基本信息
郭宗宽  男  博导  中国科学院理论物理研究所
电子邮件: guozk@itp.ac.cn
通信地址: 北京市海淀区中关村东路55号,中科院理论物理研究所
邮政编码: 100190

研究领域

研究方向为引力理论与宇宙学,主要从事引力波、早期宇宙物理、暗能量和计算宇宙学等研究。在 Phys. Rev. D, Phys. Rev. Lett., Nature Astronomy 等学术期刊发表论文 97 篇,被引用 6000 余次,有 18 篇论文单篇引用超过 100 次,其中 1 篇论文单篇引用超过 700 次,入选美国 SLAC 发布的 2009 天体物理-唯像领域全球高被引论文,入选美国 SLAC 发布的 2010 广义相对论-量子宇宙领域全球高被引论文。2014 年至 2022 年连续 9 年入选爱思唯尔 (Elsevier) 发布的中国高被引学者榜单。2020 年至 2022 年连续 3 年入选美国斯坦福大学发布的全球前 2% 顶尖科学家榜单 (World's Top 2% Scientists)。2015 年至 2019 年担任《科技导报》编委,自 2022 年担任亚太物理学会联合会 AAPPS Bulletin 编委,自 2023 年担任欧洲 European Physical Journal C 审稿编辑。

ITP个人主页:http://sourcedb.itp.cas.cn/zw/zjrck/201104/t20110413_3115158.html

ITP个人主页:http://www.itp.cas.cn/sourcedb_itp_cas/zw/zjrck/201104/t20110413_3115158.html

UCAS个人主页:http://people.ucas.ac.cn/~0015896

UCAS个人主页:https://teacher.ucas.ac.cn/~0015896

HIAS个人主页:http://hias.ucas.ac.cn/info/1124/2705.htm

HIAS个人主页:http://hias.ucas.ac.cn/mathphys/info/1118/1130.htm

更新日期:2024/3/14

招生信息

招生专业
070201-理论物理
招生方向
引力理论与宇宙学

教育背景

2002-09--2005-07   中国科学院理论物理研究所   理学博士
1999-09--2002-07   郑州大学   理学硕士
1995-09--1999-07   郑州大学   理学学士

工作经历

   
工作简历
2014-04~现在, 中科院理论物理研究所, 研究员
2011-04~2014-03,中科院理论物理研究所, 副研究员
2008-11~2011-03,德国比勒菲尔德大学, 洪堡博士后
2006-09~2008-10,日本近畿大学, JSPS博士后
2005-09~2006-08,中科院物理研究所, 博士后

教授课程

现代宇宙学
现代物理学概述
相对论天体物理
宇宙学前沿系列讲座

出版信息

Inspire论文检索:https://inspirehep.net/authors/1027868?ui-citation-summary=true#with-citation-summary


发表论文

(97) WaveFormer: transformer-based denoising method for gravitational-wave data, Mach. Learn.: Sci. Technol. 5 (2024) 015046.
(96) Particle production during inflation with a nonminimally coupled spectator scalar field, Phys. Rev. D108 (2023) 123509.
(95) Parameter inference for coalescing massive black hole binaries using deep learning, Universe 9 (2023) 407.
(94) Enhanced curvature perturbations from spherical domain walls nucleated during inflation, Phys. Rev. D108 (2023) 063005.
(93) Taiji data challenge for exploring gravitational wave universe, Front. Phys. 18 (2023) 64302.
(92) Rapid search for massive black hole binary coalescences using deep learning, Phys. Lett. B841 (2023) 137904.
(91) Confusion noise from Galactic binaries for Taiji, Phys. Rev. D107 (2023) 064021.
(90) Constraints on ultraslow-roll inflation from the third LIGO-Virgo observing run, Phys. Rev. D107 (2023) 043528.
(89) Constraining first-order phase transitions with curvature perturbations, Phys. Rev. Lett. 130 (2023) 051001.
(88) First machine learning gravitational-wave search mock data challenge, Phys. Rev. D107 (2023) 023021.
(87) Testing primordial black hole and measuring the Hubble constant with multiband gravitational-wave observations, JCAP 01 (2023) 006.
(86) Generation of gravitational waves in dynamical Chern-Simons gravity, Phys. Rev. D106 (2022) 124044.
(85) No-go guide for late-time solutions to the Hubble tension: Matter perturbations, Phys. Rev. D106 (2022) 063519.
(84) Hubble parameter estimation via dark sirens with the LISA-Taiji network, Natl. Sci. Rev. 9 (2022) nwab054.
(83) Primordial black hole production during first-order phase transitions, Phys. Rev. D105 (2022) L021303.
(82) Dependence of the amplitude of gravitational waves from preheating on the inflationary energy scale, Phys. Rev. D105 (2022) 023507.
(81) Sampling with prior knowledge for high-dimensional gravitational wave data analysis, Big Data Mining and Analytics 5 (2022) 53-63.
(80) No-go guide for the Hubble tension : Late-time solutions, Phys. Rev. D105 (2022) L021301.
(79) Standard siren cosmology with the LISA-Taiji network, Sci. China-Phys. Mech. Astron. 65 (2022) 210431.
(78) Gravitational waves from resonant amplification of curvature perturbations during inflation, JCAP 10 (2021) 050.
(77) Large anisotropies of the stochastic gravitational wave background from cosmic domain walls, Phys. Rev. Lett. 126 (2021) 141303.
(76) China's first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna, Communications Physics 4 (2021) 34.
(75) Chameleon dark energy can resolve the Hubble tension, Phys. Rev. D103 (2021) L121302.
(74) Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Elliptical orbits on a cone, Eur. Phys. J. C81 (2021) 1048.
(73) Do the observational data favor a local void?, Phys. Rev. D103 (2021) 123539.
(72) The Gravitational-Wave Physics II: Progress, Sci. China-Phys. Mech. Astron. 64 (2021) 120401.
(71) Taiji program in space for gravitational universe with the first run key technologies test in Taiji-1, Int. J. Mod. Phys. A36 (2021) 2102002.
(70) The LISA-Taiji Network: Precision Localization of Coalescing Massive Black Hole Binaries, Research 2021 (2021) 6014164.
(69) Primordial black holes from cosmic domain walls, Phys. Rev. D101 (2020) 023513.
(68) Gravitational and electromagnetic radiation from binary black holes with electric and magnetic charges: Circular orbits on a cone, Phys. Rev. D102 (2020) 103520.
(67) Taiji program: gravitational-wave sources, Int. J. Mod. Phys. A35 (2020) 2050075.
(66) Primordial black holes and gravitational waves from parametric amplification of curvature perturbations, JCAP 06 (2020) 013.
(65) The LISA–Taiji network, Nature Astronomy 4 (2020) 108.
(64) Merger rate distribution of primordial black hole binaries with electric charges, Phys. Rev. D102 (2020) 043508.
(63) A brief analysis to Taiji: Science and technology, Results Phys. 16 (2020) 102918.
(62) Analytical approximation of the scalar spectrum in the ultraslow-roll inflationary models, Phys. Rev. D101 (2020) 083535.
(61) Gravitational waves from double-inflection-point inflation, Phys. Rev. D101 (2020) 023505.
(60) Constraining gravitational-wave polarizations with Taiji, Phys. Rev. D102 (2020) 124050.
(59) Gravitational wave production after inflation with cuspy potentials, Phys. Rev. D99 (2019) 103506.
(58) Effects of the merger history on the merger rate density of primordial black hole binaries, Eur. Phys. J. C79 (2019) 717.
(57) Effects of the surrounding primordial black holes on the merger rate of primordial black hole binaries, Phys. Rev. D99 (2019) 063523.
(56) Constraining the reionization history with CMB and spectroscopic observations, Phys. Rev. D99 (2019) 043524.
(55) Primordial Black Hole Production in Inflationary Models of Supergravity with a Single Chiral Superfield, Phys. Rev. D98 (2018) 063526.
(54) Super-Eddington accreting massive black holes explore high-z cosmology: Monte-Carlo simulations, Phys. Rev. D97 (2018) 123502.
(53) Gravitational Waves from Oscillons with Cuspy Potentials, Phys. Rev. Lett. 120 (2018) 031301.
(52) The gravitational wave physics, Natl. Sci. Rev. 4 (2017) 687.
(51) Lorentz invariance violation in the neutrino sector: a joint analysis from BBN and CMB, Eur. Phys. J. C77 (2017) 386.
(50) Null test of the cosmic curvature using H(z) and supernovae data, Phys. Rev. D93 (2016) 043517.
(49) Model of inflationary magnetogenesis, Phys. Rev. D93 (2016) 043541.
(48) Dodging the cosmic curvature to probe the constancy of the speed of light, JCAP 1608 (2016) 016.
(47) Magnetogenesis in bouncing cosmology, Phys. Rev. D94, (2016) 083524.
(46) Reheating Phase Diagram for Higgs Inflation, Phys. Rev. D92 (2015) 063506.
(45) Inflection point inflation and dark energy in supergravity, Phys. Rev. D91 (2015) 123502.
(44) Reconstructing interaction between dark energy and dark matter using Gaussian Processes, Phys. Rev. D91 (2015) 123533.
(43) Higgs Inflation in Gauss-Bonnet Brane-World, Phys. Rev. D92 (2015) 063514.
(42) Principal component analysis of the reionization history from Planck 2015 data, Phys. Rev. D92 (2015) 123521.
(41) Updated reduced CMB data and constraints on cosmological parameters, Int. J. Mod. Phys. D24 (2015) 1550071.
(40) Cosmological parameter estimation from CMB and X-ray clusters after Planck, JCAP 1405 (2014) 020.
(39) CMB anomalies from an inflationary model in string theory, Eur. Phys. J. C74 (2014) 3006.
(38) Constraints on the ΛCDM model with redshift tomography, Phys. Rev. D89 (2014) 123518.
(37) Reconstruction of the primordial power spectra with Planck and BICEP2, Phys. Rev. D90 (2014) 023544.
(36) Nucleosynthesis constraint on Lorentz invariance violation in the neutrino sector, Phys. Rev. D87 (2013) 123519.
(35) Obtaining the CMB anomalies with a bounce from the contracting phase to inflation, Phys. Rev. D88 (2013) 063539.
(34) Inflation coupled to a Gauss-Bonnet term, Phys. Rev. D88 (2013) 123508.
(33) Non-Gaussian features from the inverse volume corrections in loop quantum cosmology, Phys. Rev. D86 (2012) 044020.
(32) On asymmetric brane creation, JHEP 01 (2012) 019.
(31) Primordial power spectrum versus extension parameters beyond the standard model, Phys. Rev. D85 (2012) 103519.
(30) Cosmological constraints on Lorentz invariance violation in the neutrino sector, Phys. Rev. D86 (2012) 065004.
(29) Reconstruction of the primordial power spectrum from CMB data, JCAP 1108 (2011) 031.
(28) Uncorrelated estimates of the primordial power spectrum, JCAP 1111 (2011) 032.
(27) Observational constraints on the energy scale of inflation, Phys. Rev. D83 (2011) 083522.
(26) Slow-roll inflation with a Gauss-Bonnet correction, Phys. Rev. D81 (2010) 123520.
(25) Black Holes in the Dilatonic Einstein-Gauss-Bonnet Theory in Various Dimensions II -- Asymptotically AdS Topological Black Holes --, Prog. Theor. Phys. 121 (2009) 253-273.
(24) Power spectra from an inflaton coupled to the Gauss-Bonnet term, Phys. Rev. D80 (2009) 063523.
(23) Cosmological Evolution of Dirac-Born-Infeld Field, JCAP 04 (2008) 035.
(22) Black Holes in the Dilatonic Einstein-Gauss-Bonnet Theory in Various Dimensions I -- Asymptotically Flat Black Holes --, Prog. Theor. Phys. 120 (2008) 581-607.
(21) Accelerating Cosmologies in the Einstein-Gauss-Bonnet Theory with Dilaton, Prog. Theor. Phys. 118 (2007) 879-892.
(20) Probing the Coupling between Dark Components of the Universe, Phys. Rev. D76 (2007) 023508.
(19) Realizing Scale-invariant Density Perturbations in Low-energy Effective String Theory, Phys. Rev. D75 (2007) 023520.
(18) Parametrizations of the Dark Energy Density and Scalar Potentials, Mod. Phys. Lett. A22 (2007) 883-890.
(17) Cosmology with a Variable Chaplygin Gas, Phys. Lett. B645 (2007) 326-329.
(16) Two-Field Quintom Models in the w-w' Plane, Phys. Rev. D74 (2006) 127304.
(15) Constraints on the DGP Model from Recent Supernova Observations and Baryon Acoustic Oscillations, Astrophys. J. 646 (2006) 1-7.
(14) A Tracker Solution for a Holographic Dark Energy Model, Int. J. Mod. Phys. D15 (2006) 869-877.
(13) Parametrization of K-essence and Its Kinetic Term, Mod. Phys. Lett. A21 (2006) 1683-1690.
(12) Parametrization of Quintessence and Its Potential, Phys. Rev. D72 (2005) 023504.
(11) Cosmological Evolution of Interacting Phantom Energy with Dark Matter, JCAP 0505 (2005) 002.
(10) Interacting Phantom Energy, Phys. Rev. D71 (2005) 023501.
(9) Cosmological Evolution of a Quintom Model of Dark Energy, Phys. Lett. B608 (2005) 177-182.
(8) Attractor Behavior of Phantom Cosmology, Phys. Lett. B594 (2004) 247-251.
(7) Cosmological Scaling Solutions of Multiple Tachyon Fields with Inverse Square Potentials, JCAP 0408 (2004) 010.
(6) Inflationary Attractor in Braneworld Scenario, Phys. Rev. D69 (2004) 063502.
(5) Cosmological Scaling Solutions and Cross-coupling Exponential Potential, Phys. Lett. B576 (2003) 12-17.
(4) Inflationary Attractor from Tachyonic Matter, Phys. Rev. D68 (2003) 043508.
(3) Cosmological Scaling Solutions and Multiple Exponential Potentials, Phys. Lett. B568 (2003) 1-7.
(2) 5D Dirac Equation in Induced-Matter Theory, Int. J. Theor. Phys. 41 (2002) 1733-1743.
(1) Conformally Invariant Klein-Gordon Equation in Kaluza-Klein Theory, Int. J. Theor. Phys. 40 (2001) 1259-1266.

科普文章

  1. "空间引力波探测综述与拟解决的科学问题",《空间科学学报》,2023年,43卷,第4期  PDF
  2. "来自宇宙的微弱声音",《科技导报》,2017年,35卷,第23期  PDF
  3. "为什么说宇宙在膨胀",《科学世界》,2016年,第11期,卷首语  PDF
  4. "引力波探测:引力波天文学的新时代",《科技导报》,2016年,34卷,第3期  PDF

科研活动

   
科研项目
( 1 ) 973项目:基于精密测量物理的引力及相关物理规律研究, 参与, 国家任务, 2010-01--2014-08
( 2 ) 中国科学院人才计划, 负责人, 中国科学院计划, 2011-04--2014-03
( 3 ) 国家自然科学基金面上项目:用宇宙微波背景检验暴涨模型, 负责人, 国家任务, 2012-01--2015-12
( 4 ) 国家自然科学基金重点项目:宇宙加速膨胀及暗物质研究, 参与, 国家任务, 2014-01--2018-12
( 5 ) 国家自然科学基金面上项目:用宇宙微波背景辐射探测中微子物理, 负责人, 国家任务, 2016-01--2019-12
( 6 ) 中科院战略先导科技专项(B):多波段引力波宇宙研究--空间太极计划预研, 参与, 中国科学院计划, 2016-01--2020-12
( 7 ) 国家自然科学基金重大项目:引力波和宇宙演化, 负责人, 国家任务, 2017-01--2021-12
( 8 ) 国家自然科学基金重点项目群:基于DAMPE的暗物质属性及结构形成相关理论研究, 参与, 国家任务, 2018-04--2020-12
( 9 ) 中科院战略先导科技专项(A):空间引力波探测太极计划, 参与, 中国科学院计划, 2018-07--2020-12
( 10 ) 国家自然科学基金面上项目:早期宇宙的引力波研究, 负责人, 国家任务, 2021-01--2024-12
( 11 ) 国家重点研发计划:引力波宇宙学波源物理研究, 负责人, 国家任务, 2020-12--2025-11
( 12 ) 国家自然科学基金重点项目:引力波物理及数据分析研究, 负责人, 国家任务, 2023-01--2027-12
( 13 ) 第七批国家高层次人才特殊支持计划, 负责人, 国家任务, 2022-09--2025-09