G. Meng, Extremal problems for eigenvalues of measure differential equations, Proc. Amer. Math. Soc., 143 (2015), 1991--2002.
[10] G. Meng, K. Shen, P. Yan and M. Zhang, Strong continuity of the Lidstone eigenvalues of the beam equation in potentials, Oper. Matrices, 8(3) (2014), 889--899.
[9] G. Meng, Minimization of eigenvalues for some differential equations with integrable potentials, Bound. Value Probl., 2013, 2013:220. DOI:10.1186/1687-2770-2013-220.
[8] G. Meng and M. Zhang, Dependence of solutions and eigenvalues of measure differential equations on measures, J. Differential Equations, 254(5) (2013), 2196—2232.
[7] G. Meng, P. Yan and M. Zhang, Maximization of eigenvalues of one-dimensional p-Laplacian with integrable potentials, Commun. Contemp. Math., 15(1) (2013), 1250049, 18 pp. DOI: 10.1142/S0219199712500496
[6] G. Meng, P. Yan and M. Zhang, Minimization of eigenvalues of one-dimensional p-Laplacian with integrable potentials, J. Optim. Theory Appl., 156(2) (2013), 294--319.
[5] G. Meng and M. Zhang, Continuity in weak topology: First order linear systems of ODE, Acta Math. Sinica Engl. Ser. 26 (7)(2010), 1287--1298.
[4] G. Meng, P. Yan and M. Zhang, Spectrum of one-dimensional p-Laplacian with an indefinite integrable weight, Mediterr. J. Math. 7(2) (2010), 225--248.
[3] Q. Wei, G. Meng and M. Zhang, Extremal values of eigenvalues of Sturm-Liouville operators with potentials in $L^1$ balls, J. Differential Equations, 247 (2009), 364--400.
[2] G. Meng, P. Yan, X. Lin and M. Zhang, Non-degeneracy and periodic solutions of semilinear differential equations with deviation, Advanced Nonlinear Stud. 6 (2006), 563--590.
[1] G. Meng and M. Zhang, On the range of the second-order differential operator with bounded perturbations, Math. Appl. (Wuhan) 19 (2006), 613--620.