基本信息
李竞  男  博导  中国科学院数学与系统科学研究院
电子邮件: ajingli@gmail.com
通信地址: 北京市海淀区中关村东路55号中科院数学与系统科学研究院
邮政编码: 100190

研究领域

流体力学中的偏微分方程


招生信息

   
招生专业
070104-应用数学
招生方向
偏微分方程

教育背景

2001-09--2004-07   香港中文大学数学系   博士学位
1993-09--1996-07   厦门大学数学系   硕士学位
1989-09--1993-07   厦门大学数学系   学士学位

工作经历

   
工作简历
2013-03~现在, 中国科学院数学与系统科学研究院, 研究员
2008-04~2013-03,中科院数学院, 副研究员
2006-04~2008-04,中科院数学院, 助理研究员
2004-09~2006-04,中科院数学院, 博士后
2001-09~2004-07,香港中文大学数学系, 博士学位
1996-08~2001-08,厦门大学学报编辑部, 编辑
1993-09~1996-07,厦门大学数学系, 硕士学位
1989-09~1993-07,厦门大学数学系, 学士学位

教授课程

现代偏微分方程理论

出版信息

   
发表论文
[1] 黄祥娣, 李竞. Global well-posedness of classical solutions to the cauchy problem of two-dimensional barotropic compressible Navier-Stokes system with vacuum and large initial data. SIAM J. MATH. ANAL.[J]. 2022, [2] He, Cheng, Li, Jing, Lu, Boqiang. Global Well-Posedness and Exponential Stability of 3D Navier-Stokes Equations with Density-Dependent Viscosity and Vacuum in Unbounded Domains. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS[J]. 2021, 239(3): 1809-1835, https://www.webofscience.com/wos/woscc/full-record/WOS:000604851300001.
[3] Li, Jing, Xin, Zhouping. Global Well-Posedness and Large Time Asymptotic Behavior of Classical Solutions to the Compressible Navier-Stokes Equations with Vacuum. ANNALS OF PDE[J]. 2019, 5(1): http://dx.doi.org/10.1007/s40818-019-0064-5.
[4] Huang, Xiangdi, Li, Jing. Global Classical and Weak Solutions to the Three-Dimensional Full Compressible Navier-Stokes System with Vacuum and Large Oscillations. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS[J]. 2018, 227(3): 995-1059, https://www.webofscience.com/wos/woscc/full-record/WOS:000419766100005.
[5] Li Jing. Existence and blowup behavior of global strong solutions to the two-dimensional barotropic compressible Navier-Stokes system with vacuum and large initial data. J. Math. Pures Appl.. 2016, [6] Li, Jing, Liang, Zhilei. Some Uniform Estimates and Large-Time Behavior of Solutions to One-Dimensional Compressible Navier-Stokes System in Unbounded Domains with Large Data. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS[J]. 2016, 220(3): 1195-1208, https://www.webofscience.com/wos/woscc/full-record/WOS:000371800100008.
[7] Huang, Xiangdi, Li, Jing. Existence and blowup behavior of global strong solutions to the two-dimensional barotrpic compressible Navier-Stokes system with vacuum and large initial data. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES[J]. 2016, 106(1): 123-154, http://dx.doi.org/10.1016/j.matpur.2016.02.003.
[8] Li, Jing, Zhang, Jianwen, Zhao, Junning. ON THE GLOBAL MOTION OF VISCOUS COMPRESSIBLE BAROTROPIC FLOWS SUBJECT TO LARGE EXTERNAL POTENTIAL FORCES AND VACUUM. SIAM JOURNAL ON MATHEMATICAL ANALYSIS[J]. 2015, 47(2): 1121-1153, https://www.webofscience.com/wos/woscc/full-record/WOS:000353952800006.
[9] Li, Jing, Liang, Zhilei. On local classical solutions to the Cauchy problem of the two-dimensional barotropic compressible Navier-Stokes equations with vacuum. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES[J]. 2014, 102(4): 640-671, http://dx.doi.org/10.1016/j.matpur.2014.02.001.
[10] Huang, Xiangdi, Li, Jing. Serrin-Type Blowup Criterion for Viscous, Compressible, and Heat Conducting Navier-Stokes and Magnetohydrodynamic Flows. COMMUNICATIONS IN MATHEMATICAL PHYSICS[J]. 2013, 324(1): 147-171, https://www.webofscience.com/wos/woscc/full-record/WOS:000325626900007.
[11] Huang, Xiangdi, Li, Jing, Wang, Yong. Serrin-Type Blowup Criterion for Full Compressible Navier-Stokes System. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS[J]. 2013, 207(1): 303-316, https://www.webofscience.com/wos/woscc/full-record/WOS:000313069100009.
[12] Bresch, Didier, Huang, Xiangdi, Li, Jing. Global Weak Solutions to One-Dimensional Non-Conservative Viscous Compressible Two-Phase System. COMMUNICATIONS IN MATHEMATICAL PHYSICS[J]. 2012, 309(3): 737-755, https://www.webofscience.com/wos/woscc/full-record/WOS:000300362200006.
[13] Huang, Xiangdi, Li, Jing, Xin, Zhouping. Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS[J]. 2012, 65(4): 549-585, http://dx.doi.org/10.1002/cpa.21382.
[14] Li, Jing, Matsumura, Akitaka. On the Navier-Stokes equations for three-dimensional compressible barotropic flow subject to large external potential forces with discontinuous initial data. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES[J]. 2011, 95(5): 495-512, http://dx.doi.org/10.1016/j.matpur.2010.12.002.
[15] Huang, Xiangdi, Li, Jing, Xin, Zhouping. Blowup Criterion for Viscous Baratropic Flows with Vacuum States. COMMUNICATIONS IN MATHEMATICAL PHYSICS[J]. 2011, 301(1): 23-35, http://dx.doi.org/10.1007/s00220-010-1148-y.
[16] Li Jing. Blowup criterion for viscous barotropic flows with vacuum states. 2011, [17] Huang, Xiangdi, Li, Jing, Xin, Zhouping. SERRIN-TYPE CRITERION FOR THE THREE-DIMENSIONAL VISCOUS COMPRESSIBLE FLOWS. SIAM JOURNAL ON MATHEMATICAL ANALYSIS[J]. 2011, 43(4): 1872-1886, http://dx.doi.org/10.1137/100814639.
[18] Huang, Feimin, Li, Jing, Matsumura, Akitaka. Asymptotic Stability of Combination of Viscous Contact Wave with Rarefaction Waves for One-Dimensional Compressible Navier-Stokes System. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS[J]. 2010, 197(1): 89-116, https://www.webofscience.com/wos/woscc/full-record/WOS:000277784700002.
[19] Li Jing. Asymptotic Stability of Combination of Viscous Contact Wave with Rarefaction Waves for 1-D Compressible Navier-Stokes System. Arch. Ration. Mech. Anal.. 2010, [20] Huang, Feimin, Li, Jing, Shi, Xiaoding. ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS IN THE HALF SPACE. COMMUNICATIONS IN MATHEMATICAL SCIENCES[J]. 2010, 8(3): 639-654, https://www.webofscience.com/wos/woscc/full-record/WOS:000278450200002.
[21] Li, HaiLiang, Li, Jing, Xin, Zhouping. Vanishing of vacuum states and blow-up phenomena of the compressible Navier-Stokes equations. COMMUNICATIONS IN MATHEMATICAL PHYSICS[J]. 2008, 281(2): 401-444, https://www.webofscience.com/wos/woscc/full-record/WOS:000256471300005.
[22] Huang, Feimin, Li, Jing, Xin, Zhouping. Convergence to equilibria and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows with large data. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES[J]. 2006, 86(6): 471-491, http://dx.doi.org/10.1016/j.matpur.2006.10.001.
[23] Li, J, Xin, ZP. Some uniform estimates and blowup behavior of global strong solutions to the Stokes approximation equations for two-dimensional compressible flows. JOURNAL OF DIFFERENTIAL EQUATIONS[J]. 2006, 221(2): 275-308, http://dx.doi.org/10.1016/j.jde.2005.08.012.

科研活动

   
科研项目
( 1 ) 可压缩Navier-Stokes方程的一些数学问题, 主持, 国家级, 2014-01--2017-12
( 2 ) 偏微分方程, 主持, 国家级, 2016-01--2020-12

指导学生

现指导学生

王艺璇  硕士研究生  070104-应用数学  

李东辉  硕士研究生  070104-应用数学  

高俊超  博士研究生  070104-应用数学  

宋思思  博士研究生  070104-应用数学