基本信息
李少夫  男  硕导  中国科学院过程工程研究所
电子邮件: sfli@ipe.ac.cn
通信地址: 北京市海淀区中关村北二街1号
邮政编码: 100190

研究领域

材料科学与工程

招生信息

   
招生专业
080502-材料学
080503-材料加工工程
招生方向
金属基复合材料
复合粉体结构设计与加工

教育背景

2012-09--2016-01   北京科技大学   博士学位
2010-09--2012-06   北京科技大学   硕士学位
2006-09--2010-06   中国地质大学(北京)   学士学位
学历
研究生

学位
工学博士

工作经历

2019-07~至今         中国科学院过程工程研究所 副研究员

2016-03~0219-07  中国科学院过程工程研究所 助理研究员

工作简历
2013-04~2014-03,韩国原子能研究院, 海外研究人员

专利与奖励

   
专利成果
[1] 杨亚锋, 崔景毅, 王宇枭, 黄志涛, 吕元之, 李少夫. 一种包覆氧杂质吸附剂的钛粉体及其制备方法. CN: CN112605382A, 2021-04-06.

[2] 李少夫, 崔景毅, 杨亚锋, 胡超权, 王宇枭. 一种碳纳米管包覆氧化物弥散强化钢复合粉体的制备方法. CN: CN112548107A, 2021-03-26.

[3] 崔景毅, 杨亚锋, 胡超权, 邵国强, 李少夫, 王宇枭. 一种氧化铽包覆钐钴永磁材料复合粉体、其制备方法与系统装置. CN: CN112475289A, 2021-03-12.

[4] 崔景毅, 杨亚锋, 胡超权, 邵国强, 李少夫, 王宇枭. 一种氧化铽包覆钕铁硼永磁材料复合粉体、其制备方法与系统装置. CN: CN112453391A, 2021-03-09.

[5] 崔景毅, 杨亚锋, 胡超权, 邵国强, 李少夫, 王宇枭. 一种氧化镝包覆钐钴永磁材料复合粉体、其制备方法与系统装置. CN: CN112466587A, 2021-03-09.

[6] 崔景毅, 杨亚锋, 胡超权, 邵国强, 李少夫, 王宇枭. 一种氧化镝包覆铝镍钴永磁材料复合粉体、其制备方法与系统装置. CN: CN112453392A, 2021-03-09.

[7] 李少夫, 杨亚锋, 崔景毅, 胡超权, 王宇枭. 一种3D打印用氧化物弥散强化钢球形粉体的制备方法. CN: CN112453413A, 2021-03-09.

[8] 杨亚锋, 李少夫, 黄志涛, 吕元之, 崔景毅, 王宇枭. 一种包覆烧结辅助剂的钛粉体及其制备方法. CN: CN112453390A, 2021-03-09.

[9] 崔景毅, 杨亚锋, 胡超权, 邵国强, 李少夫, 王宇枭. 一种氧化镝包覆钕铁硼永磁材料复合粉体、其制备方法与系统装置. CN: CN112447389A, 2021-03-05.

[10] 崔景毅, 杨亚锋, 胡超权, 邵国强, 李少夫, 王宇枭. 一种氧化铽包覆铝镍钴永磁材料复合粉体、其制备方法与系统装置. CN: CN112447388A, 2021-03-05.

[11] 杨亚锋, 李少夫, 刘宇, 谭冲. 一种碳纳米管包覆钛球形复合粉体及其制备方法. CN: CN109550941B, 2020-05-26.

[12] 杨亚锋, 耿康, 李少夫, 刘宇, 叶栋, 郑闰, 张磊. 一种碳纳米管包覆金属基的复合粉体的制备方法. CN: CN111020525A, 2020-04-17.

[13] 杨亚锋, 李少夫, 朱庆山, 谭冲. 核壳结构碳包覆钛及钛合金复合粉体及其制备方法. CN: CN107824786B, 2019-09-24.

[14] 杨亚锋, 耿康, 李少夫. 一种表面改性的高激光反射率金属粉体及3D打印方法. CN: CN109746435A, 2019-05-14.

出版信息

   
发表论文
[1] Cui, Jingyi, Li, Shaofu, Misra, R D K, Geng, Kang, Kondoh, Katsuyoshi, Li, Guanfeng, Yang, Yafeng. Printability enhancement and mechanical property improvement via in situ synthesis of carbon nanotubes on aluminium powder. POWDER TECHNOLOGY[J]. 2023, 413: http://dx.doi.org/10.1016/j.powtec.2022.118038.
[2] Jiang, Fan, Zhu, Tianqi, Wu, Hongyan, Li, Shaofu. Temperature dependence of deposition behavior and corrosion resistance of zinc coatings electroplated on copper substrates from ethaline electrolyte. CHEMICAL PAPERS. 2023, [3] Ye, D, Li, S F, Gan, X M, Misra, R D K, Wang, S X, Liu, Z Q, Hu, C Q, Yang, Y F. In situ growth of carbon nanotubes on NiTi powder for printing high-performance NiTi matrix composite. POWDER TECHNOLOGY[J]. 2023, 416: http://dx.doi.org/10.1016/j.powtec.2023.118221.
[4] Fan Jiang, Tianqi Zhu, Yilong Kuang, Hongyang Wu, Shaofu Li. Superhydrophobic copper coating with ultrahigh corrosion resistance by electrodeposition process in a deep eutectic solvent. CHEMICAL PHYSICS LETTERS. 2023, 811: http://dx.doi.org/10.1016/j.cplett.2022.140197.
[5] ZQ Liu, SF Li, D Ye, RDK Misra, SY Xiao, NN Liang, XM Gan, YF Yang. Insights into strengthening behavior of two-dimensional nanosheets in titanium matrix composites involving a novel MXene/Ti composite powder. MATERIALS SCIENCE & ENGINEERING A. 2023, 867: http://dx.doi.org/10.1016/j.msea.2023.144752.
[6] Wang, S X, Li, S F, Gan, X M, Zheng, R, Ye, D, Misra, R D K, Kondoh, K, Yanga, Y F. Achieving synergy of mechanical isotropy and tensile properties by constructing equiaxed microstructure in as-printed Ti alloys. SCRIPTA MATERIALIA[J]. 2023, 229: http://dx.doi.org/10.1016/j.scriptamat.2023.115379.
[7] Zhang, Shubo, Jiang, Fan, Kuang, Yilong, Xie, Zhongjun, Zhu, Tianqi, Li, Shaofu, Hu, Chaoquan. Effects of high current density on the characteristics of zinc films electroplated in ethaline electrolyte. INTERNATIONAL JOURNAL OF MATERIALS RESEARCH[J]. 2022, 113(9): 785-794, http://dx.doi.org/10.1515/ijmr-2021-8270.
[8] 李少夫, 杨亚锋. 用于制备高性能钛基复合材料的碳包覆钛粉体研究进展. 粉末冶金技术[J]. 2022, [9] Jia, Haodong, Zhou, Zhangjian, Li, Shaofu. A new strategy for additive manufacturing ODS steel using Y-containing gas atomized powder. MATERIALS CHARACTERIZATION[J]. 2022, 187: http://dx.doi.org/10.1016/j.matchar.2022.111876.
[10] Yang, Yafeng, Geng, Kang, Li, Shaofu, Bermingham, Michael, Misra, R D K. Highly ductile hypereutectic Al-Si alloys fabricated by selective laser melting. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY[J]. 2022, 110: 84-95, http://dx.doi.org/10.1016/j.jmst.2021.07.050.
[11] Zheng, Run, Cui, Jingyi, Yang, Yafeng, Li, Shaofu, Misra, R D K, Kondoh, Katsuyoshi, Zhu, Qingshan, Lu, Yanan, Li, Xiaofeng. Enhanced densification of copper during laser powder bed fusion through powder surface alloying. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY[J]. 2022, 305: http://dx.doi.org/10.1016/j.jmatprotec.2022.117575.
[12] Wang, L, Liu, Z Q, Li, S F, Yang, Y F, Misra, R D K, Li, J, Ye, D, Cui, J Y, Gan, X M, Tian, Z J. Few-layered Ti3C2 MXene-coated Ti-6Al-4V composite powder for high-performance Ti matrix composite. COMPOSITES COMMUNICATIONS[J]. 2022, 33: http://dx.doi.org/10.1016/j.coco.2022.101238.
[13] Shi, Hebang, Zhang, He, Hu, Chaoquan, Li, Shaofu, Xiang, Maoqiao, Lv, Pengpeng, Zhu, Qingshan. Efficient fluidization intensification process to fabricate in-situ dispersed (SiO plus G)/CNTs composites for high-performance lithium-ion battery anode applications. PARTICUOLOGY[J]. 2021, 56: 84-90, https://www.webofscience.com/wos/woscc/full-record/WOS:000637319400008.
[14] Ye, D, Li, S F, Misra, R D K, Zheng, R, Yang, Y F. Ni-loss compensation and thermomechanical property recovery of 3D printed NiTi alloys by pre-coating Ni on NiTi powder. ADDITIVE MANUFACTURING[J]. 2021, 47: [15] Hebang Shi, He Zhang, Chaoquan Hu, Shaofu Li, Maoqiao Xiang, Pengpeng Lv, Qingshan Zhu. Efficient fluidization intensification process to fabricate in-situ dispersed (SiO + G)/CNTs composites for high-performance lithium-ion battery anode applications. Particuology[J]. 2021, [16] Kuang, Yilong, Jiang, Fan, Zhu, Tianqi, Wu, Hongyan, Yang, Xinye, Li, Shaofu, Hu, Chaoquan. One-step electrodeposition of superhydrophobic copper coating from ionic liquid. MATERIALSLETTERS[J]. 2021, 303: http://dx.doi.org/10.1016/j.matlet.2021.130579.
[17] Pan, Feng, Liu, Jiayi, Du, Zhan, Zhu, Qingshan, Zhang, Meiju, Yan, Dong, Li, Shaofu. Reaction Process of WC Prepared under a CO Atmosphere in a Fluidized Bed. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH[J]. 2021, 60(1): 162-172, [18] Hebang Shi, He Zhang, Chaoquan Hu, Shaofu Li, Maoqiao Xiang, Pengpeng Lv, Qingshan Zhu. Efficient fluidization intensification process to fabricate in-situ dispersed(SiO+G)/CNTs composites for high-performance lithium-ion battery anode applications. 颗粒学报:英文版[J]. 2021, 84-90, http://lib.cqvip.com/Qikan/Article/Detail?id=7104906062.
[19] Xiang, Maoqiao, Zheng, Jie, Li, Shaofu, Hu, Chaoquan, Cui, Jingyi, Zhang, Yingchun, Qi, Qiang, Yue, Fen. Preparation of coated Li2TiO3 and Li4SiO4 pebbles by fluidized bed chemical vapor deposition for advanced tritium breeders. FUSION ENGINEERING AND DESIGN[J]. 2021, 165: http://dx.doi.org/10.1016/j.fusengdes.2021.112245.
[20] Liu, Yu, Li, Shaofu, Misra, R D K, Geng, Kang, Yang, Yafeng. Planting carbon nanotubes within Ti-6Al-4V to make high-quality composite powders for 3D printing high-performance Ti-6Al-4V matrix composites. SCRIPTA MATERIALIA[J]. 2020, 183: 6-11, http://dx.doi.org/10.1016/j.scriptamat.2020.03.009.
[21] Zuo, Tingting, Li, Jian, Gao, Zhaoshun, Zhang, Ling, Da, Bo, Zhao, Xingke, Ding, Fazhu, Li, Shaofu, Yang, Yafeng, Xiao, Liye. Enhanced electrical conductivity and hardness of Copper/Carbon Nanotubes composite by tuning the interface structure. MATERIALS LETTERS[J]. 2020, 280: http://dx.doi.org/10.1016/j.matlet.2020.128564.
[22] Geng, Kang, Yang, Yafeng, Li, Shaofu, Misra, R D K, Zhu, Qingshan. Enabling high-performance 3D printing of Al powder by decorating with high laser absorbing Co phase. ADDITIVE MANUFACTURING[J]. 2020, 32: http://dx.doi.org/10.1016/j.addma.2019.101012.
[23] Hu, Chaoquan, Shao, Mingyuan, Xiang, Maoqiao, Li, Shaofu, Xu, Shuanghao. The role of hydrogen coverage and location in 1,3-butadiene hydrogenation over Pt/SiO2. REACTION CHEMISTRY & ENGINEERING[J]. 2020, 5(1): 87-100, https://www.webofscience.com/wos/woscc/full-record/WOS:000507993700005.
[24] 邓楠, 董浩, 车洪艳, 李少夫, 周张健. 冷喷涂制备金属涂层及其在增材制造应用中的研究进展. 表面技术[J]. 2020, 49(3): 57-, http://lib.cqvip.com/Qikan/Article/Detail?id=7101144710.
[25] Li, Shaofu, Yang, Yafeng, Misra, R D K, Liu, Yu, Ye, Dong, Hu, Chaoquan, Xiang, Maoqiao. Interfacial/intragranular reinforcement of titanium-matrix composites produced by a novel process involving core-shell structured powder. CARBON[J]. 2020, 164: 378-390, http://dx.doi.org/10.1016/j.carbon.2020.04.010.
[26] Geng, Kang, Li, Shaofu, Yang, Y F, Misra, R D K. 3D printing of Al matrix composites through in situ impregnation of carbon nanotubes on Al powder. CARBON[J]. 2020, 162: 465-474, http://dx.doi.org/10.1016/j.carbon.2020.02.087.
[27] Li, Dawei, Xue, Jiangli, Zuo, Tingting, Gao, Zhaoshun, Xiao, Liye, Han, Li, Li, Shaofu, Yang, Yafeng. Copper/functionalized-carbon nanotubes composite films with ultrahigh electrical conductivity prepared by pulse reverse electrodeposition. JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS[J]. 2020, 31(17): 14184-14191, https://www.webofscience.com/wos/woscc/full-record/WOS:000551032200006.
[28] Li, S F, Cui, J Y, Yang, L F, Yang, Y F, Misra, R D K, Zheng, R, Zuo, T T, Gao, Z S, Huang, Z T. In Situ Growth of Carbon Nanotubes on Ti Powder for Strengthening of Ti Matrix Composite via Nanotube-Particle Dual Morphology. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE[J]. 2020, 51(11): 5932-5944, https://www.webofscience.com/wos/woscc/full-record/WOS:000568641200002.
[29] Li, S F, Geng, K, Misra, R D K, Cui, J Y, Ye, D, Liu, Y, Yang, Y F. Commercial Scale Uniform Powder Coating for Metal Additive Manufacturing. JOM[J]. 2020, 72(12): 4639-4647, https://www.webofscience.com/wos/woscc/full-record/WOS:000576655300002.
[30] Pan, Feng, Du, Zhan, Li, Shaofu, Li, Jun, Zhang, Meiju, Xiang, Maoqiao, Zhu, Qingshan. Preparation of nano-sized tungsten carbide via fluidized bed. CHINESE JOURNAL OF CHEMICAL ENGINEERING[J]. 2020, 28(3): 923-932, http://lib.cqvip.com/Qikan/Article/Detail?id=7102207354.
[31] Zhang Lei, Yue Fen, Li Shaofu, Yang Yafeng. Utilizing the autocatalysis of Co to prepare low-cost WC-Co powder for high-performance atmospheric plasma spraying. JOURNAL OF THE AMERICAN CERAMIC SOCIETY[J]. 2020, 103(12): 6690-6699, https://www.webofscience.com/wos/woscc/full-record/WOS:000533414000001.
[32] Xiang, Maoqiao, Song, Miao, Zhu, Qingshan, Yang, Yafeng, Li, Shaofu, Hu, Chaoquan, Lv, Pengpeng, Pan, Feng, Ge, Yu. Synthesis of high melting point TiN mesocrystal powders by a metastable state strategy. CRYSTENGCOMM[J]. 2019, 21(14): 2257-2263, http://ir.ipe.ac.cn/handle/122111/28240.
[33] ZH Xiong, SL Liu, SF Li, Y Shi, YF Yang, RDK Misra. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. MATERIALS SCIENCE & ENGINEERING A. 2019, 740-741: 148-156, http://dx.doi.org/10.1016/j.msea.2018.10.083.
[34] Li, S F, Yang, Y F, Kondoh, K, Kariya, S, Zhu, Q S, Shi, Y. Activation of B as a sintering aid and its improved microstructure modification by using Ni-B coated Ti core-shell powder. MATERIALIA[J]. 2019, 5: [35] Geng, Kang, Yang, Yafeng, Li, Shaofu, Misra, R D K, Zhu, Qingshan. A General Strategy for Enhancing 3D Printability of High Laser Reflectivity Pure Aluminum Powder. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE[J]. 2019, 50A(11): 4970-4976, [36] Zhang, Lei, Xin, Fengxia, Li, Shaofu, Yang, Yafeng, Zhu, Qingshan, Wang, Gang. Enabling the low-cost preparation of core-shell WC-Ni powder by developing a non-noble metal-based catalytic. JOURNAL OF THE AMERICAN CERAMIC SOCIETY[J]. 2019, 102(8): 4492-4501, [37] 陈灵芝, 李少夫, 廖璐, 董浩, 车洪艳, 周张健. 14Cr-ODS钢的显微组织和拉伸性能及热稳定性. 材料热处理学报[J]. 2019, 40(11): 124-, http://lib.cqvip.com/Qikan/Article/Detail?id=7100336348.
[38] Li, S F, Liu, Y, Yang, Y F, Zhu, Q S, Kondoh, K, Misra, R D K, Tan, C, Hu, C Q, Ge, Y. Activating Trace Fe Impurity as Catalyst to Plant Carbon Nanotubes Within Ti-6Al-4V Powders for High-Performance Ti Metal Matrix Composites. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE[J]. 2019, 50A(9): 3975-3979, https://www.webofscience.com/wos/woscc/full-record/WOS:000477997600001.
[39] Li Shaofu. Sintering Response and Equiaxed a-Ti Grain Formation in the Ti Alloys Sintered from Ti@Ni Core–Shell Powders. METALLURGICAL AND MATERIALS TRANSACTIONS A. 2018, [40] Pan, Feng, Zhu, Qingshan, Li, Shaofu, Xiang, Maoqiao, Du, Zhan. Decomposition-carbonization of ammonium paratungstate in a fluidized bed. INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS[J]. 2018, 72: 315-322, [41] Yang, Y F, Li, S F, Qian, M, Zhu, Q S, Hu, C Q, Shi, Y. Enabling the development of ductile powder metallurgy titanium alloys by a unique scavenger of oxygen and chlorine. JOURNAL OF ALLOYS AND COMPOUNDS[J]. 2018, 764: 467-475, http://dx.doi.org/10.1016/j.jallcom.2018.06.110.
[42] Shaofu Li, Chong Tan, Yu Liu, Pengpeng Lv, Qingshan Zhu, Yu Shi, Yafeng Yang. Designing core-shell C-coated Ti-6Al-4V powders for high-performance nano-sized TiC platelets/particles synergistically reinforced Ti-6Al-4V composites. MATERIALIAnull. 2018, 2: 68-72, http://dx.doi.org/10.1016/j.mtla.2018.06.010.
[43] Run Zheng, Shaofu Li, RDK Misra, Katsuyoshi Kondoh, Yafeng Yang. Laser powder bed fusion of electrically/thermally conductive component by developing inert Cr2O3-coated Cu powder. ADDITIVE MANUFACTURING. http://dx.doi.org/10.1016/j.addma.2023.103617.

科研活动

   
科研项目
( 1 ) ODS钢3D打印过程中纳米氧化物颗粒形成演化与调控机制, 负责人, 国家任务, 2019-01--2021-12
( 2 ) 3D打印金属基复合材料粉体的宏量制备装置, 参与, 中国科学院计划, 2020-01--2021-12
( 3 ) 基于增材制造的智能仿生结构设计技术, 参与, 国家任务, 2018-07--2021-07
( 4 ) 高性能粉末冶金钛合金零件制备与产业化开发, 参与, 地方任务, 2020-01--2022-12
( 5 ) 基于异构碳源包覆钛粉烧结诱发增强相定向分布及组织调控机理研究, 负责人, 国家任务, 2022-01--2025-12