Professor Xuejie Huang graduated from the Department of Chemistry, Xiamen University in 1986 with a Bachelor's degree in Structure of Matter. In 1989, he obtained a Master's degree in Chemical Physics from the Department of Chemistry, University of Science and Technology of China. In 1993, he graduated from the Department of Chemical Engineering and Materials, Delft University of Technology, Netherlands, with a Ph.D. in Inorganic Materials. From 1994 to 1995, he conducted postdoctoral research at the Faculty of Engineering, Kiel University, Germany. Currently, he serves as a Researcher and Doctoral Supervisor at the Institute of Physics, Chinese Academy of Sciences, and the Deputy Director of the Songshan Lake Materials Laboratory, as well as the Leader of the Lithium-ion Battery Team.
Email:xjhuang@aphy.iphy.ac.cn
Phone:010-82648073
Address:Room 307, Building M
Postcode:100190
ORCID: 0000-0001-5900-678X
H-index: 92 (as of 11/2024)
Research Areas
Energy conversion and storage materials, and ionic/transport studies of nano/micro materials.
Projects Undertaken / Completed Projects:
1. 1996-1999: Natural Science Foundation Project, Research on Gradient Oxide Mixed Conductors, Principal Investigator.
2. 1996-2000: 863 Project, Research on Square Lithium-ion Batteries, Jointly undertaken with Academician Liquan Chen.
3. 2001-2005: Key 863 Project, Research on Phosphates and Other New Cathode Materials, Principal Investigator.
4. 2002-2005: 863 Major Electric Vehicle Project, High-Power Lithium-ion Battery Research, Phylion Company as Lead, in collaboration with IOP CAS.
5. 2002-2006: 973 Project, Fundamental Research on Dense Energy Sources.
6. 2004-2007: Demonstration Project by the National Development and Reform Commission, Industrialization Demonstration of Lithium-ion Power, Project Leader.
7. 2006-2008: 863 Project, Research on Energy Storage Lithium-ion Battery Materials like LiMPO4, Principal Investigator.
8. 2009-2010: 863 Major Energy Saving and New Energy Vehicle Project, Subproject on New High-Power Lithium-ion Battery Technology for Vehicles, Principal Investigator.
9. 2007-2011: Major Nano Project, Structural Design and Preparation Mechanism of High-Capacity Nano Composite Lithium Storage Materials, Principal Investigator.
10. 2012-2017: Major Nano Project, Structural Design and Preparation Mechanism of High-Capacity Nano Cathode Materials, Principal Investigator.
11. 2013-2017: Ministry of Industry and Information Basic Strengthening Project, Lithium-ion Power Battery Process Technology Service Platform, Principal Investigator.
12. 2015-2018: Guangdong Major Science and Technology Project, Innovation Base for Lithium-ion Power Battery Process Equipment, Principal Investigator.
13. 2017-2021: Key Solid-State Battery Project, Chief Scientist.
14. 2019-2024: Key R&D Project on High-Density Batteries and Their Key Materials, Chief Scientist.
Education
Academic Qualifications
1982-1986: Xiamen University, Department of Chemistry, Major in Structure of Matter
1986-1989: University of Science and Technology of China, Chemical Physics, Master's Degree
1991-1993: Delft University of Technology, Netherlands, Ph.D.
Degrees
Delft University of Technology, Netherlands, Ph.D. (1991.08.01 - 1993.09.01)
International Studies and Work
1991-1993: Delft University of Technology, Netherlands, Ph.D.
1994-1995: Kiel University, Germany, Postdoctoral Researcher
Experience
Employment History
1996-1999: Institute of Physics, Chinese Academy of Sciences, Associate Professor/Group Leader of Lithium-ion Batteries
(1997-1998: Led the establishment of a pilot production line for small lithium-ion batteries at the Institute of Physics)
1999-Present: Institute of Physics, Chinese Academy of Sciences, Professor/Group Leader of Lithium-ion Batteries
(From 1999 to 2006, also undertook industrialization projects for lithium-ion power batteries and their key materials, successfully achieving the commercialization of lithium-ion power batteries and some key materials. Since 2007, the focus has shifted to fundamental and applied research on lithium-ion batteries and key materials, laying the foundation for the development of next-generation rechargeable lithium battery technologies.)
2019-Present: Deputy Director, Songshan Lake Materials Laboratory/Team Leader of the Lithium-ion Battery Materials Group
Social Positions
Vice Chairman, China Battery Industry Association
Vice Chairman, Solid State Ionics Branch, Chinese Ceramic Society
Executive Deputy Director, Energy Storage Engineering Committee, Chinese Chemical Society
Executive Council Member, Chinese Materials Research Society
Editor-in-Chief, Energy Storage Science and Technology
Honors & Distinctions
Awards
1999: Second Prize of Science and Technology Progress Award, Chinese Academy of Sciences (Ministerial Level)
2000: ISI Classic Paper Award (International Academic Award)
2001: Qiu Shi Outstanding Young Scholar Award, China Association for Science and Technology
2001: Outstanding Young Scholar Award, Chinese Academy of Sciences (Ministerial Level)
Patents
129 granted patents (as of 11/2024)
Patents at zhihuiya: https://analytics.zhihuiya.com/search/result/tablelist/1?sort=desc&limit=100&q=%E9%BB%84%E5%AD%A6%E6%9D%B0&_type=query&search_mode=unset
Publications
Papers
Selected Publications
1.Studies of stannic oxide as an anode material for lithium-ion batteries, Liu WF, Huang XJ, Wang ZX, et al., Journal of the Electrochemical Society, Vol 145(1998) 59-62
2.Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries, Li H, Huang XJ, Chen LQ, Electrochemical and Solid-State Letters, Vol 1(1998) 241-243
3.Monodispersed hard carbon spherules with uniform nanopores, Wang Q, Li H, Chen LQ, Huang XJ., Carbon, Vol 39(2001) 2211-2214
4. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations,Shi SQ, Liu LJ, Ouyang CY, Wang DS, Wang ZX, Chen LQ, Huang XJ,Physical Review B, 68(2003)195108
5. Electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material, Liu LJ, Chen LQ, Huang XJ, et al., Journal of the Electrochemical Society, 151(2004) A1344-A1351
6. Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiFSI in Linear Carbonate Solvents, Li LF, Zhou SS, Han HB, et al. Journal of the Electrochemical Society, 158(2011), A74-A82
7. Electrochemical and structural studies of the carbon-coated Li[CrxLi(1/3−x/3)Ti(2/3−2x/3)]O2 (x = 0.3, 0.35, 0.4, 0.45), Xin Mi, Hong Li, and Xuejie Huang, Journal of Power Sources 174 (2), 867 (2007);
8. First-principle investigations of N doping in LiFePO4, Zhaojun Liu, Xuejie Huang, and Dingsheng Wang, Solid State Communications 147 (11-12), 505 (2008);
9. Needle-like LiFePO4 thin films prepared by an off-axis pulsed laser deposition technique, Jinpeng Sun, Kun Tang, Xiqian Yu, Hong Li, and Xuejie Huang, Thin Solid Films 517 (8), 2618 (2009);
10. Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity, Kun Tang, Jinpeng Sun, Xiqian Yu, Hong Li, and Xuejie Huang, Electrochimica Acta 54 (26), 6565 (2009).
11. Research on Advanced Materials for Li-ion Batteries, Hong Li, Zhaoxiang Wang, Liquan Chen, and Xuejie Huang, Advanced Materials 21 (45), 4593 (2009).
12. Structural, electronic and Li diffusion properties of LiFeSO4F, Zhaojun Liu and Xuejie Huang, Solid State Ionics 181 (19-20), 907 (2010);
13. Factors that affect activation energy for Li diffusion in LiFePO4: A first-principles investigation, Zhaojun Liu and Xuejie Huang, Solid State Ionics 181 (25-26), 1209 (2010);
14. He, Y., Yu, X. Q., Wang, Y. H., Li, H. & Huang, X. J. Alumina-Coated Patterned Amorphous Silicon as the Anode for a Lithium-Ion Battery with High Coulombic Efficiency. Adv. Mater. 23, 4938-4941, doi:10.1002/adma.201102568 (2011).
15. Liu, L., Zhang, B. & Huang, X. J. A 3.9 V polyanion-type cathode material for Li-ion batteries. Prog. Nat. Sci. 21, 211-215, doi:10.1016/s1002-0071(12)60032-x (2011).
16. Tang, K., Yu, X. Q., Sun, J. P., Li, H. & Huang, X. J. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochimica Acta 56, 4869-4875, doi:10.1016/j.electacta.2011.02.119 (2011).
17. Zhang, B., Wang, X. J., Li, H. & Huang, X. J. Electrochemical performances of LiFe1-xMnxPO4 with high Mn content. J. Power Sources 196, 6992-6996, doi:10.1016/j.jpowsour.2010.10.051 (2011).
18. Sun, Y., Lu, X., Xiao, R. J., Li, H. & Huang, X. J. Kinetically Controlled Lithium-Staging in Delithiated LiFePO4 Driven by the Fe Center Mediated Interlayer Li-Li Interactions. Chem. Mat. 24, 4693-4703, doi:10.1021/cm3028324 (2012).
19. Wang, L. P., Li, H. & Huang, X. J. Electrochemical properties and interfacial reactions of LiNi0.5Mn1.5O4-δ nanorods. Prog. Nat. Sci. 22, 207-212, doi:10.1016/j.pnsc.2012.04.004 (2012).
20. Dong, J. P. et al. Trip lite LiFeSO4F as cathode material for Li-ion batteries. J. Power Sources 244, 716-720, doi:10.1016/j.jpowsour.2012.11.084 (2013).
21. Tang, D. C. et al. Electrochemical behavior and surface structural change of LiMn2O4 charged to 5.1 V. J. Mater. Chem. A 2, 14519-14527, doi:10.1039/c4ta02109f (2014).
22. Zhang, H. et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochimica Acta 133, 529-538, doi:10.1016/j.electacta.2014.04.099 (2014).
23. Xu, K. Q., Ben, L. B., Li, H. & Huang, X. J. Silicon-based nanosheets synthesized by a topochemical reaction for use as anodes for lithium ion batteries. Nano Res. 8, 2654-2662, doi:10.1007/s12274-015-0772-4 (2015).
24. Yan, Y., Ben, L. B., Zhan, Y. J. & Huang, X. J. Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance. Electrochimica Acta 187, 186-192, doi:10.1016/j.electacta.2015.11.015 (2016).
25. Chen, Y. Y., Sun, Y. & Huang, X. J. Origin of the Ni/Mn ordering in high-voltage spinel LiNi0.5Mn1.5O4: The role of oxygen vacancies and cation doping. Computational Materials Science 115, 109-116, doi:10.1016/j.commatsci.2016.01.005 (2016).
26. Yan, Y. et al. A designed core-shell structural composite of lithium terephthalate coating on Li4Ti5O12 as anode for lithium ion batteries. Progress in Natural Science-Materials International 26, 368-374, doi:10.1016/j.pnsc.2016.06.004 (2016).
27. Wang, H. et al. Understanding the effects of surface reconstruction on the electrochemical cycling performance of the spinel LiNi0.5Mn1.5O4 cathode material at elevated temperatures. Journal of Materials Chemistry A 5, 822-834, doi:10.1039/c6ta08636e (2017).
28. Yu, H. L. et al. Dendrite-Free Lithium Deposition with Self Aligned Columnar Structure in a Carbonate-Ether Mixed Electrolyte. Acs Energy Letters 2, 1296-1302, doi:10.1021/acsenergylett.7b00273 (2017).
29. Ben, L. B. et al. Unusual Spinel-to-Layered Transformation in LiMn2O4 Cathode Explained by Electrochemical and Thermal Stability Investigation. Acs Applied Materials & Interfaces 9, 35463-35475, doi:10.1021/acsami.7b11303 (2017).
30. Zhan, Y. J., Yu, H. L., Ben, L. B., Chen, Y. Y. & Huang, X. J. Using Li2S to Compensate for the Loss of Active Lithium in Li-ion Batteries. Electrochimica Acta 255, 212-219, doi:10.1016/j.electacta.2017.09.167 (2017).
31. Chen, B., Ben, L. B., Yu, H. L., Chen, Y. Y. & Huang, X. J. Understanding Surface Structural Stabilization of the High-Temperature and High-Voltage Cycling Performance of Al3+-Modified LiMn2O4 Cathode Material. Acs Applied Materials & Interfaces 10, 550-559, doi:10.1021/acsami.7b14535 (2018).
32. Chen, B. et al. Understanding the Formation of the Truncated Morphology of High-Voltage Spinel LiNi0.5Mn1.5O4 via Direct Atomic-Level Structural Observations. Chemistry of Materials 30, 2174-2182, doi:10.1021/acs.chemmater.8b00769 (2018).
33. Chen, Y. Y., Ben, L. B., Chen, B., Zhao, W. W. & Huang, X. J. Impact of High Valence State Cation Ti/Ta Surface Doping on the Stabilization of Spinel LiNi0.5Mn1.5O4 Cathode Materials: A Systematic Density Functional Theory Investigation Application of Li2S to compensate for loss of active lithium in a Si-C anode. Advanced Materials Interfaces 5, doi:10.1002/admi.201800077 (2018).
34. Zhao, J. N. et al. Inhibition of lithium dendrite growth by forming rich polyethylene oxide-like species in a solid-electrolyte interphase in a polysulfide/carbonate electrolyte. Journal of Materials Chemistry A 6, 16818-16823, doi:10.1039/c8ta04600j (2018).
35. Ben, L. B. et al. Ta2O5 Coating as an HF Barrier for Improving the Electrochemical Cycling Performance of High-Voltage Spinel LiNi0.5Mn1.5O4 at Elevated Temperatures. Acs Applied Energy Materials 1, 5589-5598, doi:10.1021/acsaem.8b01139 (2018).
36. Wu, Y. D. et al. Understanding the Effect of Atomic-Scale Surface Migration of Bridging Ions in Binding Li3PO4 to the Surface of Spinel Cathode Materials. Acs Applied Materials & Interfaces 11, 6937-6947, doi:10.1021/acsami.8b18280 (2019).
37. Qi, W. B. et al. Improving the electrochemical cycling performance of anode materials via facile in-situ surface deposition of a solid electrolyte layer. Journal of Power Sources 424, 150-157, doi:10.1016/j.jpowsour.2019.03.077 (2019).
38. Zhang, H.; Ben, L.; Yu, H.; Qi, W.; Zhao, W. and Huang, X. Ultrathin Ta2O5-coated super P carbon black as a stable conducting additive for lithium batteries charged to 4.9Vat 55°C. Carbon 2020, 162, 519-527.
39. Ben, L.; Zhou, J.; Ji, H.; Yu, H.; Zhao, W. and Huang, X. Si nanoparticles seeded in carbon-coated Sn nanowires as an anode for high-energy and high-rate lithium-ion batteries. Materials Futures 2022, 1
40. Ji, H.; Ben, L.; Wang, S.; Liu, Z.; Monteiro, R.; Ribas, R.; Yu, H.; Gao, P.; Zhu, Y. and Huang, X. Effects of the Nb2O5-Modulated Surface on the Electrochemical Properties of Spinel LiMn2O4 Cathodes. Acs Applied Energy Materials 2021, 4, 8350-8359.
41. Ji, H.; Ben, L.; Yu, H.; Qiao, R.; Zhao, W. and Huang, X. Electrolyzed Ni(OH)2 Precursor Sintered with LiOH/LiNiO3 Mixed Salt for Structurally and Electrochemically Stable Cobalt-Free LiNiO2 Cathode Materials. Acs Applied Materials & Interfaces 2021, 13, 50965-50974.
42. Ji, H.; Qiao, R.; Yu, H.; Wang, S.; Liu, Z.; Monteiro, R.; Ribas, R.; Zhu, Y.; Ben, L. and Huang, X. Electrolysis Process-Facilitated Engineering of Primary Particles of Cobalt-Free LiNiO2 for Improved Electrochemical Performance. Acs Applied Materials & Interfaces 2023
43. Ju, P.; Ben, L.; Li, Y.; Yu, H.; Zhao, W.; Chen, Y.; Zhu, Y. and Huang, X. Designer Particle Morphology to Eliminate Local Strain Accumulation in High-Nickel Layered Cathode Materials. Acs Energy Letters 2023, 8, 3800-3810.
44. Qiao, R.; Yu, H.; Ben, L.; Tian, M.; Shen, X.; Cen, G.; Zhu, J.; Wang, Q.; Zhao, W.; Zhang, J. and Huang, X. Utilizing hydrolysis resistance of compressed Li3PS4 films to eradicate surface hydroxyls and form conformal coatings through atomic layer deposition. Chemical Engineering Journal 2024, 486
45. Shen, X.; Yu, H.; Ben, L.; Zhao, W.; Wang, Q.; Cen, G.; Qiao, R.; Wu, Y. and Huang, X. High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder composite. Journal of Energy Chemistry 2024, 90, 133-143.
46. Tian, F.; Ben, L.; Yu, H.; Ji, H.; Zhao, W.; Liu, Z.; Monteiro, R.; Ribas, R. M.; Zhu, Y. and Huang, X. Understanding high-temperature cycling-induced crack evolution and associated atomic-scale structure in a Ni-rich LiNi0.8Co0.1Mn0.1O2 layered cathode material. Nano Energy 2022, 98
47. Tian, M.; Ben, L.; Jin, Z.; Ji, H.; Yu, H.; Zhao, W. and Huang, X. Excellent low-temperature electrochemical cycling of an anode consisting of Si nanoparticles seeded in Sn nanowires for lithium-ion batteries. Electrochimica Acta 2021, 396
48. Tian, M.; Ben, L.; Yu, H.; Song, Z.; Yan, Y.; Zhao, W.; Armand, M.; Zhang, H.; Zhou, Z.-B. and Huang, X. Designer Cathode Additive for Stable Interphases on High-Energy Anodes. Journal of the American Chemical Society 2022, 144, 15100-15110.
49. Tian, M.; Jin, Z.; Song, Z.; Qiao, R.; Yan, Y.; Yu, H.; Ben, L.; Armand, M.; Zhang, H.; Zhou, Z.-b. and Huang, X. Domino Reactions Enabling Sulfur-Mediated Gradient Interphases for High-Energy Lithium Batteries. Journal of the American Chemical Society 2023, 145, 21600-21611.
50. Tian, M.; Yan, Y.; Yu, H.; Ben, L.; Song, Z.; Jin, Z.; Cen, G.; Zhu, J.; Armand, M.; Zhang, H.; Zhou, Z. and Huang, X. Designer Lithium Reservoirs for Ultralong Life Lithium Batteries for Grid Storage. Advanced Materials 2024, 36.
Conferences
Students
胡 进 博士研究生 070205-凝聚态物理 80008-物理研究所
刘建永 博士研究生 070205-凝聚态物理 80008-物理研究所
米 欣 博士研究生 070205-凝聚态物理 80008-物理研究所
舒 杰 博士研究生 070205-凝聚态物理 80008-物理研究所
孙劲鹏 博士研究生 070205-凝聚态物理 80008-物理研究所
王小建 博士研究生 070205-凝聚态物理 80008-物理研究所
李立飞 博士研究生 070205-凝聚态物理 80008-物理研究所
唐 堃 博士研究生 070205-凝聚态物理 80008-物理研究所
刘兆君 博士研究生 070205-凝聚态物理 80008-物理研究所
禹习谦 博士研究生 070205-凝聚态物理 80008-物理研究所
刘 磊 博士研究生 070205-凝聚态物理 80008-物理研究所
张 斌 博士研究生 070205-凝聚态物理 80008-物理研究所
王丽平 博士研究生 070205-凝聚态物理 80008-物理研究所
何 宇 博士研究生 070205-凝聚态物理 80008-物理研究所
周思思 博士研究生 070205-凝聚态物理 80008-物理研究所
董金平 博士研究生 070205-凝聚态物理 80008-物理研究所
孙 洋 博士研究生 070205-凝聚态物理 80008-物理研究所
唐 春 博士研究生 070205-凝聚态物理 80008-物理研究所
林明祥 博士研究生 070205-凝聚态物理 80008-物理研究所
徐凯琪 博士研究生 070205-凝聚态物理 80008-物理研究所
闫 勇 博士研究生 070205-凝聚态物理 80008-物理研究所
王 昊 博士研究生 070205-凝聚态物理 80008-物理研究所
陈 斌 博士研究生 070205-凝聚态物理 80008-物理研究所
詹元杰 博士研究生 070205-凝聚态物理 80008-物理研究所
陈宇阳 博士研究生 070205-凝聚态物理 80008-物理研究所
胡 飞 硕士研究生 070205-凝聚态物理 80008-物理研究所
武怿达 博士研究生 070205-凝聚态物理 80008-物理研究所
赵俊年 博士研究生 070205-凝聚态物理 80008-物理研究所
金 周 博士研究生 070205-凝聚态物理 80008-物理研究所
张 华 博士研究生 070205-凝聚态物理 80008-物理研究所
起文斌 博士研究生 070205-凝聚态物理 80008-物理研究所
田 丰 博士研究生 070205-凝聚态物理 80008-物理研究所
季洪祥 博士研究生 070205-凝聚态物理 80008-物理研究所
田孟羽 博士研究生 070205-凝聚态物理 80008-物理研究所
申晓宇 博士研究生 070205-凝聚态物理 80008-物理研究所
岑官骏 博士研究生 070205-凝聚态物理 80008-物理研究所
乔荣涵 博士研究生 070205-凝聚态物理 80008-物理研究所