基本信息

​许晶禹

研究员/博士生导师
中国科学院力学研究所
电子邮件:xujingyu@imech.ac.cn
办公电话:010-82544179
通信地址:北京北四环西路15号
邮政编码:100190

研究领域

主要研究方向:多相流体动力学、油气储运工程

学术论文发表在International Journal of Multiphase Flow, Experimental Thermal and Fluid Science,Chemical Engineering Journal, Journal of Petroleum Science and Engineering, Separation and Purification Technology等杂志上。截止到目前已发表学术论文120余篇(其中第一作者或通讯作者被SCI收录40余篇),出版一部专著《管道式油气水分离技术》,已获得授权国家发明专利13项,美国PCT专利1项,加拿大PCT专利1项。

招生信息

   
招生专业
080104-工程力学
120100-管理科学与工程
招生方向
多相流体力学,油气储运理论与技术

工作经历

   
工作简历
2015-12~现在, 中国科学院力学研究所, 研究员
2010-12~2015-12,中国科学院力学研究所, 副研究员
2007-07~2010-12,中国科学院力学研究所, 助理研究员
社会兼职

水动力学研究与进展、中国海洋平台、Journal of Hydrodynamics 杂志编委、第九届全国流变学专业委员会委员.

International Journal of Multiphase Flow, Chemical Engineering Communications, Chemical Engineering Research & Design, Industrial & Engineering Chemistry Research, Oil & Gas Science and Technology, Acta Mechanica Sinica 等杂志审稿人

教授课程

非牛顿流与多相流体力学

专利与奖励

   
奖励信息
(1) 中国科学院科技促进发展奖, 二等奖, 部委级, 2014
(2) 中国科学院力学研究所优秀青年人才培育计划, 二等奖, 研究所(学校), 2011
(3) 中海石油(中国)有限公司深圳分公司科技进步中期成果奖, , 其他, 2010
专利成果

(1). 油气水多相分离系统及其应用方法(ZL201510468150.X),排名1/8.

(2). 油水分离装置和油水分离方法(ZL201510114511),排名2/13.

(3). Tubular Oil-water Separator and Spiral Flow Generator (US9901936B2, CA2841826C)(美国,加拿大专利),排名2/6.

(4). 一种含气、水原油的除水系统及应用方法(ZL201310003986.3),排名1/6

(5). 油水两相部分分离在线计量的装置的应用方法(ZL201210111513.0),排名1/3.

(6). 一种含油污水旋流气浮分离装置(ZL201310245879.1),排名3/12..

(7). 一种旋流气浮油水分离装置及气浮发生器(ZL201210122331.3),排名3/8.

(8). 管道式两级导流片型油水分离器及其应用方法(ZL201210191508.5),排名4/10.

(9). 一种管道式导流片型油水分离器的除水装置和油水旋流分离器(ZL201110220538.X),排名2/5.

(10).复合式油水分离系统(ZL201010146416.6),排名4/7.

(11).动态气浮油水分离装置和方法(ZL201010232658.7),排名3/8.

(12).一种完全分离型油、气、水多相流量计(ZL201110024176.7),排名3/5.

(13).一种螺旋片导流式相分离装置,发明专利,ZL201610951435.3,排名1/7

 

 

出版信息

   
发表著作
(1) 管道式油气水分离技术, 科学出版社, 2017-03, 第 2 作者
发表论文-国际期刊

2021

[1]. Investigation on the variation regularity of the characteristic droplet diameters in the swirling flow field. Chemical Engineering Science, 2021, 229, 116153. (SCI/EI, Corresponding Author)

2020

[1].  Separation mechanism and influential factor study on vane-type-associated petroleum gas separator, Separation and Purification Technology, 2020, 250, 117274 (SCI/EI, Corresponding Author)

[2]. Evaluation of the Behavioral Characteristics in a Gas and Heavy Oil Stratified Flow According to the Herschel-Bulkley Fluid Model. ACS OMEGA, 2020, 5, 17787-17800. (SCI, Corresponding Author)

[3]. Investigation of the Gas–Liquid Two-Phase Flow and Separation Behaviors at Inclined T-Junction Pipelines. ACS Omega, 5, 21443–21450 (SCI, Corresponding Author)

[4].  Investigation on separation performance of vane-type gas-liquid tube separator. Chemical Industry & Chemical Engineering Quarterly, 2020, DOI: 10.2298/ CICEQ190909040N (SCI/EI)

[5].   Coalescence, and Migration Regularity of Bubbles under Gas-Liquid Swirling Flow in Gas-Liquid Cylindrical Cyclone. Industrial & Engineering Chemistry Research, 2020, 59, 2068-2082. (SCI/EI)

[6].   Experimental and numerical study of separation characteristics in gas-liquid cylindrical cyclone. Chemical Engineering Science, 2020, 214, 115362 (SCI/EI, Corresponding Author)

[7].   Investigation into atomization spray blending property in heavy crude oil extraction under laboratory conditions. Journal of Petroleum Science and Engineering, 2020,184, 106494 (SCI/EI, Corresponding Author)

2019

[1].   Rheological characteristics of unstable heavy crude oil-water dispersed mixtures. Journal of Petroleum Science and Engineering, 2019, 182, 106299 (SCI/EI, Corresponding Author)

[2].   Apparent viscosity characteristics and prediction model of an unstable oil-in-water or water-in-oil dispersion system. Journal of Dispersion Science and Technology, 2019, 40, 1645-1656 (SCI/EI, Corresponding Author)

[3].   Viscoelastic characteristics of heavy crude oil-water two-phase dispersed mixtures. Journal of Petroleum Science and Engineering, 2019, 176:141-149 (SCI/EI, Corresponding Author)

2018

[1].   Separation characteristics of the gas and liquid phases in a vane-type swirling flow field. International Journal of Multiphase flow, 2018, 107, 131-145 (SCI/EI, Corresponding author)

[2]. A Study of the Swirling Flow Field Induced by Guide Vanes Using Electrical Resistance Tomography and Numerical Simulations, Chemical Engineering Communications, 2018, 205, 1351-1364 (SCI/EI, Corresponding author)

[3]. Breakup and coalescence regularity of non-dilute oil drops in a vane-type swirling flow field. Chemical Engineering Research and Design 2018, 129, 35-54 (SCI/EI, Corresponding author)

[4]. Characteristics of air-water upward intermittent flows with surfactant additive in a pipeline-riser system. Journal of Hydrodynamics 2018, 30, 287-295 (SCI/EI, Corresponding author)

[5]. Gas-liquid flow splitting in T-junction with inclined lateral arm. Journal of Hydrodynamics 2018, 30, 173-176 (SCI/EI)

2017

[1]. Rheological behavior and viscosity reduction of heavy crude oil and its blends from the Sui-zhong oilfield in China. Journal of Petroleum Science and Engineering. 2017, 156, 563-574 (SCI/EI, Corresponding author)

[2]. Rheological properties of heavy crude oil containing sand from Bo-hai oilfield in China. Appl. Rheol. 27, 2 (2017) 24849-9 (SCI, Corresponding author)

[3]. An experimental study on gas and liquid separation at Y-junction tubes by pressure control. Separation Science and Technology 2017, 52, 1496-1503 (SCI/EI, Corresponding author)

[4]. A study on pure IL VIV of a free spanning pipeline with general boundary conditions. China Ocean Engineering 2017, 31, 114-122 (SCI/EI)

2016

[1]. Characteristics of water holdup for oil and water mixture flows in horizontal, vertical, and inclined pipes. The Canadian Journal of Chemical Engineering 2016, 94, 2417-2426 (SCI/EI, Corresponding Author)

[2]. Rheological behavior of oil and water emulsions and theirs flow characterization in horizontal pipes. The Canadian Journal of Chemical Engineering 2016, 94, 324-331 (SCI/EI, Corresponding Author)

[3]. A simple model for predicting the two-phase heavy crude oil horizontal flow with low gas fraction. Chemical Engineering Communications 2016, 203, 1131 - 1138 (SCI/EI, Corresponding Author)

[4]. Rheological study of mudflows at Lianyungang in China. International Journal of Sediment Research 2016, 31, 71-78 (SCI/EI, Corresponding Author))

2015

[1]. A Study on Flow Characteristics of Heavy Crude Oil for Pipeline Transportation. Petroleum Science and Technology 2015, 33, 1425-1433 (SCI/EI, Corresponding Author)

[2]. Measurement of an oil-water flow via the correlation of turbine flow meter, gamma ray densitometry and drift-flux model. Journal of Hydrodynamics 2015, 27, 548- 555 (SCI/EI, Corresponding Author)

[3]. Flow field of continuous phase in a vane-type pipe oi-water separator. Experimental Thermal and Fluid Science 2015, 60, 208-212. (SCI/EI, Corresponding Author)

2014

[1]. Pressure Drop Models for Gas/Non-Newtonian Power-Law Fluids Flow in Horizontal Pipes. Chemical Engineering & Technology 2014, 37, 717-722 (SCI/EI, Corresponding Author)

[2]. Experimental investigation on yield stress of water-in-heavy crude oil emulsions in order to improve pipeline flow. Journal of Dispersion Science and Technology 2014, 35, 593-598 (SCI/EI, Corresponding Author)

2013

[1]. A simple correlation for prediction of the liquid slug holdup in gas/non-Newtonian fluids: horizontal to upward inclined flow. Experimental Thermal and Fluid Science 2013, 44, 893-896 (SCI/EI, Corresponding Author)

[2]. Experimental validation of the calculation of phase holdup for an oil-water two-phase vertical flow based on the measurement of pressure drops. Flow Measurement and Instrumentation. 2013, 31, 96-101 (SCI/EI, Corresponding Author)

[3]. Apparent viscosity of oil-water (coarse) emulsion and its rheological characterization during the phase inversion region. Journal of Dispersion Science and Technology 2013, 34, 1148-1160 (SCI/EI, Corresponding Author)

2012

[1]. Oil-gas-water three-phase upward flow through a vertical pipe: influence of gas injection on the pressure gradient. International Journal of Multiphase Flow 2012, 46, 1-8 (SCI/EI, Corresponding Author)

[2]. Experimental study of a vane-type pipe separator for oil-water separation, Chemical Engineering Research and Design 2012, 90, 1652-1659 (SCI/EI)

[3]. Investigation on Oil-Water Separation in a Liquid-Liquid Cylindrical Cyclone. Journal of Hydrodynamics, 2012, 24,116-123 (SCI/EI)

[4]. Investigations of phase inversion and frictional pressure gradients in upward and downward oil-water flow in vertical pipes. International Journal of Multiphase flow 2012, 36, 930-939 (SCI/EI, Corresponding Author)

2010

[1]. Investigation on average void fraction for air/non-Newtonian power-law fluids two-phase flow in downward inclined pipes. Experimental Thermal and Fluid Science 2010, 34, 1484-1487 (SCI/EI, Corresponding Author)

2009

[1]. Influence of gas injection on in-situ oil fraction of an oil-water flow in horizontal pipes. Chemical Engineering and Technology 2009, 32, 1922-1928 (SCI/EI, Corresponding Author)

[2]. Correlation of electromagnetic flow Meter, electrical resistance tomography and mechanistic modelling for a new solution of solid slurry measurement. Journal of Hydrodynamics 2009, 21, 557-563. (SCI/EI, Corresponding Author)

[3]. Study of drag reduction by gas injection for power-law fluid flow in horizontal stratified and slug flow regimes. Chemical Engineering Journal 2009, 147, 235-244. (SCI/EI, Corresponding Author)

[4]. A simple model for predicting the void fraction of gas/non-Newtonian fluid intermittent flows in upward inclined pipes. Chemical Engineering Communications 2009, 196, 746-753. (SCI/EI, Corresponding Author)

2008

[1]. Experimental investigation on the slip between oil and water in horizontal pipes. Experimental Thermal and Fluid Science 2008, 33, 178-183. (SCI/EI, Corresponding Author)

[2]. Experimental investigation on the holdup distribution of oil-water two-phase flow in horizontal parallel tubes. Chemical Engineering and Technology 2008, 31, 1536-1540. (SCI/EI, Corresponding Author)

2007

[1]. Studies on two-phase co-current air/non-Newtonian shear-thinning fluid flows in inclined smooth pipes. International Journal of Multiphase flow 2007, 33, 948-969.  (SCI/EI, Corresponding Author)

[2]. An experimental study of in-situ phase fraction in jet-pump using electrical resistance tomography technique. Chinese Physics Letters 2007, 24, 512-515. (SCI, Corresponding Author)

[3]. Effects of non-Newtonian liquid properties on pressure drop during horizontal gas-liquid flow. Journal of Central South University of Technology. 2007, 14:112-115 (SCI/EI, Corresponding Author)

发表论文-国内期刊

[1] 雾化液滴掺混稠油的实验和数值模拟研究.水动力学研究与进展(A),34(01):45-52. (通讯作者)
[2]
气体/高黏液体两相间歇流动时液相含率的变化特性研究.水动力学研究与进展(A),33(06):726-730. (通讯作者)
[3]
高含气井下气液混合输送技术研究.水动力学研究与进展(A),33(06):759-765. (通讯作者)
[4]
旋流分离器在去除航空煤油固相杂质中的应用研究,水动力学研究与进展(A辑),33:73-80(通讯作者)
[5]
低温环境下管道法兰连接的应力分析,管道技术与设备,143(1)32-36 (通讯作者)
[6]
稠油动力黏度预测研究水动力学研究与进展(A),32:11-18 (通讯作者)
[7]
超稠原油的流变学特性及流动特征研究水动力学研究与进展(A),31:145-150 (通讯作者)
[8]
考虑管土耦合的机坪垂直管道应力分析,力学与实践 38: 624-630(通讯作者)
[9]
新型两级气浮旋流设备结构优化与性能研究,石油机械 44: 103-107
[10]
柱状气浮分离器处理含油污水实验研究,水动力学研究与进展(A),31:334-340
[11]
海上油田含聚生产水旋流气浮装置试验研究油气田地面工程,35(10):22-25
[12]
机坪管网输送低温介质时流固耦合分析,水动力学研究与进展(A),31:739-744 (通讯作者)
[13]
乳化剂对气液垂直管流中压降影响的研究水动力学研究与进展(A),31:673-680 (通讯作者)
[14]
油水分离技术力学进展, 45: 201506(通讯作者)
[15]
稠油降黏减阻及其流变学性质油气储运。 341171-1176 (通讯作者)
[16]
立管系统泡状流和段塞流的流动特性研究水动力学研究与进展A 29: 635-641.(通讯作者)
[17]
粗油水乳状液的流变特性油气储运 33:531-537(通讯作者)
[18]
液固旋流器分离过程数值模拟研究油气储运 33: 412-417(通讯作者)
[19]
垂直管道内油-水两相环状流的流动特征水动力学研究与进展A 29: 225-231.(通讯作者)
[20]
管道式油水分离系统分离特性研究水动力学研究与进展A 28: 637-643.(通讯作者) 
[21]
圆柱结构顺流向第一不稳定区内涡激振动的研究水动力学研究与进展 A 28: 123-127. 
[22]T
型管内油水两相流动研究油气储运. 31(12):923-926.(通讯作者) 
[23]
低含水W/O乳化液电脱水实验研究水动力学研究与进展 A 27(4):436-441.(通讯作者) 
[24]
超稠油水在倾斜管路中两相流动的研究水动力学研究与进展A,2012, 27(6):742-748. (通讯作者)
[25]
气液混输管线间歇流动压降研究管道技术与设备, 01:4-8. 
[26]
动态微气泡浮选除油技术研究工业水处理, 04:89-90.(通讯作者) 
[27]
柱型旋流器内单相流场压降的实验研究水动力学研究与进展A, 06:851-856.
[28]
油水井带压作业装置中环形密封胶芯的设石油化工高等学校学报, 03:79-82.
[29]
水平分支管路中油水两相流动研究水动力学研究与进展A, 06:702-708. 
[30]
天然气水合物热激励法开采模型研究西安石油大学学报(自然科学版), 02:44-47. 
[31]
液相介质对水平气液间歇流动压降的影响过程工程学报, 02:161-166. 
[32]
液相物性对气液两相管流流型和压降影响的研究应用基础与工程科学学报, 02:111-119.
[33]
利用射流泵输送油水两相管流的实验研究. 实验流体力学, 04:49-55.

科研活动

   
主持的项目

承担并完成了国家重大仪器开发专项子任务、院重大项目子课题、863子课题,国家自然科学基金,以及中海油、中航油、中石油等企业委托项目等。目前正在承担中科院先导专项(B类)的课题研究,以及中海油、中航油等企业委托的科研项目。

指导学生

已指导学生

张健  博士研究生  080104-工程力学  

高梦忱  博士研究生  080104-工程力学  

陈小平  博士研究生  080104-工程力学  

徐文凯  硕士研究生  080104-工程力学  

杨乐乐  博士研究生  080104-工程力学  

张栋  博士研究生  080104-工程力学  

顾成曦  硕士研究生  080104-工程力学  

刘硕  博士研究生  080104-工程力学  

雷英豪  硕士研究生  125600-工程管理  

现指导学生

徐子健  硕士研究生  125600-工程管理  

侯林彤  硕士研究生  080104-工程力学  

王黎松  博士研究生  080104-工程力学