基本信息

邵佳佳,青年研究员,硕士生导师

中国科学院北京纳米能源与系统研究所

中国科学院大学纳米科学与技术学院


中国科学院大学特别研究助理

中国科学院青年创新促进会会员

电子邮件: shaojiajia@binn.cas.cn
通信地址: 北京市怀柔区雁栖经济开发区杨雁东一路8号院
邮政编码: 101400

研究领域

摩擦纳米发电机基础理论

纳米能源转换系统

接触/感应起电理论(理论计算)

招生信息

通过推免和统考方式招收研究生,与国内外多个科研机构(丹麦、美国、瑞典、澳大利亚、韩国、香港等)进行深入合作,且与国内知名高校联合培养研究生。每年计划招收硕士研究生2人,博士研究生1人。竭诚欢迎物理、材料、电子、机械等相关专业的学生报考!

招生专业
070205-凝聚态物理
080502-材料学
0703J1-纳米科学与技术

教育背景

2016-09--2019-06   中国科学院大学   博士研究生

工作经历

   
工作简历
2019-07~2021-07,北京纳米能源与系统研究所, 博士后
2018-09~2019-03,瑞典吕勒奥理工大学, 访问学者
社会兼职
2022-04-15-今,中国物理学会会员, 会员
2022-04-01-今,中国科学院青年创新促进会会员, 会员
2021-10-01-今,Frontires in materials 杂志主编, 客座主编
2021-08-02-今,中国材料学会会员, 会员
2019-07-01-2021-07-01,中国科学院大学特别研究助理, 研究助理

专利与奖励

   
奖励信息
(1) 中科院青促会会员, 院级, 2022
(2) 中国科学高影响力论文奖, , 其他, 2021
(3) 国科大优秀个人, 院级, 2020

出版信息

   
发表论文
[1] Xin Guo, Shao, Jiajia, Zhonglin Wang. Quantifying Output Power and Dynamic Charge Distribution in Sliding Mode Freestanding Triboelectric Nanogenerator. Advanced Physics Research[J]. 2023, 2(2): https://doi.org/10.1002/apxr.202200039.
[2] 王中林, 邵佳佳. 非匀速运动物体系统的动生麦克斯韦方程组理论. 中国科学 技术科学[J]. 2023, 53: https://doi.org/10.1360/SST-2023-0062.
[3] Tinghai Cheng, Jiajia Shao, Zhonglin Wang. Triboelectric nanogenerators. Nat Rev Methods Primers[J]. 2023, 3(39): https://doi.org/10.1038/s43586-023-00220-3.
[4] Nan Yang, Shao, Jiajia, Wang zhonglin. Physical mechanisms of contact-electrification induced photon emission spectroscopy from interfaces. Nano Research[J]. 2023, https://doi.org/10.1007/s12274-023-5674-2.
[5] 王中林, 邵佳佳. 非匀速运动介质系统中的动生麦克斯韦方程组——低速与非相对论近似. 中国科学:技术科学[J]. 2022, 52(8): 1198-1211, http://lib.cqvip.com/Qikan/Article/Detail?id=7107941123.
[6] Nan, Yang, Shao, Jiajia, Willatzen, Morten, Wang, Zhong Lin. Understanding Contact Electrification at Water/Polymer Interface. RESEARCH[J]. 2022, 2022: http://dx.doi.org/10.34133/2022/9861463.
[7] 王中林, 邵佳佳. 面向工程电磁学的动生麦克斯韦方程组及其求解方法. 中国科学:技术科学[J]. 2022, 52(9): 1416-1433, http://lib.cqvip.com/Qikan/Article/Detail?id=7108317719.
[8] Guo, Xin, Shao, Jiajia, Willatzen, Morten, Yang, Yi, Wang, Zhong Lin. Theoretical model and optimal output of a cylindrical triboelectric nanogenerator. NANO ENERGY[J]. 2022, 92: http://dx.doi.org/10.1016/j.nanoen.2021.106762.
[9] 王中林, 邵佳佳. 从加速运动介质中的法拉第电磁感应定律到拓展的麦克斯韦方程组. 中国科学 技术科学[J]. 2022, 53: https://doi.org/10.1360/SST-2022-0322.
[10] Yang Nan, Jiajia Shao, Morten Willatzen, Zhong Lin Wang. Understanding Contact Electrification at Water/Polymer Interface. 研究(英文)[J]. 2022, 323-332, http://lib.cqvip.com/Qikan/Article/Detail?id=7107911968.
[11] Guo, Zi Hao, Wang, Hai Lu, Shao, Jiajia, Shao, Yangshi, Jia, Luyao, Li, Longwei, Pu, Xiong, Wang, Zhong Lin. Bioinspired soft electroreceptors for artificial precontact somatosensation. SCIENCEADVANCES[J]. 2022, 8(21): http://dx.doi.org/10.1126/sciadv.abo5201.
[12] Zhang, Z, Shao, J, Nan, Y, Willatzen, M, Wang, Z L. Theory and shape optimization of acoustic driven triboelectric nanogenerators. MATERIALS TODAY PHYSICS[J]. 2022, 27: http://dx.doi.org/10.1016/j.mtphys.2022.100784.
[13] Zu, Lulu, Liu, Di, Shao, Jiajia, Liu, Yuan, Shu, Sheng, Li, Chengyu, Shi, Xue, Chen, Baodong, Wang, Zhong Lin. A Self-Powered Early Warning Glove with Integrated Elastic-Arched Triboelectric Nanogenerator and Flexible Printed Circuit for Real-Time Safety Protection. ADVANCED MATERIALS TECHNOLOGIES[J]. 2022, 7(5): http://dx.doi.org/10.1002/admt.202100787.
[14] Guo, Xin, Shao, Jiajia, Willatzen, Morten, Yang, Yi, Wang, Zhong Lin. Three-dimensional mathematical modelling and dynamic analysis of freestanding triboelectric nanogenerators. JOURNAL OF PHYSICS D-APPLIED PHYSICS[J]. 2022, 55(34): http://dx.doi.org/10.1088/1361-6463/ac7365.
[15] Gao, Wenchao, Shao, Jiajia, SagoeCrentsil, Kwesi, Duan, Wenhui. Investigation on energy efficiency of rolling triboelectric nanogenerator using cylinder-cylindrical shell dynamic model. NANO ENERGY[J]. 2021, 80: http://dx.doi.org/10.1016/j.nanoen.2020.105583.
[16] Shao, Jiajia, Yang, Yi, Yang, Ou, Wang, Jie, Willatzen, Morten, Wang, Zhong Lin. Designing Rules and Optimization of Triboelectric Nanogenerator Arrays. ADVANCED ENERGY MATERIALS[J]. 2021, 11(16): https://www.webofscience.com/wos/woscc/full-record/WOS:000627074500001.
[17] Shao, Jiajia, Liu, Di, Willatzen, Morten, Wang, Zhong Lin. Three-dimensional modeling of alternating current triboelectric nanogenerator in the linear sliding mode. APPLIED PHYSICS REVIEWS[J]. 2020, 7(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000517507200001.
[18] Liu, Hui, Feng, Yawei, Shao, Jiajia, Chen, Yao, Wang, Zhong Lin, Li, Hexing, Chen, Xiangyu, Bian, Zhenfeng. Self-cleaning triboelectric nanogenerator based on TiO2 photocatalysis. NANO ENERGY[J]. 2020, 70: http://dx.doi.org/10.1016/j.nanoen.2020.104499.
[19] An, Jie, Wang, Ziming, Jiang, Tao, Chen, Pengfei, Liang, Xi, Shao, Jiajia, Nie, Jinhui, Xu, Minyi, Wang, Zhong Lin. Reliable mechatronic indicator for self-powered liquid sensing toward smart manufacture and safe transportation. MATERIALS TODAY[J]. 2020, 41: 10-20, http://dx.doi.org/10.1016/j.mattod.2020.06.003.
[20] Shao JiaJia, Jiang Tao, Wang ZhongLin. Theoretical foundations of triboelectric nanogenerators (TENGs). SCIENCE CHINA-TECHNOLOGICAL SCIENCES[J]. 2020, 63(7): 1087-1109, http://lib.cqvip.com/Qikan/Article/Detail?id=7102303847.
[21] Zhan, Fei, Wang, Aurelia C, Xu, Liang, Lin, Shiquan, Shao, Jiajia, Chen, Xiangyu, Wang, Zhong Lin. Electron Transfer as a Liquid Droplet Contacting a Polymer Surface. ACS NANO[J]. 2020, 14(12): 17565-17573, http://dx.doi.org/10.1021/acsnano.0c08332.
[22] Shao, Jiajia, Willatzen, Morten, Wang, Zhong Lin. Theoretical modeling of triboelectric nanogenerators (TENGs). JOURNAL OF APPLIED PHYSICS[J]. 2020, 128(11): http://dx.doi.org/10.1063/5.0020961.
[23] Liu, Di, Chen, Baodong, An, Jie, Li, Chengyu, Liu, Guoxu, Shao, Jiajia, Tang, Wei, Zhang, Chi, Wang, Zhong Lin. Wind-driven self-powered wireless environmental sensors for Internet of Things at long distance. NANO ENERGY[J]. 2020, 73: http://dx.doi.org/10.1016/j.nanoen.2020.104819.
[24] Wang, Ziming, An, Jie, Nie, Jinhui, Luo, Jianjun, Shao, Jiajia, Jiang, Tao, Chen, Baodong, Tang, Wei, Wang, Zhong Lin. A Self-Powered Angle Sensor at Nanoradian-Resolution for Robotic Arms and Personalized Medicare. ADVANCED MATERIALS[J]. 2020, 32(32): https://www.webofscience.com/wos/woscc/full-record/WOS:000544190400001.
[25] Shao, Jiajia, Willatzen, Morten, Shi, Yijun, Wang, Zhong Lin. 3D mathematical model of contact-separation and single-electrode mode triboelectric nanogenerators. NANO ENERGY[J]. 2019, 60: 630-640, http://dx.doi.org/10.1016/j.nanoen.2019.03.072.
[26] Nie, Jinhui, Ren, Zewei, Bai, Yu, Shao, Jiajia, Jiang, Tao, Xu, Bong, Chen, Xiangyu, Wang, Zhong Lin. Long Distance Transport of Microdroplets and Precise Microfluidic Patterning Based on Triboelectric Nanogenerator. ADVANCED MATERIALS TECHNOLOGIES[J]. 2019, 4(1): https://www.webofscience.com/wos/woscc/full-record/WOS:000455117500030.
[27] Zhong, Wei, Xu, Liang, Yang, Xiaodan, Tang, Wei, Shao, Jiajia, Chen, Baodong, Wang, Zhong Lin. Open-book-like triboelectric nanogenerators based on low-frequency roll-swing oscillators for wave energy harvesting. NANOSCALE[J]. 2019, 11(15): 7199-7208, http://dx.doi.org/10.1039/c8nr09978b.
[28] Shao, Jiajia, Willatzen, Morten, Jiang, Tao, Tang, Wei, Chen, Xiangyu, Wang, Jie, Wang, Zhong Lin. Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell's displacement current. NANO ENERGY[J]. 2019, 59: 380-389, http://dx.doi.org/10.1016/j.nanoen.2019.02.051.
[29] Shao, Jiajia, Jiang, Tao, Tang, Wei, Chen, Xiangyu, Xu, Liang, Wang, Zhong Lin. Structural figure-of-merits of triboelectric nanogenerators at powering loads. NANO ENERGY[J]. 2018, 51: 688-697, http://dx.doi.org/10.1016/j.nanoen.2018.07.032.
[30] Ren, Zewei, Nie, Jinhui, Shao, Jiajia, Lai, Qingsong, Wang, Longfei, Chen, Jian, Chen, Xiangyu, Wang, Zhong Lin. Fully Elastic and Metal-Free Tactile Sensors for Detecting both Normal and Tangential Forces Based on Triboelectric Nanogenerators. ADVANCED FUNCTIONAL MATERIALS[J]. 2018, 28(31): https://www.webofscience.com/wos/woscc/full-record/WOS:000440283900031.
[31] Nie, Jinhui, Jiang, Tao, Shao, Jiajia, Ren, Zewei, Bai, Yu, Iwamoto, Mitsumasa, Chen, Xiangyu, Wang, Zhong Lin. Motion behavior of water droplets driven by triboelectric nanogenerator. APPLIED PHYSICS LETTERS[J]. 2018, 112(18): https://www.webofscience.com/wos/woscc/full-record/WOS:000431452900050.
[32] Shao, Jiajia, Jiang, Tao, Tang, Wei, Xu, Liang, Kim, Tae Whan, Wu, Chaoxing, Chen, Xiangyu, Chen, Baodong, Xiao, Tianxiao, Bai, Yu, Wang, Zhong Lin. Studying about applied force and the output performance of sliding-mode triboelectric nanogenerators. NANO ENERGY[J]. 2018, 48: 292-300, http://dx.doi.org/10.1016/j.nanoen.2018.03.067.
[33] Xiao, Tian Xiao, Liang, Xi, Jiang, Tao, Xu, Liang, Shao, Jia Jia, Nie, Jin Hui, Bai, Yu, Zhong, Wei, Wang, Zhong Lin. Spherical Triboelectric Nanogenerators Based on Spring-Assisted Multilayered Structure for Efficient Water Wave Energy Harvesting. ADVANCED FUNCTIONAL MATERIALS[J]. 2018, 28(35): http://dx.doi.org/10.1002/adfm.201802634.
[34] Xu, Liang, Jiang, Tao, Lin, Pei, Shao, Jia Jia, He, Chuan, Zhong, Wei, Chen, Xiang Yu, Wang, Zhong Lin. Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting. ACS NANO[J]. 2018, 12(2): 1849-+, http://dx.doi.org/10.1021/acsnano.7b08674.
[35] Xiao, Tian Xiao, Jiang, Tao, Zhu, Jian Xiong, Liang, Xi, Xu, Liang, Shao, Jia Jia, Zhang, Chun Lei, Wang, Jie, Wang, Zhong Lin. Silicone-Based Triboelectric Nanogenerator for Water Wave Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES[J]. 2018, 10(4): 3616-3623, http://dx.doi.org/10.1021/acsami.7b17239.
[36] Chen, Baodong, Tang, Wei, Jiang, Tao, Zhu, Laipan, Chen, Xiangyu, He, Chuan, Xu, Liang, Guo, Hengyu, Lin, Pei, Li, Ding, Shao, Jiajia, Wang, Zhong Lin. Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. NANO ENERGY[J]. 2018, 45: 380-389, http://dx.doi.org/10.1016/j.nanoen.2017.12.049.
[37] Nie, Jinhui, Ren, Zewei, Shao, Jiajia, Deng, Chaoran, Xu, Liang, Chen, Xiangyu, Li, Meicheng, Wang, Zhong Lin. Self-Powered Microfluidic Transport System Based on Triboelectric Nanogenerator and Electrowetting Technique. ACS NANO[J]. 2018, 12(2): 1491-1499, [38] Bai, Yu, Han, Chang Bao, He, Chuan, Gu, Guang Qin, Nie, Jin Hui, Shao, Jia Jia, Xiao, Tian Xiao, Deng, Chao Ran, Wang, Zhong Lin. Washable Multilayer Triboelectric Air Filter for Efficient Particulate Matter PM2.5 Removal. ADVANCED FUNCTIONAL MATERIALS[J]. 2018, 28(15): https://www.webofscience.com/wos/woscc/full-record/WOS:000430101100022.
[39] Shao, Jia Jia, Tang, Wei, Jiang, Tao, Chen, Xiang Yu, Xu, Liang, Chen, Bao Dong, Zhou, Tao, Deng, Chao Ran, Wang, Zhong Lin. A multi-dielectric-layered triboelectric nanogenerator as energized by corona discharge. NANOSCALE[J]. 2017, 9(27): 9668-9675, https://www.webofscience.com/wos/woscc/full-record/WOS:000405387100046.

科研活动

   
科研项目
( 1 ) 独立层模式摩擦纳米发电机的三维数学模型和能量输出最大化理论研究, 主持, 国家级, 2021-01--2023-12
( 2 ) 垂直接触分离模式摩擦纳米发电机的机电耦合模型和机电转换效率, 主持, 部委级, 2020-10--2022-10
( 3 ) 摩擦纳米发电机的三维数学模型和交流输出特性, 主持, 国家级, 2019-09--2021-06
( 4 ) 中科院青促会会员, 主持, 部委级, 2022-04--2026-04
( 5 ) 面向智能服装供电的芯鞘复合纤维基发电纺织面料的性能优化研究, 参与, 国家级, 2021-01--2024-12

个人简介

邵佳佳,青年研究员,硕士生导师

中国科学院北京纳米能源与系统研究所,中国科学院大学纳米科学与技术学院

中国科学院大学特别研究助理,中国科学院青年创新促进会会员