王云江
中国科学院力学研究所,研究员、博士生导师
中国科学院大学工程科学学院,岗位教授
电子邮件:yjwang@imech.ac.cn
电      话:010-82543931
通信地址:北京市海淀区北四环西路15号
邮政编码:100190

概况

王云江,中国科学院力学研究所研究员、博士生导师,中国科学院大学工程科学学院岗位教授。1981年生,2005年于河北师范大学获学士学位;2010年于清华大学获理学博士学位,师从王崇愚院士。2010至2013年,先后任大阪大学JSPS特别研究员、京都大学特定助理教授等职。自2014年开始在中国科学院力学研究所工作。主要从事材料物理与固体力学交叉的多时空尺度计算机模拟工作,研究兴趣包括非晶态物理与力学、纳米力学、跨时间尺度模拟、材料基金工程等,已在PRL、PRB (12篇)、Acta Mater. (8篇)、JMPS、APL、JCP、Sci. Adv. 等刊物发表论文60余篇,引用千余次。主持自然科学基金、国家重点研发计划子课题等项目,参与基金委重大项目、中科院先导B专项等。2010年获日本学术振兴会(JSPS)研究员奖学金,2017年入选中国科学院青年创新促进会会员


简历    

  • 2018/11 –  至今          中国科学院力学研究所,研究员、博士生导师
  • 2014/01 – 2018/10     中国科学院力学研究所,副研究员
  • 2013/01 – 2013/12     京都大学,特定助理教授
  • 2010/10 – 2012/12     大阪大学,JSPS外国人特别研究员
  • 2005/09 – 2010/07    清华大学,博士
  • 2001/09 – 2005/07    河北师范大学,学士

  研究领域    

  • 计算材料学:第一性原理与电子结构;分子动力学、跨时间尺度算法与应用;蒙特卡洛、动力学蒙特卡洛;有限元分析;材料基因工程与机器学习等。
  • 物理力学:晶态与非晶态物质变形物理;新金属结构材料的力学性能、强韧化机理;材料“结构-性能”关系;弹塑性本构;跨时空尺度力性关联。
  • 材料物理:固体缺陷、塑性变形微观机制;材料热力学与动力学;晶格动力学;热激活理论、蠕变、应力松弛;位错形核与运动、扩散、剪切转变;玻璃转变物理等。


研究团队

  • 博士后与访问学者吕国建、刘淑兰

  • 研究生

  1. 博士生:王晓实、杨增宇、赵坤

  2. 硕士生:王一舟、戴仕诚、陶佳乐、曹琳莉、熊浩智

  • 前排左起:陶佳乐 杨增宇 王云江 曹富华 魏丹 刘淑兰 王晓实

  • 后排左起:吕国建 戴仕诚 赵坤 王一舟

已毕业学生:

  • 2017 -- 田智立 博士,航天三院工作

  • 2018 -- 杨   杰 硕士,中国工商银行工作 

  • 2019 -- 魏   丹 博士,中科院力学所特别研究助理 

  • 2019 -- 韩   懂 硕士,田纳西大学博士研究生 

  • 2019 -- 杨奕博 国科大本科,芝加哥大学硕士研究生

  • 2021 -- 梁伦伟 博士,三一重工

招生招聘信息

  • 招收具有力学/物理/材料背景的研究生,1-2名/年;

  • 欢迎国内外优秀博士生联系博士后、特别研究助理合作研究事宜。

招生专业

  • 固体力学

奖励

1. 2010 日本学术振兴会(JSPS)研究员奖学金
2. 2017 中国科学院青年创新促进会会员

发表论文

Linked to Google Scholar; Researchgate; Publons; Orcid


– 2021 –

Y. J. Wang
An overview of molecular dynamics simulations of plasticity in solids at experimentally relevant timescales
Chinese J. Comput. Mech. 38, 280 (2021).

Z. Y. Yang, D. Wei, A. Zaccone, and Y. J. Wang
Machine-learning integrated glassy defect from an intricate configurational-thermodynamic-dynamic space
Phys. Rev. B 104, 064108 (2021).

G. J. Lyu, J. C. Qiao, Y. Yao, Y. J. Wang, J. Morthomas, C. Fusco, and D. Rodney
Microstructural effects on the dynamical relaxation of glasses and glass composites: A molecular dynamics study
Acta Mater. 220, 117293 (2021).

Z. H. Peng, Z. Y. Yang, and Y. J. Wang
Machine learning atomic-scale stiffness in metallic glass

Extreme Mech. Lett. 48, 101446 (2021).


Y. J. Duan, J. C. Qiao, T. Wada, H. Kato, E. Pineda, D. Crespo, and Y. J. Wang
Stress relaxation in high-entropy Pd20Pt20Cu20Ni20P20 metallic glass: Experiments, modeling and theory
Mech. Mater. 160, 103959 (2021). [link]  

E. L. Yue, T. Yu, Y. J. Wang, and C. Y. Wang
Synergistic strengthening mechanisms of rhenium in nickel-based single crystal superalloys
Intermetallics 132, 107133 (2021).

X. S. Yang, S. Q. Yuan, H. Fu, and Y. J. Wang
Grain boundary-mediated plasticity accommodating the cracking process in nanograined gold: In situ observations and simulations
Scr. Mater. 194, 113693 (2021).

Y. J. Duan, J. C. Qiao, T. Wada, H. Kato, Y. J. Wang, E. Pineda, D. Crespo
Inelastic deformation of metallic glasses under dynamic cyclic loading
Scr. Mater. 194, 113675 (2021).

L. T. Zhang, Y. J. Duan, D. Crespo, E. Pineda, Y. J. Wang, J. M. Pelletier, and J. C. Qiao
Dynamic mechanical relaxation and thermal creep of high-entropy La30Ce30Ni10Al20Co10 bulk metallic glass
Sci. China-Phys. Mech. Astron. 64, 296111 (2021).
 
Z. C. Xie, Y. J. Wang, C. S. Lu, and L. H. Dai
Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high-entropy alloy
Materials Today Communications 26, 101902 (2021).
 
– 2020 –
 
Y. B. Yang, Q. Yang, D. Wei, L. H. Dai, H. B. Yu, and Y. J. Wang
Unraveling strongly entropic effect on β-relaxation in metallic glass: Insights from enhanced atomistic samplings over experimentally relevant timescales
Phys. Rev. B 102, 174103 (2020).
 
Y. J. Wang, D. Wei, D. Han, J. Yang, M. Q. Jiang, and L. H. Dai
Does structure determine property in amorphous solids?
Chinese Journal of Theoretical and Applied Mechanics 52, 303 (2020).
 
F. H. Cao, Y. J. Wang, and L. H. Dai
Novel atomic-scale mechanism of incipient plasticity in a chemically complex CrCoNi medium-entropy alloy associated with inhomogeneity in local chemical environment
Acta Mater. 194, 283-294 (2020).
 
D. Han, D. Wei, P. H. Cao, Y. J. Wang, and L. H. Dai
Statistical complexity of potential energy landscape as a dynamic signature of the glass transition
Phys. Rev. B 101, 064205 (2020).
 
D. Han, D. Wei, J. Yang, H. L. Li, M. Q. Jiang, Y. J. Wang, L. H. Dai, and A. Zaccone
Atomistic structural mechanism for the glass transition: Entropic contribution
Phys. Rev. B 101, 014113 (2020).
 
L. W. Liang, Y. J. Wang, Y. Chen, H. Y. Wang, and L. H. Dai
Dislocation nucleation and evolution at the ferrite-cementite interface under cyclic loadings
Acta Mater. 186, 267-277 (2020).
 
X. Li, D. Wei, J. Y. Zhang, X. D. Liu, Z. Li, T. Y. Wang, Q.F. He, Y. J. Wang, J. Ma, W. H. Wang, Y. Yang
Ultrasonic plasticity of metallic glass near room temperature
Appl. Mater. Today 21, 100866 (2020).
 
X. F. Liu, Z. L. Tian, X. F. Zhang, H. H. Chen, T. W. Liu, Y. Chen, Y. J. Wang, and L. H. Dai
“Self-sharpening” tungsten high-entropy alloy
Acta Mater. 186, 257-266 (2020).
 
J. Yang, J. Duan, Y. J. Wang, and M. Q. Jiang
Complexity of plastic instability in amorphous solids: Insights from spatiotemporal evolution of vibrational modes
Eur. Phys. J. E 43, 56 (2020).
 
Z. R. Xu, D. S. Yang, J. C. Qiao, J. M. Pelletier, D. Crespo, E. Pineda and Y. J. Wang
Unified perspective on structural heterogeneity of a LaCe-based metallic glass from versatile dynamic stimuli
Intermetallics 125, 106922 (2020).
 
Y. H. Chen, Y. J. Wang, and J. C. Qiao
Stress relaxation of La30Ce30Al15Co25 metallic glass
Chinese Journal of Theoretical and Applied Mechanics 52, 740 (2020).
 
– 2019 –
 
J. Yang, Y. J. Wang, A. Zaccone, E. Ma, L. H. Dai, and M. Q. Jiang
Structural Parameter of Orientational Order to Predict the Boson Vibrational Anomaly in Glasses
Phys. Rev. Lett. 122, 015501 (2019).
 
J. Ma, C. Yang, X. D. Liu, B. S. Shang, Q. F. He, F. C. Li, T. Y. Wang, D. Wei, X. Liang, X. Y. Wu, Y. J. Wang, F. Gong, P. F. Guan, W. H. Wang, and Y. Yang
Fast surface dynamics enabled cold joining of metallic glasses
Sci. Adv. 5, eaax7256 (2019).
 
D. Wei, J. Yang, M. Q. Jiang, B. C. Wei, Y. J. Wang, and L. H. Dai
Revisiting the structure–property relationships of metallic glasses: Common spatial correlation revealed as a hidden rule
Phys. Rev. B 99, 014115 (2019). (Figure was featured as a PRB Kaleidoscope)
 
D. Wei, J. Yang, M. Q. Jiang, L. H. Dai, Y. J. Wang, J. Dyre, I. Douglass, and Peter Harrowell
Assessing the Utility of Structure in Amorphous Materials
J. Chem. Phys. 150, 114502 (2019).
 
Z. Y. Yang, Y. J. Wang, and L. H. Dai
Susceptibility of shear banding to chemical short-range order in metallic glasses
Scr. Mater. 162, 141 (2019).
 
Y. Liu, S. L. Cai*, M. Y. Su, Y. J. Wang, and L. H. Dai
Hierarchical-microstructure based modeling for plastic deformation of partial recrystallized copper
Mech. Mater. 139, 103207 (2019).
 
L. W. Liang, L. Xiang, Y. J. Wang, Y. Chen, H. Y. Wang, and L. H. Dai
Ratchetting in cold-drawn pearlitic steel wires
Metall. Mater. Trans. A 50, 4561 (2019).
 
L. Xiang, L. W. Liang, Y. J. Wang, Y. Chen, H. Y. Wang, and L. H. Dai
One-step annealing optimizes strength-ductility tradeoff in pearlitic steel wires
Mater. Sci. Eng. A 757, 1-13 (2019).
 
G. Aral, M. M. Islam, Y. J. Wang, S. Ogata, and A. C. T. van Duin
Atomistic insights on the influence of pre-oxide shell layer and size on the compressive mechanical properties of nickel nanowires
J. Appl. Phys. 125, 165102 (2019).
 
G.-J. J. Gao, Y. J. Wang, and S. Ogata
Incorporating a soft ordered phase into an amorphous configuration enhances its uniform plastic deformation under shear
AIP Adv. 9, 015329 (2019).
 
Y. Liu, S. L. Cai, F. G. Xu, Y. J. Wang, and L. D. Dai

Enhancing strength without compromising ductility in copper by combining extrusion machining and heat treatment
J. Mater. Process. Technol. 267, 52 (2019).
 
– 2018 –
 
Y. J. Wang, J. P. Du, S. Shinzato, L. H. Dai, and S. Ogata
A free energy landscape perspective on the nature of collective diffusion in amorphous solids
Acta Mater. 157, 165 (2018).
 
G. Aral, M. M. Islam, Y. J. Wang, S. Ogata, and A. C. T. van Duin
Oxyhydroxide of metallic nanowires in a molecular H2O and H2O2 environment and their effects on mechanical properties
Phys. Chem. Chem. Phys. 20, 17289 (2018).
  
– 2017 –


B. Y. Cui, J. Yang, J. C. Qiao, M. Q. Jiang, L. H. Dai, Y. J. Wang, and A. Zaccone
Atomic theory of viscoelastic response and memory effects in metallic glass
Phys. Rev. B 96, 094203 (2017).
 
Z. L. Tian, Y. J. Wang, Y. Chen, and L. H. Dai
Strain gradient drives shear banding in metallic glass
Phys. Rev. B 96, 094103 (2017).
 
M. Q. Jiang, M. Peterlechner, Y. J. Wang, W. H. Wang, F. Jiang, L. H. Dai, and G. Wilde
Universal structural softening in metallic glasses indicated by boson heat capacity peak
Appl. Phys. Lett. 111, 261901 (2017).
 
– 2016 –
 
J. C. Qiao, Y. J. Wang, L. Z. Zhao, L. H. Dai, D. Crespo, J. M. Pelletier, L. M. Keer, and Y. Yao
Transition from stress-driven to thermally activated stress relaxation in metallic glasses
Phys. Rev. B 94, 104203 (2016).
 
J. P. Du, Y. J. Wang, Y. C. Lo, L. Wan, and S. Ogata
Mechanism transition and strong temperature dependence of dislocation nucleation from grain boundaries: An accelerated molecular dynamics study
Phys. Rev. B 94, 104110 (2016).
 
X. S. Yang, Y. J. Wang, H. R. Zhai, G. Y. Wang, Y. J. Su, L. H. Dai, S. Ogata, and T. Y. Zhang
Time-, stress-, and temperature-dependent deformation in nanostructured copper: Creep tests and simulations
J. Mech. Phys. Solids 94, 191-206 (2016).
 
X. S. Yang, Y. J. Wang, G. Y. Wang, H. R. Zhai, L. H. Dai, and T. Y. Zhang
Time, stress and temperature-dependent deformation in nanostructured copper: stress relaxation tests and simulations
Acta Mater. 108, 252-263 (2016).
 
Y. J. Wang, K. Tsuchiya, and L. H. Dai
Size-dependent plastic deformation and failure mechanisms of nanotwinned Ni3Al: insights from an atomistic cracking model
Mater. Sci. Eng. A 649, 449 (2016).
 
Y. J. Wang, M. Q. Jiang, Z. L. Tian, and L. H. Dai
Direct atomic-scale evidence for shear–dilatation correlation in metallic glasses
Scr. Mater. 112, 37 (2016).
 
G. Aral, Y. J. Wang, S. Ogata, and Adri C. T. van Duin
Effects of oxidation on tensile deformation of iron nanowires: Insights from reactive molecular dynamics simulations
J. Appl. Phys. 120, 135104 (2016).
 
M. Zhang, Y. J. Wang, and L. H. Dai
Correlation between strain rate sensitivity and α relaxation of metallic glasses
AIP Adv. 6, 075022 (2016).
 
N. Miyazaki, M. Wakeda, Y. J. Wang, and S. Ogata
Prediction of pressure-promoted thermal rejuvenation in metallic glasses
npj Comput. Mater. 2, 16013 (2016).
 
X. Huang, Z. Ling, Y. J. Wang, and L. H. Dai
Intrinsic structural defects on medium range in metallic glasses
Intermetallics 75, 36-41 (2016).
 
M. Zhang, Y. J. Wang, and L. H. Dai
Understanding the serrated flow and Johari-Goldstein relaxation of metallic glasses
J. Non-Crystalline Solids 444, 23 (2016).
 
– 2015 –
  
Y. J. Wang, S. Ogata, and L. H. Dai
Universal enthalpy-entropy compensation rule in the deformation of metallic glasses
Phys. Rev. B 92,174118 (2015).
 
J. C. Qiao, Y. J. Wang, J. M. Pelletier, Leon M. Keer, Morris E. Fine, and Y. Yao
Characteristics of stress relaxation kinetics of La60Ni15Al25 bulk metallic glass
Acta Mater. 98, 43 (2015).


M. Q. Jiang, M. Naderi, Y. J. Wang, M. Peterlechner, X. F. Liu, F. Zeng, F. Jiang, L. H. Dai, and G. Wilde
Thermal expansion accompanying the glass-liquid transition and crystallization
AIP Adv. 5, 127133 (2015).

 
M. Zhang, Y. J. Wang, and L. H. Dai
Bridging shear transformation zone to the atomic structure of amorphous solids
J. Non-Crystalline Solids 410, 100 (2015).
 
– 2013 –
 
Y. J. Wang, G. J. Gao, and S. Ogata
Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations
Phys. Rev. B 88, 115413 (2013).


Y. J. Wang, A. Ishii, and S. Ogata
Entropic effect on creep in nanocrystalline metals
Acta Mater. 61, 3866 (2013).
 
Y. J. Wang, G. J. J. Gao, and S. Ogata
Size-dependent transition of deformation mechanism, and nonlinear elasticity in Ni3Al nanowires
Appl. Phys. Lett. 102, 041902 (2013).

 
S. Yamamoto, Y. J. Wang, A. Ishii, and S. Ogata
Atomistic design of high strength crystalline-amorphous nanocomposites
Mater. Trans. 54, 1592 (2013).
 
G. J. Gao, Y. J. Wang, and S. Ogata
Studying the elastic properties of nanocrystalline copper using a model of randomly packed uniform grains
Comput. Mater. Sci. 79, 56 (2013).
 
– 2012 –
 
Y. J. Wang, A. Ishii, and S. Ogata
Grain size dependence of creep in nanocrystalline copper by molecular dynamics
Mater. Trans. 53, 156-160 (2012).
 
– 2011 –


Y. J. Wang, A. Ishii, and S. Ogata
Transition of creep mechanism in nanocrystalline metals
Phys. Rev. B 84, 224102 (2011). (Figure was featured as a PRB Kaleidoscope)
 
Y. J. Wang, C. Y. Wang, and S. Y. Wang
CO adsorption on small Aun (n = 1-7) clusters supported on a reduced rutile TiO2(110) surface: a first-principles study
Chin. Phys. B 20, 036801 (2011).
 
– 2009 –
 
Y. J. Wang and C. Y. Wang
A comparison of the ideal strength between L12 Co3(Al,W) and Ni3Al under tension and shear from first-principles calculations
Appl. Phys. Lett. 94, 261909 (2009).
 
Y. J. Wang and C. Y. Wang
Influence of the alloying element Re on the ideal tensile and shear strength of γ'-Ni3Al
Scr. Mater. 61, 179-200 (2009).
 
Y. J. Wang and C. Y. Wang
Influence of the alloying elements on the elastic properties of the ternary and quaternary Nickel-base superalloys
Philos. Mag. 89, 2935-2947 (2009).
 
Y. J. Wang and C. Y. Wang
First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers
Chin. Phys. B 18, 4339-4348 (2009).
 
Y. J. Wang and C. Y. Wang
Effect of alloying elements on the elastic properties of γ-Ni and γ'-Ni3Al from first-principles calculations
MRS Proceedings 1224, 1224-FF05-31 (2009).
 
Y. J. Wang and C. Y. Wang
Mechanical properties and electronic structure of superhard diamondlike BC5: a first-principles study
J. Appl. Phys. 106, 043513 (2009).
 
J. Wang and Y. J. Wang
Mechanical and electronic properties of 5d transition metal diborides MB2 (M = Re, W, Os, Ru)
J. Appl. Phys. 105, 083539 (2009).
 
– 2008 –
 
Y. J. Wang and C. Y. Wang
A first-principles survey of the partitioning behaviors of alloying elements on γ/γ' interface
J. Appl. Phys. 104, 013109 (2008).
 
Y. J. Wang and C. Y. Wang
The alloying mechanisms of Re, Ru in the quaternary Ni-based superalloys γ/γ' interface: a first principles calculation
Mater. Sci. Eng. A 490 (2008) 242-249.

科研项目

-主持项目- 

  • 国家自然科学基金面上项目,2021-2024;新型无序固体塑性变形微观机制的熵效应

  • 国家自然科学基金面上项目,2017-2020;金属玻璃应力松弛与蠕变多级动力学跨时间尺度计算机模拟 

  • 国家重点研发计划材料基因工程关键技术与支撑平台重点专项,2017-2020;高通量并发式材料计算算法和软件;子课题负责人。 

  • 国家自然科学基金青年科学基金,2015-2017;非晶/纳米晶复合材料原子尺度塑性机制 

  • 中国科学院青年创新促进会会员人才专项经费,2017-2020


-参与项目-

  • 国家重点研发计划材料基因工程关键技术与支撑平台重点专项,2017-2020;多场耦合条件下金属结构材料损伤演化行为的跨尺度关联评价;研究骨干,项目秘书。 

  • 国家自然基金重大项目,2017-2020;无序合金塑性流动与强韧化机理;研究骨干。 

  • 中国科学院“超常环境下系统力学问题研究与验证”先导专项(B类)项目,2016-2020;研究骨干。 

  • 中国科学院前沿科学重点研究项目,2017-2021;新型高强金属材料剪切带的涌现与调控;参与。 

国内外合作

具有广泛的国内外合作基础,与清华大学王崇愚院士,上海大学张统一院士;大阪大学Shigenobu Ogata教授,米兰大学Alessio Zaccone教授,罗斯基洛大学Jeppe Dyre教授,悉尼大学Peter Harrowell教授建立密切合作关系。

社会兼职

  1. 编委:《计算力学学报》 

  2. 会员: Materials Research Society (MRS), The Minerals, Metals & Materials Society (TMS), American Physical Society (APS), The Chinese Society of Theoretical and Applied Mechanics (CSTAM) 

  3. 期刊审稿人: Phys. Rev. Lett., Phys. Rev. B/E/Materials, Nature Commun., J. Phys. Chem. Lett., J. Phys. Chem., Appl. Phys. Lett., Scr. Mater., J. Appl. Phys, Mater. Sci. Eng. A, Sci. China Mater., J Mater. Sci. Technol., J. Alloy. Compd., Sci Rep, EPL, Eur. Phys. J. B, Comput. Mater. Sci., Thin Solid Film, Mol. Simul., Solid State Commun., Mater. Lett., J. Non-Cryst. Solids, Manufacturing Letters, Model. Simul. Mater. Sci. Eng., Theoretical and Applied Mechanics Letters, Sci. China-Technol. Sci., Chin. Phys. B etc.

教授课程

《现代计算力学导论》