基本信息
李玉良  男  博导  中国科学院化学研究所
电子邮件: ylli@iccas.ac.cn
通信地址: 北京市朝阳区大屯路风林绿洲15-701
邮政编码: 100190

研究领域

            有机功能分子体系的设计、合成和性质
        共价、非共价有机和无机/有机纳米结构超分子体系
        富勒烯化学

教育背景

   
学历

博士

工作经历

   
工作简历
中科院化学所有机固体室研究员、博士生导师。作为访问学者、访问教授在荷兰阿姆斯特丹大学有机化学实验室、美国Nortre Dame大学放射实验室及香港大学化学系等学术机构从事研究及合作研究工作。主要研究领域:有机和无机/有机杂化共价、非共价超分子体系;富勒烯化学;有机纳米结构和材料.主要是设计、合成具有光电活性的有机及有机高聚物材料、有机/无机聚集态结构材料、纳米及纳米结构材料以及共轭高聚物材料等。先后在J. Am. Chem. Soc., Angew. Chem. Int. Edt., Adv. Mater., Chem. Eur. J., Appl. Phys. Lett., Chem. Commun., Org. Lett., Chem. Mater., J. Phys. Chem. BJ.Org.Chem.,ChemPhyChem.等国际权威学术杂志上发表论文200余篇,专著章节多部,申请专利多项。主持多项国家自然科学基金项目、中科院创新项目及863项目。2004年获北京市自然科学一等奖,20022005年两次获国家自然科学二等奖, 1999年获得中国科学院自然科学二等奖

出版信息

   
发表论文
[1] Fang, Yan, Hui, Lan, Chen, Xi, Xue, Yurui, Li, Yuliang. Highly Loading Metal Atoms on Graphdiyne for Efficient Nitrogen Fixation to Ammonia. J. Mater. Chem. A[J]. 2022, 10(11): https://pubs.rsc.org/en/content/articlelanding/2022/TA/D1TA08241H.
[2] Du Yuncheng, Zheng Xuchen, Xue Yurui, Li Yuliang. Bismuth/Graphdiyne Heterostructure for Electrocatalytic Conversion of CO2 to Formate. CHEMICAL RESEARCH IN CHINESE UNIVERSITIES. 2022, http://dx.doi.org/10.1007/s40242-022-2091-0.
[3] Fang, Yan, Liu, Yuxin, Qi, Lu, Xue, Yurui, Li, Yuliang. 2D graphdiyne: an emerging carbon material. Chem. Soc. Rev.[J]. 2022, 51(7): https://pubs.rsc.org/en/content/articlepdf/2022/cs/d1cs00592h.
[4] Houhe Pan, Zicheng Zuo, Feng He, Yuliang Li. In-situ induced self-solidification and activation of ultra-high energy density organic cathode. Energy Storage Materials. 2022, 52: 465-472, http://dx.doi.org/10.1016/j.ensm.2022.08.025.
[5] Gao, Xiaoya, Zuo, Zicheng, Wang, Fan, Chang, Qian, Pan, Houhe, Li, Liang, He, Feng, Li, Yuliang. Controlling precise voids in the ion-selective carbon shell for zero-strain electrode. ENERGY STORAGE MATERIALS[J]. 2022, 45: 110-118, http://dx.doi.org/10.1016/j.ensm.2021.11.035.
[6] Zhai, Xiangang, Pan, Houhe, Wang, Fan, Gao, Xiaoya, Xiong, Zecheng, Li, Liang, Chang, Qian, Cheng, Shujin, Zuo, Zicheng, Li, Yuliang. Controlled Growth of 3D Interpenetrated Networks by NiCo2O4 and Graphdiyne for High-Performance Supercapacitor. ACS APPLIED MATERIALS & INTERFACES[J]. 2022, 14(16): 18283-18292, http://dx.doi.org/10.1021/acsami.1c23072.
[7] Li, Liang, Zuo, Zicheng, Pan, Houhe, Chang, Qian, Gao, Xiaoya, Zhai, Xiangang, Li, Yuliang. An integrated interfacial engineering for efficiently confining the asymmetric strain in scalable silicon anode. JOURNAL OF POWER SOURCES[J]. 2022, 524: http://dx.doi.org/10.1016/j.jpowsour.2022.231086.
[8] Hui, Lan, Xue, Yurui, Xing, Chengyu, Liu, Yuxin, Du, Yuncheng, Fang, Yan, Yu, Huidi, Zhang, Chao, He, Feng, Li, Yuliang. Atomic alloys of nickel-platinum on carbon network for methanol oxidation. NANO ENERGY[J]. 2022, 95: http://dx.doi.org/10.1016/j.nanoen.2022.106984.
[9] Gao, Yang, Xue, Yurui, He, Feng, Li, Yuliang. Controlled growth of a high selectivity interface for seawater electrolysis. Proc. Natl. Acad. Sci[J]. 2022, 119(36): https://www.pnas.org/doi/epdf/10.1073/pnas.2206946119.
[10] Liu, Yuxin, Gao, Yang, He, Feng, Xue, Yurui, Li, Yuliang. Controlled growth interface of charge transfer salts of Nickel-7,7,8,8-tetracyanoquinodimethane on surface of graphdiyne. CCS Chemistry[J]. 2022, https://www.chinesechemsoc.org/doi/10.31635/ccschem.022.202202005.
[11] Zhang, Danyan, Zheng, Xuchen, Zhang, Chao, Xue, Yurui, Li, Yuliang. Multi-heterointerfaces for selective and efficient urea production. Natl. Sci. Rev[J]. 2022, https://academic.oup.com/nsr/advance-article/doi/10.1093/nsr/nwac209/6748208?login=true.
[12] Cheng Shujin, Zuo Zicheng, Li Yuliang. Graphdiyne interface: electrode optimization strategy from microscale to macroscale. 中国科学 : 化学[J]. 2022, 52(2): https://www.webofscience.com/wos/alldb/full-record/CSCD:7176932.
[13] Zheng, Xuchen, Zhang, Chao, Xue, Yurui, Li, Yuliang. Controlled growth of multi-dimension interface for high selectivity ammonia production. CCS Chemistry[J]. 2022, https://www.chinesechemsoc.org/doi/10.31635/ccschem.022.202202189.
[14] Hui, Lan, Zhang, Xueting, Xue, Yurui, Chen, Xi, Fang, Yan, Xing, Chengyu, Liu, Yuxin, Zheng, Xuchen, Du, Yuncheng, Zhang, Chao, He, Feng, Li, Yuliang. Highly dispersed platinum chlorine atoms anchored on gold quantum dots for a highly efficient electrocatalyst.. J. Am. Chem. Soc.[J]. 2022, 144(4): https://pubs.acs.org/doi/10.1021/jacs.1c12310.
[15] Fang, Yan, Xue, Yurui, Hui, Lan, Yu, Huidi, Zhang, Chao, Huang, Bolong, Li, Yuliang. Graphdiyne-Induced Iron Vacancy for Efficient Nitrogen Conversion. ADVANCED SCIENCE[J]. 2022, 9(2): http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000715193800001.
[16] Zhang, Danyan, Zheng, Xuchen, Qi, Lu, Xue, Yurui, He, Feng, Li, Yuliang. Controlled Growth of Single-Crystal Pd Quantum Dots on 2D Carbon for Large-Current Density Hydrogen Evolution. Adv. Funct. Mater.[J]. 2022, 32(20): https://onlinelibrary.wiley.com/doi/10.1002/adfm.202111501.
[17] Chen, Xi, Zheng, Xuchen, Qi, Lu, Xue, Yurui, Li, Yuliang. Conversion of Interfacial Chemical Bonds for Inducing Efficient Photoelectrocatalytic Water Splitting. ACS Mater. Au[J]. 2022, 2(3): https://pubs.acs.org/doi/full/10.1021/acsmaterialsau.1c00071.
[18] Gao, Yang, Qi, Lu, He, Feng, Xue, Yurui, Li, Yuliang. Selectively Growing a Highly Active Interface of Mixed Nb-Rh Oxide/2D Carbon for Electrocatalytic Hydrogen Production. ADVANCED SCIENCE[J]. 2022, 9(10): http://dx.doi.org/10.1002/advs.202104706.
[19] Gao, Yang, Qi, Lu, Xing, Chengyu, Zheng, Xuchen, Xue, Yurui, He, Feng, Li, Yuliang. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat. Commun.[J]. 2022, 13(1): https://www.nature.com/articles/s41467-022-32937-2.
[20] Hui, Lan, Xing, Chengyu, Liu, Yuxin, Du, Yuncheng, Fang, Yan, Yu, Huidi, Xue, Yurui, Huang, Bolong, Li, Yuliang. Highly Loaded Independent Pt0 Atoms on Graphdiyne for pH-General Methanol Oxidation Reaction. Adv. Sci.[J]. 2022, 9(16): https://onlinelibrary.wiley.com/doi/10.1002/advs.202104991.
[21] Chang, Qian, Li, Liang, Zuo, Zicheng, Li, Yuliang. sp-carbon-enabled interface for high-performance graphite anode. NANO TODAY[J]. 2022, 44: http://dx.doi.org/10.1016/j.nantod.2022.101478.
[22] Zhang, Chao, Xue, Yurui, Hui, Lan, Fang, Yan, Liu, Yuxin, Li, Yuliang. Graphdiyne@NiOx(OH)(y) heterostructure for efficient overall water splitting. MATERIALS CHEMISTRY FRONTIERS[J]. 2021, 5(14): 5305-5311, http://dx.doi.org/10.1039/d1qm00466b.
[23] Liu, Yuxin, Xue, Yurui, Yu, Huidi, Hui, Lan, Huang, Bolong, Li, Yuliang. Graphdiyne Ultrathin Nanosheets for Efficient Water Splitting. ADVANCED FUNCTIONAL MATERIALS[J]. 2021, 31(16): https://www.webofscience.com/wos/woscc/full-record/WOS:000617901900001.
[24] Liu, Yuxin, Xue, Yurui, Hui, Lan, Yu, Huidi, Fang, Yan, He, Feng, Li, Yuliang. Porous graphdiyne loading CoOx quantum dots for fixation nitrogen reaction. NANO ENERGY[J]. 2021, 89: http://dx.doi.org/10.1016/j.nanoen.2021.106333.
[25] Luan, Xiaoyu, Zheng, Zhiqiang, Wang, Zhongqiang, Gao, Yaqi, Zhao, Shuya, Xue, Yurui, Li, Yuliang. Graphdiyne/CdSe quantum dot heterostructure for efficient photoelectrochemical water oxidation. 2D MATERIALS[J]. 2021, 8(4): [26] Du, Yuncheng, Xue, Yurui, Zhang, Chao, Liu, Yuxin, Fang, Yan, Xing, Chengyu, He, Feng, Li, Yuliang. Photoinduced Electrocatalysis on 3D Flexible OsOx Quantum Dots. ADVANCED ENERGY MATERIALS[J]. 2021, 11(18): http://dx.doi.org/10.1002/aenm.202100234.
[27] Gao, Yang, Xue, Yurui, Liu, Taifeng, Liu, Yuxin, Zhang, Chao, Xing, Chengyu, He, Feng, Li, Yuliang. Bimetallic Mixed Clusters Highly Loaded on Porous 2D Graphdiyne for Hydrogen Energy Conversion. ADVANCED SCIENCE[J]. 2021, 8(21): http://dx.doi.org/10.1002/advs.202102777.
[28] Yu, Huidi, Hui, Lan, Fang, Yan, Xue, Yurui, He, Feng, Li, Yuliang. A metal-free graphdiyne material for highly efficient oxidation of benzene to phenol. 2D MATERIALS[J]. 2021, 8(4): [29] Zhang, Chao, Li, Yuliang. Graphdiyne Based Atomic Catalyst: an Emerging Star for Energy Conversion. CHEMICAL RESEARCH IN CHINESE UNIVERSITIES[J]. 2021, 37(6): 1149-1157, [30] Li Yuliang. Highly Loading Metal Atoms on Graphdiyne for Efficient Nitrogen Fixation to Ammonia.. J. Mater. Chem. A. 2021, [31] Li Yuliang. Loaded nickel atoms on GDY for efficient CO2 fixation and conversion. Chemical Research in Chinese Universities. 2021, [32] Li Yuliang. N-rich Graphdiyne Film for Efficiently Suppressing the Methanol Crossover in Direct Methanol Fuel Cells. Chemical Research in Chinese Universities. 2021, [33] Li Yuliang. Graphdiyne@Janus Magnetite for Photocatalysis Nitrogen Fixation. Angew. Chem. Int. Ed.. 2021, [34] Hui, Lan, Xue, Yurui, Liu, Yuxin, Li, Yuliang. Efficient Hydrogen Evolution on Nanoscale Graphdiyne. SMALL[J]. 2021, 17(48): http://dx.doi.org/10.1002/smll.202006136.
[35] Shen, Han, He, Jingyi, He, Feng, Xue, Yurui, Li, Yongjun, Li, Yuliang. Nitrogen-doped graphdiyne for effective metal deposition and heterogeneous Suzuki-Miyaura coupling catalysis. APPLIED CATALYSIS A-GENERAL[J]. 2021, 623: http://dx.doi.org/10.1016/j.apcata.2021.118244.
[36] Huidi Yu, Yurui Xue, Lan Hui, Chao Zhang, Yan Fang, Yuxin Liu, Xi Chen, Danyan Zhang, Bolong Huang, Yuliang Li. Graphdiyne-based metal atomic catalysts for synthesizing ammonia. 国家科学评论:英文版[J]. 2021, 8(8): 163-172, http://lib.cqvip.com/Qikan/Article/Detail?id=7105504591.
[37] BSRF用户. Selective Conversion of CO2 into Cyclic Carbonate on Atom Level Catalysts. ACS Materials Au[J]. 2021, 1(2): 107-115, https://doaj.org/article/7b8f58a819464f3d8c6dfba9449219cf.
[38] Zhou, Weixiang, Shen, Han, Wu, Chenyu, Tu, Zeyi, He, Feng, Gu, Yanan, Xue, Yurui, Zhao, Yingjie, Yi, Yuanping, Li, Yongjun, Li, Yuliang. Direct Synthesis of Crystalline Graphdiyne Analogue Based on Supramolecular Interactions. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2019, 141(1): 48-52, https://www.webofscience.com/wos/woscc/full-record/WOS:000455561800008.
[39] Wang, Fan, Zuo, Zicheng, Li, Liang, He, Feng, Lu, Fushen, Li, Yuliang. A Universal Strategy for Constructing Seamless Graphdiyne on Metal Oxides to Stabilize the Electrochemical Structure and Interface. ADVANCED MATERIALS[J]. 2019, 31(6): https://www.webofscience.com/wos/woscc/full-record/WOS:000459630600020.
[40] Yu, Huidi, Xue, Yurui, Li, Yuliang. Graphdiyne and its Assembly Architectures: Synthesis, Functionalization, and Applications. ADVANCED MATERIALSnull. 2019, 31(42): [41] Hui, Lan, Xue, Yurui, Yu, Huidi, Liu, Yuxin, Fang, Yan, Xing, Chengyu, Huang, Bolong, Li, Yuliang. Highly Efficient and Selective Generation of Ammonia and Hydrogen on a Graphdiyne-Based Catalyst. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2019, 141(27): 10677-10683, [42] Yu, Huidi, Xue, Yurui, Huang, Bolong, Hui, Lan, Zhang, Chao, Fang, Yan, Liu, Yuxin, Zhao, Yingjie, Li, Yongjun, Liu, Huibiao, Li, Yuliang. Ultrathin Nanosheet of Graphdiyne-Supported Palladium Atom Catalyst for Efficient Hydrogen Production. ISCIENCE[J]. 2019, 11: 31-+, http://apps.webofknowledge.com/CitedFullRecord.do?product=UA&colName=WOS&SID=5CCFccWmJJRAuMzNPjj&search_mode=CitedFullRecord&isickref=WOS:000456942200003.
[43] Huang, Changshui, Zhao, Yuliang, Li, Yuliang. Graphdiyne: The Fundamentals and Application of an Emerging Carbon Material. ADVANCED MATERIALSnull. 2019, 31(42): https://www.webofscience.com/wos/woscc/full-record/WOS:000490291000014.
[44] Xing, Chengyu, Xue, Yurui, Huang, Bolong, Yu, Huidi, Hui, Lan, Fang, Yan, Liu, Yuxin, Zhao, Yingjie, Li, Zhibo, Li, Yuliang. Fluorographdiyne: A Metal-Free Catalyst for Applications in Water Reduction and Oxidation. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2019, 58(39): 13897-13903, http://dx.doi.org/10.1002/anie.201905729.
[45] Li Yuliang. Large-Area Aminated-Graphdiyne Thin Film for Direct Methanol Fuel Cells. Angew. Chem. Int. Ed. 2019, [46] Zuo, Zicheng, Wang, Dan, Zhang, Jin, Lu, Fushen, Li, Yuliang. Synthesis and Applications of Graphdiyne-Based Metal-Free Catalysts. ADVANCED MATERIALS[J]. 2019, 31(13): http://ir.ipe.ac.cn/handle/122111/28273.
[47] Yurui Xue, Lan Hui, Huidi Yu, Yuxin Liu, Yan Fang, Bolong Huang, Yingjie Zhao, Zhibo Li, Yuliang Li. Rationally engineered active sites for efficient and durable hydrogen generation. Nature Communications[J]. 2019, 10(1): 1-8, http://dx.doi.org/10.1038/s41467-019-10230-z.
[48] Yurui Xue, Bolong Huang, Yuanping Yi, Yuan Guo, Zicheng Zuo, Yongjun Li, Zhiyu Jia, Huibiao Liu, Yuliang Li. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. NATURE COMMUNICATIONS[J]. 2018, 9(1): https://doaj.org/article/5d44802322b94d7f96301602632d86b4.
[49] Yu, Huidi, Xue, Yurui, Hui, Lan, Zhang, Chao, Li, Yongjun, Zuo, Zicheng, Zhao, Yingjie, Li, Zhibo, Li, Yuliang. Efficient Hydrogen Production on a 3D Flexible Heterojunction Material. ADVANCED MATERIALS[J]. 2018, 30(21): [50] Shang, Hong, Zuo, Zicheng, Yu, Le, Wang, Fan, He, Feng, Li, Yuliang. Low-Temperature Growth of All-Carbon Graphdiyne on a Silicon Anode for High-Performance Lithium-Ion Batteries. ADVANCED MATERIALS[J]. 2018, 30(27): https://www.webofscience.com/wos/woscc/full-record/WOS:000436930800032.
[51] Jia, Zhiyu, Li, Yongjun, Zuo, Zicheng, Liu, Huibiao, Huang, Changshui, Li, Yuliang. Synthesis and Properties of 2D Carbon-Graphdiyne. ACCOUNTS OF CHEMICAL RESEARCH[J]. 2017, 50(10): 2470-2478, https://www.webofscience.com/wos/woscc/full-record/WOS:000413392000007.
[52] Jianjiang He, Ning Wang, Zili Cui, Huiping Du, Lin Fu, Changshui Huang, Ze Yang, Xiangyan Shen, Yuanping Yi, Zeyi Tu, Yuliang Li. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. NATURE COMMUNICATIONS[J]. 2017, 8(1): http://www.irgrid.ac.cn/handle/1471x/1755755.
[53] Jia, Zhiyu, Zuo, Zicheng, Yi, Yuanping, Liu, Huibiao, Li, Dan, Li, Yongjun, Li, Yuliang. Low temperature, atmospheric pressure for synthesis of a new carbon Eneyne and application in Li storage. NANO ENERGY[J]. 2017, 33: 343-349, http://dx.doi.org/10.1016/j.nanoen.2017.01.049.
[54] Jia, Zhiyu, Li, Yongjun, Zuo, Zicheng, Liu, Huibiao, Li, Dan, Li, Yuliang. Fabrication and Electroproperties of Nanoribbons: Carbon Ene-Yne. ADVANCED ELECTRONIC MATERIALS[J]. 2017, 3(11): https://www.webofscience.com/wos/woscc/full-record/WOS:000416047700005.
[55] Zuo, Zicheng, Shang, Hong, Chen, Yanhuan, Li, Jiaofu, Liu, Huibiao, Li, Yongjun, Li, Yuliang. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode. CHEMICAL COMMUNICATIONS[J]. 2017, 53(57): 8074-8077, https://www.webofscience.com/wos/woscc/full-record/WOS:000405381000024.
[56] Jia, Zhiyu, Jiu, Tonggang, Li, Yongjun, Li, Yuliang. New method for the synthesis of a highly-conjugated acene material and its application in Perovskite solar cells. MATERIALS CHEMISTRY FRONTIERS[J]. 2017, 1(11): 2261-2264, https://www.webofscience.com/wos/woscc/full-record/WOS:000413892500007.
[57] Xue, Yurui, Zuo, Zicheng, Li, Yongjun, Liu, Huibiao, Li, Yuliang. Graphdiyne-Supported NiCo2S4 Nanowires: A Highly Active and Stable 3D Bifunctional Electrode Material. SMALL[J]. 2017, 13(31): https://www.webofscience.com/wos/woscc/full-record/WOS:000407803500008.
[58] Jin, Zhiwen, Zhou, Qing, Chen, Yanhuan, Mao, Peng, Li, Hui, Liu, Huibiao, Wang, Jizheng, Li, Yuliang. Graphdiyne:ZnO Nanocomposites for High-Performance UV Photodetectors. ADVANCED MATERIALS[J]. 2016, 28(19): 3697-3702, https://www.webofscience.com/wos/woscc/full-record/WOS:000376480500009.
[59] Yongjun Li, Zhiyu Jia, Shengqiang Xiao, Huibiao Liu, Yuliang Li. A method for controlling the synthesis of stable twisted two-dimensional conjugated molecules. NATURE COMMUNICATIONS[J]. 2016, 7(1): https://doaj.org/article/19a65ff5627348e39380b4560932e20a.
[60] Du, Huiping, Yang, Hui, Huang, Changshui, He, Jianjiang, Liu, Huibiao, Li, Yuliang. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities. NANO ENERGY[J]. 2016, 22: 615-622, http://dx.doi.org/10.1016/j.nanoen.2016.02.052.
[61] Ren, Hao, Shao, Hui, Zhang, Lijuan, Guo, Dong, Jin, Quan, Yu, Ranbo, Wang, Lei, Li, Yuliang, Wang, Yun, Zhao, Huijun, Wang, Dan. A New Graphdiyne Nanosheet/Pt Nanoparticle-Based Counter Electrode Material with Enhanced Catalytic Activity for Dye-Sensitized Solar Cells. ADVANCED ENERGY MATERIALS[J]. 2015, 5(12): http://ir.iccas.ac.cn/handle/121111/27990.
[62] Kuang, Chaoyang, Tang, Gang, Jiu, Tonggang, Yang, Hui, Liu, Huibiao, Li, Bairu, Luo, Weining, Li, Xiaodong, Zhang, Wenjun, Lu, Fushen, Fang, Junfeng, Li, Yuliang. Highly Efficient Electron Transport Obtained by Doping PCBM with Graphdiyne in Planar-Heterojunction Perovskite Solar Cells. NANO LETTERS[J]. 2015, 15(4): 2756-2762, http://ir.iccas.ac.cn/handle/121111/28556.
[63] Li Yuliang. Self-assembly of Functional Molecules into One-Dimensional Crystalline Nanostructures. Adv. Mater.. 2015, [64] Huang, Changshui, Zhang, Shengliang, Liu, Huibiao, Li, Yongjun, Cui, Guangtei, Li, Yuliang. Graphdiyne for high capacity and long-life lithium storage. NANO ENERGY[J]. 2015, 11(1): 481-489, http://dx.doi.org/10.1016/j.nanoen.2014.11.036.
[65] Zuo, Zicheng, Kim, Tae Young, Kholmanov, Iskandar, Li, Huifeng, Chou, Harry, Li, Yuliang. Ultra-light Hierarchical Graphene Electrode for Binder-Free Supercapacitors and Lithium-Ion Battery Anodes. SMALL[J]. 2015, 11(37): 4922-4930, http://ir.iccas.ac.cn/handle/121111/28911.
[66] 李玉良. Graphdiyne and Graphyne Based Materials---From Theoretical Predictions to Practical Construction. ChemSocRev. 2014, 43(8): 2572-2586, [67] Li, Yongjun, Liu, Taifeng, Liu, Huibiao, Tian, MaoZhong, Li, Yuliang. Self-Assembly of Intramolecular Charge-Transfer Compounds into Functional Molecular Systems. ACCOUNTS OF CHEMICAL RESEARCHnull. 2014, 47(4): 1186-1198, https://www.webofscience.com/wos/woscc/full-record/WOS:000334658200021.
[68] Chen, Nan, Chen, Songhua, Ouyang, Canbin, Yu, Yanwen, Liu, Taifeng, Li, Yongjun, Liu, Huibiao, Li, Yuliang. Electronic logic gates from three-segment nanowires featuring two p-n heterojunctions. NPG ASIA MATERIALS[J]. 2013, 5: https://www.webofscience.com/wos/woscc/full-record/WOS:000323756900002.
[69] Xu, Jialiang, Semin, Sergey, Niedzialek, Dorota, Kouwer, Paul H J, Fron, Eduard, Coutino, Eduardo, Savoini, Matteo, Li, Yuliang, Hofkens, Johan, Uji, Hiroshi, I, Beljonne, David, Rasing, Theo, Rowan, Alan E. Self-Assembled Organic Microfibers for Nonlinear Optics. ADVANCED MATERIALS[J]. 2013, 25(14): 2084-2089, https://www.webofscience.com/wos/woscc/full-record/WOS:000317368500022.
[70] Yang, Wenlong, Li, Yongjun, Liu, Huibiao, Chi, Lifeng, Li, Yuliang. Design and Assembly of Rotaxane-Based Molecular Switches and Machines. SMALL[J]. 2012, 8(4): 504-516, https://www.webofscience.com/wos/woscc/full-record/WOS:000300672100003.
[71] Yang, Wenlong, Li, Yongjun, Zhang, Jianhong, Chen, Nan, Chen, Songhua, Liu, Huibiao, Li, Yuliang. A Controllable Chiral Molecular Machine: Movement on Molecular Level. SMALL[J]. 2012, 8(16): 2602-2607, https://www.webofscience.com/wos/woscc/full-record/WOS:000307390300021.
[72] Zheng, Haiyan, Li, Yongjun, Liu, Huibiao, Yin, Xiaodong, Li, Yuliang. Construction of heterostructure materials toward functionality. CHEMICAL SOCIETY REVIEWS[J]. 2011, 40(9): 4506-4524, https://www.webofscience.com/wos/woscc/full-record/WOS:000293858500005.
[73] Liu, Huibiao, Zuo, Zicheng, Guo, Yanbing, Li, Yongjun, Li, Yuliang. Supramolecular Interactions at the Inorganic-Organic Interface in Hybrid Nanomaterials. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION[J]. 2010, 49(15): 2705-2707, https://www.webofscience.com/wos/woscc/full-record/WOS:000276780500009.
[74] Liu, Huibiao, Xu, Jialiang, Li, Yongjun, Li, Yuliang. Aggregate Nanostructures of Organic Molecular Materials. ACCOUNTS OF CHEMICAL RESEARCH[J]. 2010, 43(12): 1496-1508, https://www.webofscience.com/wos/woscc/full-record/WOS:000285538900004.
[75] 李玉良. Architecture of Graphdiyne Nanoscale Films. ChemCommun. 2010, 46: 3256-3259, [76] Li Yuliang. Ordered Nanospheres Alignment of Porphyrin for Improvement in Nonlinear Optical Property. Adv. Mater.. 2010, [77] Li Yuliang. Controllable Growth Zero to Multi- Dimensional Nanostructures of a Novel Porphyrin Molecule. Adv. Mater.. 2009, [78] Cui, Shuang, Liu, Huibiao, Gan, Liangbing, Li, Yuliang, Zhu, Daoben. Fabrication of low-dimension nanostructures based on organic conjugated molecules. ADVANCED MATERIALS[J]. 2008, 20(15): 2918-2925, https://www.webofscience.com/wos/woscc/full-record/WOS:000258789200022.
[79] Guo, Yanbing, Tang, Qingxin, Liu, Huibiao, Zhang, Yajie, Li, Yuliang, Hu, Wenping, Wang, Shu, Zhu, Daoben. Light-controlled organic/inorganic P-N junction nanowires. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2008, 130(29): 9198-+, https://www.webofscience.com/wos/woscc/full-record/WOS:000257796500010.
[80] Cui, Shuang, Li, Yuliang, Guo, Yanbing, Liu, Huibiao, Song, Yinglin, Xu, Jialiang, Lv, Jing, Zhu, Mei, Zhu, Daoben. Fabrication and field-emission properties of large-area nanostructures of the organic charge-transfer complex Cu-TCNAQ. ADVANCED MATERIALS[J]. 2008, 20(2): 309-+, http://www.corc.org.cn/handle/1471x/2385533.
[81] 李玉良. Amphiphilic Bis-porphyrin–Bipyridinium–Palladium Complex: From Multibilayer Vesicles to Hollow Capsules. AngewChemIntEd. 2006, 45(22): 3639-3643, [82] He, XR, Liu, HB, Li, YL, Wang, S, Li, YJ, Wang, N, Xiao, JC, Xu, XH, Zhu, DB. Gold nanoparticle-based fluorometric and colorimetric sensing of copper(II) ions. ADVANCED MATERIALS[J]. 2005, 17(23): 2811-+, http://www.corc.org.cn/handle/1471x/2376990.
[83] 李玉良. Field emission properties of large area nanowires of organic charge transfer complexes. JAmChemSoc. 2005, 127(4): 1120-1121, [84] 李玉良. Fabrication of polydiacetylene nanowires by associated self-polymerization and self-assembly processes for efficient field emission properties. JAmChemSoc. 2005, 127(36): 12452-12453, [85] Liu, HB, Li, YL, Xiao, SQ, Gan, HY, Jiu, TG, Li, HM, Jiang, L, Zhu, DB, Yu, DP, Xiang, B, Chen, YF. Synthesis of organic one-dimensional nanomaterials by solid-phase reaction. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2003, 125(36): 10794-10795, https://www.webofscience.com/wos/woscc/full-record/WOS:000185154300013.
[86] 李玉良. Imaging as-Grown 60 fullerene nanotubes by template technique. JAmChemSoc. 2002, 12445: 13370-13371, [87] Liu, HB, Li, YL, Jiang, L, Luo, HY, Xiao, SQ, Fang, HJ, Li, HM, Zhu, DB, Yu, DP, Xu, J, Xiang, B. Imaging as-grown 60fullerene nanotubes by template technique. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY[J]. 2002, 124(45): 13370-13371, https://www.webofscience.com/wos/woscc/full-record/WOS:000179122900016.

指导学生

杨纪恩  硕士研究生  070303-有机化学  80032-化学研究所

刘超  硕士研究生  070303-有机化学  80032-化学研究所

周纯洁  硕士研究生  070303-有机化学  80032-化学研究所

周伟东  博士研究生  070303-有机化学  80032-化学研究所

欧阳灿彬  博士研究生  070303-有机化学  80032-化学研究所

陈松华  硕士研究生  070303-有机化学  80032-化学研究所

赵英杰  博士研究生  070303-有机化学  80032-化学研究所

徐加良  博士研究生  070303-有机化学  80032-化学研究所

郑海燕  博士研究生  070303-有机化学  80032-化学研究所

尹晓东  博士研究生  070303-有机化学  80032-化学研究所

李国兴  博士研究生  070303-有机化学  80032-化学研究所

左自成  博士研究生  070303-有机化学  80032-化学研究所