Dr. WANG Ping, Professor, Institute of Geographic Sciences and Natural Resources Research, Chinese  Academy of Sciences

Address: 11A, Datun Road, Chaoyang District, Beijing, 100101, China

E-mail: wangping@igsnrr.ac.cn

Research Areas

Arctic Hydrogeology

Dryland Ecohydrology

Surface-groundwater interactions

Education

September, 2005 – June, 2008: Ph.D., Hydrogeology, Lomonosov Moscow State University

     PhD-dissertation: Investigation of the flow processes in riverbank water supply well fields near reservoirs

     Advisor: Professor Shestakov V.M.

September, 2003 – June, 2005: M.S., Hydrogeology, Lomonosov Moscow State University

September, 2001 – June, 2003: B.S., Hydrogeology, Lomonosov Moscow State University 

October, 2000 – June, 2001: Pre-admission studying, Lomonosov Moscow State University

September, 1998 – June, 2000: B.S., Geosciences, China University of Geosciences (Wuhan)


Experience

   
Work Experience

December, 2022 – present: professor, IGSNRR, CAS

December, 2015 – December, 2022: associate professor, IGSNRR, CAS

May, 2014 – May, 2015: Visiting Scholar, Department of Hydrology & Atmospheric Sciences, The Arizona of University, USA

December, 2010 – December, 2015: assistant professor, IGSNRR, CAS

March, 2009 – December, 2010: postdoctoral, IGSNRR, CAS

Publications

   
Papers

[1]    Wang P., Huang Q., Liu S.*, Liu Y., Li Z., Pozdniakov S.P., Wang T., Kazak E.S., Frolova N.L., Gabysheva O.I., Zhang J., Bai B., Yu J., Min L., Shpakova R.N., Hao L., Gabyshev, V.A. 2024. Climate warming enhances chemical weathering in permafrost-dominated eastern Siberia. Science of The Total Environment, 906, 167367.

[2]    Wang T.*, Wu Z., Wang P.*, Wu T., Zhang Y., Yin J., Yu J., Wang H., Guan X., Xu H., Yan D., Yan, D. 2023. Plant-groundwater interactions in drylands: A review of current research and future perspectives. Agricultural and Forest Meteorology, 341, 109636.

[3]    Hao L., Wang P.*; Gojenko B., Yu J., Lv A.*, Li F., Kenjabaev S., Kulmatov R., Khikmatov F. 2023. Five decades of freshwater salinization in the Amu Darya River basin. Journal of Hydrology: Regional Studies, 47, 101375.

[4]    Wang P.*, Huang Q., Liu S.*, Cai H., Yu J., Wang T., Chen X., Pozdniakov S.P. 2022. Recent regional warming across the Siberian lowlands: a comparison between permafrost and non-permafrost areas. Environmental Research Letters, 17(5), 054047.

[5]    Liu S., Wang P.*, Huang Q., Gabysheva O.I., Li Z., Zhang J., Kazak E.S., Liu Y., Bazarzhapov T.Zh., Shpakova R.N. Gabyshev V.A., Pozdniakov S.P., Frolova N.L. 2022. A database of water chemistry in eastern Siberian rivers. Scientific Data, 9, 737.

[6]    Wang P.*, Shpakova R.N. 2022. Complex streamflow responses to climate warming in five river basins in South Yakutia, Russia. Frontiers in Environmental Science, 10.

[7]    Huang Q., Ma N., Wang P.* 2022. Faster increase in evapotranspiration in permafrost-dominated basins in the warming Pan-Arctic. Journal of Hydrology, 615 (Part A): 128678.

[8]    Liu S., Wang P*. 2022. Emerging solute-induced mineralization in Arctic rivers under climate warming. Science of The Total Environment, 851: 158091.

[9]    Pozdniakov S.P., Wang P.*, Grinevsky S.O., Frolova N.L. 2022. A physically based model of a two-pass digital filter for separating groundwater runoff from streamflow time series. Water Resources Research, 58(3): e2021WR031333.

[10]Wang T., Wang P.*, Wu Z., Yu J., Pozdniakov S.P., Guan X., Wang H., Xu H., Yan D. 2022. Modeling revealed the effect of root dynamics on the water adaptability of phreatophytes. Agricultural and Forest Meteorology, 320, 108959.

[11]Pozdniakov S.P., Vasilevskiy P.Y., Wang P.*. 2022. Analysis of a steady-state model of groundwater discharge in a river valley without and with evapotranspiration. Advances in Water Resources, 168, 104306.

[12]Liu S., Wang P.*, Huang Q., Yu J., Pozdniakov S.P., Kazak E.S. 2022. Seasonal and spatial variations in riverine DOC exports in permafrost-dominated Arctic river basins, Journal of Hydrology, 612: 128060.

[13]Shi S., Wang P.*, Yu J.* 2022. Vegetation greening and climate change promote an increase in evapotranspiration across Siberia. Journal of Hydrology, 610: 127965.

[14]Liu S., Wang P.*, Yu J., Wang T., Cai H., Huang Q., Pozdniakov S.P., Zhang Y., Kazak E.S. 2022. Mechanisms behind the uneven increases in early, mid- and late winter streamflow across four Arctic river basins. Journal of Hydrology, 606: 127425.

[15]Hao L., Wang P., Yu J.*, Ruan H. 2022. An integrative analytical framework of water-energy-food security for sustainable development at the country scale: A case study of five Central Asian countries. Journal of Hydrology, 607: 127530.

[16]Vasilevskiy P.Y., Wang P.*, Pozdniakov S.P., Wang T., Zhang Y., Zhang X., Yu J. 2022. Simulating River/Lake—Groundwater Exchanges in Arid River Basins: An Improvement Constrained by Lake Surface Area Dynamics and Evapotranspiration. Remote Sensing, 14(7): 1657.

[17]Yu Z., Wang T., Wang P.*, Yu J. 2022. The Spatiotemporal Response of Vegetation Changes to Precipitation and Soil Moisture in Drylands in the North Temperate Mid-Latitudes. Remote Sensing, 14(15): 3511.

[18]Wang P.*, Huang Q., Pozdniakov S.P., Liu S.*, Ma N., Wang T.*, Zhang Y., Yu J., Xie J., Fu G., Frolova N. L., Liu C. 2021. Potential role of permafrost thaw on increasing Siberian river discharge. Environmental Research Letters, 16(3), 034046.

[19]Wang P., Huang Q., Tang Q.*, Chen X., Yu J.*, Pozdniakov S.P., Wang T. 2021. Increasing annual and extreme precipitation in permafrost-dominated Siberia during 1959–2018. Journal of Hydrology, 603, 126865.

[20]Zhang H., Yu J.*, Wang P.*, Wang T., Li Y. 2021. Groundwater-fed oasis in arid Northwest China: insights into hydrological and hydrochemical processes. Journal of Hydrology, 597, 126154.

[21]Liu Y., Wang P.*, Gojenko B., Yu J., Wei L., Luo D., Xiao T. 2021. A review of water pollution arising from agriculture and mining activities in Central Asia: Facts, causes and effects. Environmental Pollution, 291, 118209.

[22]Shi S., Wang P.*, Zhang Y., Yu J.* 2021. Cumulative and time-lag effects of the main climate factors on natural vegetation across Siberia. Ecological Indicators,133, 108446.

[23]Wang T., Wang P.*, Wang Z., Niu G., Yu J.*, Ma N., Wu Z., Pozdniakov S.P., Yan D. 2021. Drought adaptability of phreatophytes: Insight from vertical root distribution in drylands of China. Journal of Plant Ecology, 16(4), 1128-1142.

[24]Pozdniakov S.P., Wang P.*, Lekhov V.A. 2019. An approximate model for predicting the specific yield under periodic water table oscillations, Water Resources Research, 55(7), 6185-6197.

[25]Wang T.-Y., Wang P.*, Zhang Y.-C., Yu J.-J.*, Du C.-Y., Fang Y.-H. 2019. Contrasting groundwater depletion patterns induced by anthropogenic and climate-driven factors on Alxa Plateau, northwestern China. Journal of Hydrology, 576, 262-272.

[26]Wang T.-Y., Yu J.-J.*, Wang P.*, Min L.-L., Pozdniakov S. P., Yuan G.-F. 2019 Estimating groundwater evapotranspiration by phreatophytes using combined water level and soil moisture observations. Ecohydrology, 12(5), e2092.

[27]Vasilevskiy P.Y., Wang P.*, Pozdniakov S.P., Davis P. 2019. Revisiting the modified Hvorslev formula to account for the dynamic process of streambed clogging: field validation. Journal of Hydrology, 568, 862-866.

[28]Wang P.*, Niu GY., Fang YH., Wu RJ., Yu JJ., Yuan GF., Pozdniakov SP., Scott RL. 2018. Implementing Dynamic Root Optimization in Noah-MP for Simulating Phreatophytic Root Water Uptake, Water Resources Research, 54(3), 1560-1575.

[29]Wang P.*, Pozdniakov S.P., Vasilevskiy P.Y. 2017. Estimating groundwater-ephemeral stream exchange in hyper-arid environments: Field experiments and numerical simulations, Journal of Hydrology, 555, 68-79.

[30]Pozdniakov S.P., Wang P.*, Lekhov M.V. 2016. A semi-analytical generalized Hvorslev formula for estimating riverbed hydraulic conductivity with an open-ended standpipe permeameter. Journal of Hydrology, 540, 736-743.

[31]Wang P.*, Pozdniakov SP., Shestakov VM. 2015. Optimum experimental design of a monitoring network for parameter identification at riverbank well fields. Journal of Hydrology, 523(0), 531-541.

[32]Wang P., Pozdniakov SP.* 2014. A statistical approach to estimating evapotranspiration from diurnal groundwater level fluctuations, Water Resources Research, 50(3), 2276-2292.

[33]Wang P., Grinevsky SO., Pozdniakov SP., Yu J.*, Dautova DS., Min L., Du C., Zhang Y. 2014. Application of the water table fluctuation method for estimating evapotranspiration at two phreatophyte-dominated sites under hyper-arid environments. Journal of Hydrology, 519, Part B(0): 2289-2300.

[34]Wang P., Yu J.*, Pozdniakov SP., Grinevsky SO., Liu C. 2014. Shallow groundwater dynamics and its driving forces in extremely arid areas: a case study of the lower Heihe River in northwestern China, Hydrological Processes, 28(3), 1539-1553.

[35]Wang P., Yu J.*, Zhang Y., Liu C. 2013. Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, northwest China. Journal of Hydrology, 476: 72-86.

[36]Wang P., Zhang Y., Yu J.*, Fu G., Ao F. 2011. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, northwestern China. Journal of Plant Ecology, 4: 77-90.

Collaboration

Prof. Sergey Pavlovich Pozdniakov, Head of Department of Hydrogeology, Lomonosov Moscow State University

https://istina.msu.ru/profile/SPPozdniakov/


Prof. Natalia Leonidovna Frolova, Head of Department of Land Hydrology, Lomonosov Moscow State University

https://istina.msu.ru/profile/FrolovaNL/

Students

已指导学生

张学静  硕士研究生  070501-自然地理学  

王田野  博士研究生  070501-自然地理学  

郝林钢  博士研究生  070501-自然地理学  

史尚渝  博士研究生  070501-自然地理学  

现指导学生

张家玲  硕士研究生  070501-自然地理学  

于宗绪  博士研究生  070501-自然地理学  

白冰  硕士研究生  070501-自然地理学  

王睿欣  硕士研究生  085700-资源与环境